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A B S T R A C T  
 

In automated systems, biometric systems can be used for efficient and unique identification and 

authentication of individuals without requiring users to carry or remember any physical tokens or 

passwords. Biometric systems are a rapidly developing and promising technology domain. in 

contrasting with conventional methods like password IDs. Biometrics refer to biological measures or 

physical traits that can be employed to identify and authenticate individuals. The motivation to 

employ brain activity as a biometric identifier in automatic identification systems has increased 

substantially in recent years. with a specific focus on data obtained through electroencephalography 

(EEG). Numerous investigations have revealed the existence of discriminative characteristics in brain 

signals captured during different types of cognitive tasks. However, because of their high dimensional 

and nonstationary properties, EEG signals are inherently complex, which means that both feature 

extraction and classification methods must take this into consideration. In this study, a hybridization 

method that combined a classical classifier with a pre-trained convolutional neural network (CNN) 

and the short-time Fourier transform (STFT) spectrum was employed. For tasks such as subject 

identification and lock and unlock classification, we employed a hybrid model in mobile biometric 

authentication to decode two-class motor imagery (MI) signals. This was accomplished by building 

nine distinct hybrid models using nine potential classifiers, primarily classification algorithms, from 

which the best one was finally selected. The experimental portion of this study involved, in practice, 

six experiments. For biometric authentication tasks, the first experiment tries to create a hybrid model. 

In order to accomplish this, nine hybrid models were constructed using nine potential classifiers, 

which are largely classification methods. Comparing the RF-VGG19 model to other models, it is 

evident that the former performed better. As a result, it was chosen as the method for mobile 

biometric authentication. The performance RF-VGG19 model is validated using the second 

experiment. The third experiment attempts for verifying the RF-VGG19 model's performance. The 

fourth experiment performs the lock and unlock classification process with an average accuracy of 

91.0% using the RF-VGG19 model. The fifth experiment was performed to verify the accuracy and 

effectiveness of the RF-VGG19 model in performing the lock and unlock task. The mean accuracy 

achieved was 94.40%. Validating the RF-VGG19 model for the lock and unlock task using a different 

dataset (unseen data) was the goal of the sixth experiment, which achieved an accuracy of 92.8%. 

This indicates the hybrid model assesses the left and right hands' ability to decode the MI signal. 
Consequently, The RF-VGG19 model can aid the BCI-MI community by simplifying the 

implementation of the mobile biometric authentication requirement, specifically in subject 

identification and lock and unlock classification. 
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1 INTRODUCTION 

As an essential component of system security in the field of information systems, identity authentication is a crucial 

assurance. However, there are varying degrees of security concerns associated with classic biometric identification 

systems. For example, biometric data can be stolen or replicated [1, 2]. The scientific subject of IT security is expanding 

steadily, and as such, it needs to develop. It is a difficult task for security scientists from various fields of competence to 

collaborate and agree on methodologies, procedures, and outcomes because of its immense complexity and variety of 

viewpoints [3-5]. Information systems (IS) are increasingly indispensable in several domains of life for humans, ranging 

from the military to the healthcare business. Consequently, there is a growing imperative to ensure the security of IS. 

This is mainly due to the fact that computer systems store sensitive information, and without security, people and 

organizations are unable to share data or make use of the technology.[6]. Over the last few decades, the ability to 

automatically identify or authenticate people has been the focus of computer science research. This has involved 

interdisciplinary sciences collaborating to continuously develop automated methods that are more precise, quicker, more 

convenient, and less susceptible to impersonation[7]. Electroencephalogram (EEG) brain signals are used for an 

authentication process, according to research on brain biometrics. Potential uses for EEG data unique qualities for user 

authentication include the ability to discern between different brain processes. This approach is much more secure and 

resilient than other biometric systems since the answer is altered based on the user's instantaneous mental state[8, 9].  

Furthermore, Due to its unique characteristics, EEG is superior to conventional biometric modalities like fingerprint and 

iris in terms of privacy compliance, robustness against spoofing assaults, and aliveness detection[10]. In 

electroencephalography (EEG) to other noninvasive brain signal acquisition models, recent research has demonstrated 

that EEG is a cost-effective, portable, and easy to use noninvasive technique for recording brain activity that can be used 

to develop biometric systems.  An individual's EEG signals are recorded while they are in a comfortable resting state, 

with their eyes open or closed and experiencing active response stages. It has been noted that these signals are strong 

transmitters of distinct personality traits[11]. Electroencephalography (EEG) is a powerful brain imaging technique when 

compared to other functional neuroimaging methods like positron emission tomography (PET), magnetoencephalogram 

(MEG), functional magnetic resonance imaging (fMRI), and transcranial magnetic stimulation (TMS). These 

characteristics include mobility, safety, non-invasiveness, high flexibility, high temporal resolution, low cost, and ease of 

usage[12]. Compared to other biometric modalities, such as electrocardiography (ECG) and electromyography (EMG), 

electroencephalography (EEG) signals are more promising due to their rich dynamic properties and extremely high 

temporal resolution[10]. Electroencephalography (EEG) and motor imagery (MI) signals have garnered significant 

attention recently because they convey a person's intention to do an activity. Researchers have utilized MI signals to 

assist people with disabilities in controlling wheelchairs and other devices [13], Biomedicine [14] and even self-driving 

cars [15]. Additionally, they are used in [16]. To be more precise, MI is the name given to a particular type of cognitive 

activity in which a subject imaginer moving their arms or legs but doesn't actually do so.  When a movement is imagined, 

certain brain regions involved in its planning and execution must be consciously activated. This is usually done in 

conjunction with a willful effort to prevent the real movement from occurring[17, 18]. Decoding MI-EEG data is a very 

challenging endeavor due to its dynamic nature, poor signal-to-noise ratio, and complexity[19]. As a result, MI pattern 

identification systems require three critical procedures: EEG signal preprocessing, feature extraction, and 

classification[20]. In the MI-EEG pattern recognition approach, feature extraction is essentially the key procedure. 
Particularly for classification, the use of time-frequency representation (TFR) to analyses motor imagery (MI) features is 

a widely used technique in brain-computer interface (BCI) applications. The aforementioned diagram illustrates the 

power and dispersion of signal energy throughout a wide range of time intervals and frequencies through the combination 

of functions of time and frequency [10][15]. Due to the fundamentally one-dimensional nature of the MI signal, it is 

necessary to convert it into two-dimensional images. This can be achieved by implementing the techniques of Continuous 

Wavelet Transform (CWT) and Short-Time Fourier Transform (STFT). The previously investigated techniques exhibit 

exceptional effectiveness and expertise in the administration of signal properties spanning both the temporal and 

frequency domains [11]. However, Electroencephalograms (EEGs) are frequently regarded as non-stationary signals in 

situations involving brief time intervals. In these conditions, the Short-Time Fourier Transform (STFT) methodology 

seems to be a feasible way to extract and calculate the time-frequency domain spectrum of the brain signal [12]. 

Furthermore, a benefit of the Short-Time Fourier Transform (STFT) technique is that it offers concurrent information in 

the time-frequency domain at a comparatively low computational expense [13][21]. In a similar manner it has also been 

demonstrated that the convolutional neural network (CNN) can extract temporal and spatial information from magnetic 

induction (MI) data. The results of previous research have demonstrated that convolutional neural networks (CNNs) have 

the potential to extract highly effective features from both shallow and deep models. This suggests that advantageous 
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attributes may be produced at different levels of the network architecture [8][22]. Furthermore, the implementation of 

deep transfer learning methodologies streamlines the process of integrating new datasets into a pre-existing machine 

learning model. Because the amount of data that is typically given is insufficient to guarantee that the model is properly 

trained, this feature is especially helpful for brain-computer interface (BCI) systems [14][23]. The results of the BCI 

research suggest that convolutional neural network (CNN)-based subject transfer methods outperformed alternative 

approaches. These subject-transfer approaches depend on the assumption that the typical patterns of the target subject and 

other subjects can be compared while performing the same activities [15][24]. The selection of a suitable classifier 

becomes crucial since it plays a significant role and directly affects the ability to distinguish between two MI-EEG 

mental commands. In order to accomplish classification, traditional machine learning techniques require the usage of 

manually created features. Nonetheless, categorization is carried out by deep convolutional neural networks (DCNN), 

which directly extract characteristics from unprocessed input[25, 26].  Previous studies, such as [27-29], have classified 

computer vision problems by combining a traditional machine learning approach with pretrained CNNs. Additionally, 

studies such as [30, 31] have identified seizures caused on by epilepsy using the same technique. The aim of this study is 

to utilize a hybrid approach that integrates pretrained Convolutional Neural Networks (CNNs) with a traditional machine 

learning method in order to decode two-class Motor Imagery (MI) signals for Electroencephalogram (EEG) biometric 

identification. EEG signals are caused by both imagined and actual human movement. In motor imaging, EEG data show 

synchronization (ERS) and desynchronization (ERD) properties[32]. In order to capture both ERS and ERD motor 

activity, a 4-second trial's 2D pictures, or spectrograms, are created using the STFT approach. This approach uses one 

EEG channel and produces six pictures related to the alpha and beta bands. Subsequently, The VGG-19 model is utilized 

to extract features from the motor imaging data, which are subsequently combined with the classifier to carry out the 

classification method [33]. The paper is organized as follows: Section 2 provides a brief summary of the technique; 

Section 3 expands on the results and comments; and Section 4 delivers the study's findings and conclusions. 

 
2 METHODOLOGY  

The hybrid model's methodology for MI signal decoding is illustrated in Figure 1. Sections that follow this framework's 

outline provide further detail on the concept and its implementation of the MI pattern detection technique: 

 

 Fig .1.  Methodological Framework for Ensemble Model 

 

2.1 MI EEG Datasets 

Developers of brain-computer interface (BCI) systems usually decide to use as few channels as possible. This strategy 

lowers the costs related to real-time applications and facilitates simpler deployment [14]. As a result, two MI EEG 

datasets with three channels of recording are chosen for this study. The study's two datasets came from the BCI 

competition datasets, which were collected at Graz University. The following subsections provide more information 

about the two datasets. The training and evaluation sections of the datasets are two distinct components. Consequently, 

the hybrid model was used to assess inter and intra-subject variances[34, 35]. Because a large dataset was not readily 

available, the datasets of the nine participants had to be combined in order to produce a single, comprehensive dataset 
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that included all trials. This strategy was used to build a robust model that could successfully handle the complicated 

problems brought on by brain complexity. 
 

1. Dataset-I (BCI IV 2b dataset) 

The dataset consisted of three channels of electroencephalogram (EEG) data (C3, Cz, and C4), which recorded signals 

related to two separate motor imagery tasks: movements executed with the left and right hands. At a sample frequency of 

250 Hz, the data was gathered from a group including nine different individuals. An electroencephalogram (EEG) was 

obtained from an individual who was put in an armchair and instructed to stare at a flat screen for the duration of 160 

trials. There were two separate recording sessions: one for training with no feedback and the other for evaluation with 

positive feedback. In the initial two sessions, the participants were provided with a concise auditory signal in the form of 

a warning tone. Four seconds of motor imagining exercises were conducted by the subjects in response to this cue. 

Participating in a cognitive simulation of a specific movement guided by an auditory signal in the form of a pointing 

arrow displayed on a screen devoid of physical components was the objective of this task. During the subsequent three 

sessions, participants received comprehensive guidance on modifying the grey smiley feedback, which was positioned at 

the center of the monitor. Following the display of a brief auditory signal, individuals were instructed to shift the 

feedback left or right. The feedback, depicted as a smiling emoticon, is transmitted within a time span of four seconds. 

The smiling face turns green while it's heading in the right direction, but red when it's going the wrong way [15]. As 

shown in the figure 2: 

 

 

 

(a) without feedback  

 

 

(b) with smiley feedback 

Fig .2. Trials Recording Time Scheme of the BCIC IV 2b Dataset  

 

 

2. Dataset-II (BCI II dataset) 

The dataset was collected from a singular participant, a healthy 25-year-old female. The sample frequency utilized by the 

electroencephalography (EEG) apparatus's three EEG channels (C3, Cz, and C4) was 128 Hz. The dataset was collected 

from a singular participant, a healthy 25-year-old female. The sample frequency utilized by the electroencephalography 

(EEG) apparatus's three EEG channels (C3, Cz, and C4) was 128 Hz.  
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The overall time for each trial is nine seconds. The grazing procedure was used to gather the dataset, and participants saw 

a period of quiet during the first two seconds. The experiment began with the presentation of a visual stimulus on the 

screen at the two-second mark. This was followed by the appearance of the cross symbol "+" for one second.  At time t=3 

seconds, a visual stimulus in the shape of an arrow pointing to the right or left is displayed. The effectiveness of motor 

imagery in hand motions was assessed by the research through a thorough analysis that included 280 trials, with a focus 

on both left- and right-hand movements. The dataset's whole signal is subjected to notch filtering between 0.5 and 30 Hz 

[16]. As shown in the figure 3: 
 

 
Fig .3. Trials Recording Time Scheme of the BCIC II Dataset 

 

 

a. Pre-processing 

The EEG-MI signal is contaminated by a number of factors, such as face muscle activity, eye blinking, body movements, 

and environmental artefacts such the electromagnetic fields generated by electrical gadgets [17]. Because deep learning is 

used within the framework, there is minimal preprocessing involved[36]. In order to enhance the signal-to-noise ratio of 

unprocessed EEG data and highlight pertinent information contained within the signals, frequency filtering is 

implemented. Since the alpha (8-13 Hz) and beta (14-30 Hz) rhythms are crucial to motor imagery (MI) 

electroencephalogram (EEG) data, fourth-order Butterworth filtering is employed in the 8-30 Hz frequency range.  

VGG-19 

In order to accurately describe the latent characteristics of the brain signal in the context of the EEG signal classification 

problem, high-dimensional features are required. CNN employs many kernels, sometimes referred to as filters, in order to 

extract dominant features through the convolution process[25]. Transfer learning is the process of retraining a few of a 

previously trained network's final layers in order to answer a new categorization problem. This significantly reduces the 

number of training samples required and significantly saves time compared to training the network from the beginning. 

Karen Simonyan and Andrew Zisserman were the principal architects and developers of the pre-trained VGG framework. 

Using the ImageNet dataset, which comprises 14 million images with 1,000 distinct classifications, the model was 

trained. Because this deep learning framework demonstrated superior performance on two important computer vision 

issues, localization and classification, it was used in numerous research applications [37, 38]. To improve the feature 

extraction procedure, the VGG-19 version of the VGG architecture raises the kernel size from 64 to 512 [39, 40]. 

Essentially, the pooling layer, which has a stride size of 2x2, comes after the convolution layer unit. The downsampling 

in this network is accomplished using max-pooling, whereas the activation function utilised is the Rectified Linear Unit 

(ReLU). The input image has a resolution of 224 x 224 and is composed of three fully connected layers with varying 

layer orders, including 4096, 4096, and 1000. This CNN network's classification idea is predicated on the likelihood of 

applying the softmax to multiclass problems [41]. A VGG-19 model was used to extract features from motor imaging 

signals[40]. CNN-based biometric recognition achieved very high accuracy[33, 42]. Three layers make up the main 

components of the VGG-19: the convolution, pooling, and fully linked layers. Below is a description of this network in 

more detail: 
 

1)  The convolution layer: this layer is in charge of applying the filtering operation and performing the convolution 

operation on the input image in order to extract the feature map. This aids in comprehending a few elements and 

characteristics of the topographical image map. Local connection, which is enforced by the CNN network 

among neurons, aids in edge detection, sharpening, and blurring[43]. 

0 1 2 3 4 5 6 7 8 9 sec

Trigger

Beep

Feedback period with Cue
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2) The Pooling layer: This layer is in charge of downsampling the feature map in order to reduce the features. This 

aids in controlling the issues with overfitting and underfitting. Depending on whether features are included in 

the patches, the typical pooling method is either average or max-pooling. In VGG-19, max pooling is most 

frequently employed[44].  

3) The Fully Connected Layer, comprising three distinct layers, represents the ultimate component of the VGG-19. 
They take in information from the pooling and convolution layers, which are the preceding layers. 

This unit flattens its input before producing the final output by matrix multiplication carried out with a 

bias offset [45, 46]. 
 

b. Short Time Fourier Transform for EEG Image Formulation 

Established by Gabor in 1946, the short-time Fourier transform (STFT) is a prevalent method in signal processing 

employed to analyses non-linear and non-stationary signals. It can define a raw signal's phase and magnitude, which vary 

with frequency and time [47]. It divides a long signal into equal-window segments and performs the Fourier transform on 

each segment [48]. This type of advanced Fourier analysis allows for a comprehensive estimation of a signal in both 

domains. The window function is employed by the Short-Time Fourier Transform (STFT) to extract a distinct subset of 

the time domain data for the purpose of identifying distinctive signal attributes. The cutout component is then subjected 

to the Fourier transform[49]. A brief time frame that moves along the time axis for STFT is multiplied by the processed 

EEG signal x(t). A collection of windowed signal segments is the end outcome. Ultimately, The Fourier transform is 

utilized on individual segments of the signal that have been windowed, resulting in two-dimensional time-frequency 

spectrums of the original signal. The Short-Time Fourier Transform (STFT) is technically defined as follows [50]:  

 

STFT (τ, ω) =∫ 𝑑𝑡 𝑤(𝑡 − 𝜏)𝑒−𝑖𝜔𝑡𝑑𝑡
+∞

−∞ 
                 (1) 

 

Equation (1) denotes a constant window size (w(t)) and a finite number of non-zero values on the time axis (τ). By 

performing simultaneous analysis of the signal in both the temporal and frequency domains, the Short-Time Fourier 

Transform (STFT) technique makes it easier to evaluate the inherent properties of the EEG data that is incorporated. By 

denoting the raw MI signals for C channels and K samples as E = {(Xi, yi)|i = 1, 2,..., N}, it is important to highlight that 

Xi ∈ RC×K is a two-dimensional matrix that represents the i-th MI trial in the dataset. The dataset's total number of 

samples is indicated by the letter N. The labels for each Xi trial are represented by Yi, and Xi stands for the total number 

of trials. The MI tasks for M classes are compromised since they get their values from the L set. There are two classes in 

total in this study, and they are designated with the labels L = {l1 = "left t", l2 = "right"}. Studies such as [51] 

demonstrated the STFT's effectiveness in producing 2D images (spectrograms) with a duration of 4 seconds, which were 

subsequently fed into CNN as input images. As a result, four seconds was selected as the duration, indicating that there 

was a total of 1,000 samples for each of the MI signals in the Xi experiment. Next, we decide on a 64-sample window 

size, of which 50 samples are overlapping. The result of this operation is an image that shows the values of each MI 

signal's power spectral density (PSD), expressed in Hertz. As a result, for every set of data obtained with three electrodes, 

three images are generated. However, For the purpose of recording the alpha and beta frequency bands, which are 

associated with the motor activity of the ERD and ERS, the present investigation generates six images for every MI trail. 
 

3. RESUITS AND DISCUSSION  

This section presents and discusses the results of the hybrid model's creation for biometric identification utilizing motor 

imagery. The results are provided and discussed. This model will be implemented for the mobile biometric authentication 

assignment, which consists of subject identification and lock/unlock classification. In essence, they give an account of the 

findings from six experiments. Building a hybrid model that might be used to the biometric authentication problem is the 

main goal of the first experiment. To complete this objective, nine hybrid models were built using nine different potential 

classifiers, most of which were well used classification techniques. The performance metrics of the models that were 

discussed earlier are presented in Table 1. The performance metrics indicate that the hybrid model incorporating both the 

RF classifier and AdaBoost classifier exhibits the highest level of performance. In particular, the model demonstrates a 

classification accuracy of 0.908 for the former, precision and recall of 0.908, area under the curve of 0.908, log loss of 

1.134, specificity of 0.989, training time of 17:008, and testing time of 6.170. In terms of the latter, the classification 

accuracy is 0.912, F1=0.912, Precision=0.912, Recall=0.912, AUC=0.951, Log loss=3.033, Specificity=0.989, Training 

Time=56.252, and Testing Time=8.109. In relation to both training and testing time, when compared to the hybrid model 

that included the AdaBoost classifier, the performance of the RF-VGG19 model was significantly higher. As a result, the 
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model that is often referred to as RF-VGG19 has been selected for use in mobile biometric authentication.  A second 

experiment was conducted to evaluate how well the RF-VGG19 model identified participants.  
 

TABLE 1.  IDENTIFICATION OF TRAINING PART OVER DATASET-I.  

 

Subjects 

Performance Metrics 

Training Time Testing Time AUC CA F1 Precision Recall Logloss Specificity 

Random Forest 17.008 6.170 0.977 0.908 0.908 0.908 0.908 1.134 0.989 

AdaBoost 56.252 8.109 0.951 0.912 0.912 0.912 0.912 3.033 0.989 

KNN 10.509 10.388 0.890 0.401 0.400 0.413 0.401 3.009 0.925 

Tree 415.451 0.024 0.948 0.817 0.817 0.818 0.817 3.097 0.977 

SVM 1100.967 183.904 0.899 0.574 0.569 0.594 0.574 1.543 0.947 

SGD 96.079 13.831 0.907 0.834 0.834 0.834 0.834 5.730 0.979 

Logistic Regression 380.585 9.074 0.903 0.571 0.571 0.572 0.571 1.251 0.946 

Naive Bayes 15.692 4.027 0.765 0.351 0.355 0.376 0.351 20.488 0.919 

Gradient Boosting 42058.514 6.339 0.985 0.903 0.903 0.904 0.903 0.597 0.988 

 

 

 

Fig .4. Confusion matrix for subject identification over the (Dataset-I) 

 
 

Figure 2 serves as a visual representation of the outcome of the experiment that was mentioned earlier, more specifically 

the evaluation of Dataset I. The provided matrix is the confusion matrix generated during this test. The accuracy of the 

model's classification, the F1 score, the precision, the recall, and the area under the curve (AUC) are all 0.909, 0.909, 

0.909, and 0.978, respectively. In terms of specificity, the value is 0.989, while the log loss is 1.082. The time required 

for training the model is 21.608, while the time required for testing it is 7.671. The third experiment evaluated the RF-

VGG19 model's accuracy in subject identification. Within the context of this experiment, the confusion matrix that was 

utilized to evaluate Data Set I and Data Set II can be found in Figure 3. The accuracy of the presented model in terms of 

classification, the F1 score, the precision, the recall, and the area under the curve (AUC) are, respectively, 0.934, 0.934, 

0.934, and 0.934. A log loss of 0.715 and a specificity of 0.993 are the results of the training and testing times, which are 

23.910 and 8.571, respectively. The results of the three experiments that were conducted to identify subjects demonstrate 

that the RF-VGG19 model is capable of accurately identifying individuals based on the brain signals that they produce. 
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Fig .5.  Confusion matrix for subject identification over the (Dataset-I +Dataset-II) 

 

The classification of lock and unlock tasks is the focus of the fourth experiment, which makes use of the RF-VGG19 

conceptual framework. Nine individuals in total were included in the training parts of dataset I, which is where the 

experiment was carried out. This will enable the assessment of the model's capability to manage the complexities inherent 

in intra-subject brain signal complexity. Different subjects' brain signals vary in complexity. Table 2 outlines the 

experiment's results, which demonstrate that the nine participants had an average accuracy of 91.0% for the lock and 

unlock tasks. 
 

 
TABLE II . VALIDATION OF RF-VGG-19 MODEL ON DATASET-I (TRAINING PART) FOR LOCK AND UNLOCK TASK  

 

Subjects 

Performance Metrics 

Training Time Testing Time AUC CA F1 Precision Recall Logloss Specificity 

S1 10.379 5.314 0.986 0.940 0.940 0.941 0.940 0.220 0.940 

S2 8.245 4.180 0.979 0.927 0.927 0.927 0.927 0.273 0.927 

S3 8.045 4.470 0.980 0.929 0.929 0.929 0.929 0.236 0.929 

S4 10.432 5.234 0.991 0.691 0.961 0.962 0.961 0.181 0.961 

S5 10.217 5.413 0.982 0.932 0.932 0.933 0.932 0.232 0.932 

S6 10.555 5.230 0.981 0.943 0.942 0.943 0.943 0.263 0.943 

S7 11.144 5.445 0.983 0.938 0.938 0.939 0.938 0.243 0.926 

S8 10.639 5.364 0.986 0.947 0.947 0.947 0.947 0.206 0.947 

S9 9.879 5.754 0.986 0.951 0.951 0.951 0.951 0.238 0.951 

Mean 9.948 5.156 0.983 0.910 0.940 0.941 0.940 0.232 0.939 

 

Therefore, in the fifth experiment, the aim was to verify the efficacy of the RF-VGG19 model in the task of locking and 

unlocking. In the assessment phase, the experiment was run on dataset I. This will also help evaluate how well the model 

can address the problem of subjects' complicated brain signal changes. The findings of the experiment are presented in a 

simple and concise manner in Table 3, which gives the mean accuracy rates for the lock and unlock tasks across all nine 

individuals. A mean accuracy of 94.40% is achieved. 

 
TABLE III.  VALIDATION OF RF-VGG-19 MODEL ON DATASET-I (EVALUATION PART) FOR LOCK AND UNLOCK TASK  

 

Subjects 

Performance Metrics 

Training Time Testing Time AUC CA F1 Precision Recall Logloss Specificity 

S1 10.638 5.357 0.984 0.943 0.943 0.943 0.943 0.227 0.943 

S2 10.476 5.568 0.984 0.934 0.934 0.935 0.934 0.231 0.934 

S3 8.325 4.107 0.987 0.945 0.945 0.946 0.945 0.221 0.945 
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S4 10.577 5.615 0.990 0.956 0.956 0.956 0.956 0.197 0.956 

S5 10.870 5.453 0.985 0.941 0.941 0.941 0.941 0.221 0.941 

S6 8.566 4.800 0.982 0.933 0.933 0.933 0.933 0.232 0.933 

S7 8.643 4.762 0.981 0.935 0.935 0.936 0.935 0.286 0.935 

S8 8.873 4.733 0.991 0.962 0.962 0.962 0.962 0.191 0.962 

S9 8.141 4.240 0.987 0.949 0.949 0.949 0.949 0.210 0.949 

Mean 9.456 4.959 0.985 0.944 0.944 0.944 0.944 0.224 0.944 

 

The sixth experiment's main goal was to evaluate the RF-VGG19 model's performance in the lock and unlock task using 

a unique dataset that had never been seen previously. The dataset consists of two separate parts, the testing part and the 

training part, each containing data for a single person. The information in these two sections was acquired throughout the 

course of two distinct sessions. The results of the RF-VGG19 model for the classification accuracy on the training and 

testing parts are 0.916 and 0.928, respectively, as it is demonstrated in Table 4 with their respective performance metrics. 

 
TABLE IV.  FEMALE DATASET-II (TRAINING PART AND TESTING PART) RF CLASSIFICATION  

 D
a

ta
se

t-
II

 

Performance Metrics 

Training Time Testing Time AUC CA F1 Precision Recall Logloss Specificity 

Training Part 17.788 5.908 0.982 0.916 0.916 0.917 0.916 0.932 0.991 

Testing Part 16.607 5.922 0.987 0.928 0.928 0.928 0.928 0.730 0.992 

 

When comparing the RF-VGG19 model's accuracy to datasets I, it is clear that the model outperforms the present 

literature (Tables 5). The purpose of this study is to determine whether or not the suggested model is capable of 

recognizing brain signals that are associated with motor imagery in both the left and right hands. This study's findings 

might be useful for mobile biometric authentication systems that use facial recognition to identify users and classify their 

actions (such as lock and unlock). The BCI-MI community will gain substantial advantages from this hybrid model as it 

broadens the potential applications of the proposed model to include biometric authentication systems based on MI. 

 
TABLE V.  RESULTS COMPARISON WITH STATE-OF-ART STUDIES RELATED TO DATASET-I  

Year Study Method Accuracy 

2015 [52] LDA-based wrapper SFS 90% 

2016 [53] STFT with KNN 83.57% 

2016 [54] WT+SE using SVM and KNN 86.4% 

2016 [55] MEMD + STFT with KNN 90.71% 

2017 [56] Fuzzified Adaptation with SVM 81.48% 

2019 [57] Genetic Algorithm with FKNN 84% 

2019 [48] STFT with CNN 89.73% 

2023 This Study Proposed Method 91%,94% 

    
 

 

4. CONCLUSION  

The present study attempted to use a traditional classifier and the hybridization technique with VGG-19. This technique, 

referred to as a hybrid model, was used for the mobile biometric authentication need to decode two class MI signals: the 

subject's identity as well as the classification of locks and unlocks. In order to accomplish this, nine hybrid models were 

created using nine possible classifiers, which were primarily well used classification techniques. The best model was then 

chosen. Sixth experiments were actually carried out in this study's experimental section. In order to solve the issue of 

biometric authentication, the first experiment will focus on developing a hybrid approach to the problem. Nine potential 

classifiers, or commonly used classification techniques, were employed to construct nine hybrid models in order to 

achieve this. It is evident that the RF-VGG19 model outperformed the other models in terms of performance. It was 

decided to employ it for mobile biometric authentication as a result. In the fourth trial, locks and unlocks are categorized 
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using the RF-VGG19 model, which has a mean accuracy of 91.0%. As a result, the validation of the RF-VGG19 model 

for the lock and release task was accomplished in the fifth experiment, which achieved an average accuracy of 94.40%. 
In actuality, In the sixth experiment, a separate dataset containing unseen data was used to validate the RF-VGG19 

model's 92.8% accuracy for the lock and unlock task. They imply that the RF-VGG19 paradigm has the potential to 

benefit the BCI-MI community by simplifying the deployment of mobile biometric authentication (subject identification 

and lock/unlock classification). 
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