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A B S T R A C T  
 

Brain-computer interface (BCI) is an appropriate technique for totally paralyzed people with a healthy 

brain. BCI based motor imagery (MI) is a common approach and widely used in neuroscience, 

rehabilitation engineering, as well as wheelchair control. In a BCI based wheelchair control system 

the procedure of pattern recognition in term of preprocessing, feature extraction, and classification 

plays a significant role in system performance. Otherwise, the recognition errors can lead to the wrong 

command that will put the user in unsafe conditions. The main objectives of this study are to develop 

a generic pattern recognition model-based EEG –MI Brain-computer interfaces for wheelchair 

steering control. In term of preprocessing, signal filtering, and segmentation, multiple time window 

was used for de-noising and finding the MI feedback. In term of feature extraction, five statistical 

features namely (mean, median, min, max, and standard deviation) were used for extracting signal 

features in the frequency domain. In term of feature classification, seven machine learning were used 

towards finding the single and hybrid classifier for the generic model. For validation, EEG data from 

BCI Competition dataset (Graz University) were used to validate the developed generic pattern 

recognition model. The obtained result of this study as the following: (1) from the preprocessing 

perspective it was seen that the two-second time window is optimal for extracting MI signal feedback. 

(2) statistical features are seen have a good efficiency for extracting EEG-MI features in the frequency 

domain. (3) Classification using (MLP-LR) is perfect in a frequency domain based generic pattern 

recognition model. Finally, it can be concluded that the generic pattern recognition model-based 

hybrid classifier is efficient and can be deployed in a real-time EEG-MI based wheelchair control 

system. 
 

 

 

 

1 INTRODUCTION 

Mobility is one of the challenges faced by stroke survivors[1, 2]. A wheelchair can assist these patients to become 

partially independent in performing certain daily activities [3-5]. However, People with disability and the elderly will 

find steering and driving a wheelchair with electrical and mechanical schemes challenging [6]. Brain-controlled 

wheelchair (BCW) is the appropriate device for completely Paralyzed patients with a healthy brain to navigate their 

environment [7, 8]. Techniques based on brain-computer interface (BCI) are currently used to develop electric 

wheelchairs [9-11]. Using human brain control in wheelchairs for people with disability has elicited widespread attention 

due to its flexibility [6], convenience, relatively low cost, high mobility and easy setup [12, 13]. One can see in Figure 1 

the architecture of an intelligent wheelchair system. 
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Fig.1. Architecture of BCI Controlled wheelchair system adapted from [14] 

 
 

Moreover, in complex and real environments, driving a wheelchair safely is essential and recommended for people with 

disability due to the requirement of sending commands on time [15]. Therefore, dependable navigation control systems 

are required for the wheelchair user to comfortably and freely navigate around and ensure his/her safety [16, 17]. 

For example, placing the user in an unsafe condition, the wheelchair control system must be sensitive to checking if the 

extracted commands from the BCI system is accurate and will place the user in a safe zone [18]. A BCI system can pose 

a threat to the user or nearby people due to unwanted navigation controls of the wheelchair resulting from using the 

wrong commands or being unfamiliar with the machine interface or if the machine misunderstands the gesture of the user 

[19]. Therefore, the processes of pattern recognition in term of feature extraction and classification are vital in BCI 

design, and they have a significant effect on the performance of the BCI system. Otherwise, the presence of errors can 

cause the initiation of a wrong command that can lead to dangerous situations [12]. In general, any BCI system requires 

an efficient signal processing which mainly are three necessary steps, namely preprocessing, features extraction, and 

classification [20, 21]. However, efficient signal processing and machine learning techniques in feature extraction and 

classification can also improve the accuracy of extracting high-dimensional EEG features [22-25]. Also, mapping the 

brain signal once measured into a feature vector containing useful information is a very challenging task [26, 27]. 

Therefore, rapidly and efficiently extracting features from various signals are necessary to realize BCI systems [6]. 

Also, while designing a wheelchair for stroke survivors, the most important thing that has to be considered is how 

accurate the classification is to distinguish a couple of mental tasks such as thinking forward, backward, right, and left 

[26]. Furthermore, the BCI depends on its classification algorithm to decode the extracted signal features for interpreting 

the user’s intent into device commands to control the wheelchair. Therefore, the better the classification is, the better the 

application of any BCI system will be [6, 28, 29]. Consequently, fast decision-making is required in a wheelchair control 

system-based BCI signal because of the amplified communication in the BCI channel [30-32]. 

However, achieving high classification accuracy is challenging in a BCI-based system due to the complexity of the brain 

signal [33-35].  

Also, Individual differences in EEG signals can also affect the stability of a control system, given that the signals are not 

ideal [36]. Furthermore, the EEG based system has the disadvantage of a higher sensitivity to noise including ocular, 

muscular and electromagnetic noises [37]. The noise problem can be reduced, and the classification accuracy can be 

improved by using better computational intelligent methods in both features extraction and classification algorithms to 

extract high dimensional EEG feature [38-40].  

Recently, EEG-based MI signals have been used in various types of applications, such as sports, psychology, 

neuroscience and rehabilitation technology, as well as wheelchair control [41-45]. MI-based BCI signals provide a rapid 

response [46, 47]. Therefore, these signals support the dynamic movements of an electrical wheelchair by turning over 

and crossing a path during navigation. MI does not require any voluntary muscle movement[48]. Thus, MI is considered 

effective for people with severe disability [4, 49]. Recently, EEG-based MI signals have been used in various types of 

applications, such as sports, psychology, neuroscience and rehabilitation technology, as well as wheelchair control [41, 

42]. This approach does not require gazing or focus. Also, MI-based BCI signals provide a rapid response [46]. 

Therefore, these signals support the dynamic movements of an electrical wheelchair by turning over and crossing a path 

during navigation [30, 50]. MI-based BCI signals will be of particular interest in shared and low navigation because they 
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can offer continuous control of BCW with few low-level commands (e.g., forward, backward or stop and turn left and 

right) [51, 52]. Although many studies in the literature using different techniques and methods of preprocessing, feature 

extraction, and classification for recognizing EEG patterns of EEG-MI based wheelchair control commands, however, up 

to what extent, none of those above studies stated or recommended the best method and technique for distinguishing a 

couple of EEG-MI commands to be deployed in a wheelchair control system. 
 

Therefore, this study aims to develop a generic pattern recognition model of two class EEG-MI signals in frequency 

domain based on fast Fourier transform, statistical feature methods as a feature extraction methods.as well as select the 

best machine learning technique for the classification of EEG-MI wheelchair control commands.  

 

1.1. EEG Motor Imagery 

Motor imagery(MI), is one of the most common methods used in BCI-based EEG control systems [53, 54]. MI also is 

known as movement imagery is a mental process through which a person imagines a physical action, such as jump, 

moving hands, etc. MI is used as a BCI strategy. In particular, event-related desynchronization (ERD) and 

synchronization (ERS) structures caused by MI are analyzed [42]. Many factors suggest that µ and ß rhythms can be 

good signs to be used in BCI systems. They are associated with cortical areas more directly linked to brain motor activity. 

Furthermore, it was verified that the SMR occur both at the imagination movement realization as in its and may help 

people with severe disabilities to perform tasks only with the movements’ imagination[20]. The primary sensory and 

motor cortices create sensorimotor rhythms (SMR). SMR based BCI’s divided into two: event-related synchronization 

(ERS) and event-related desynchronization (ERD), which detected as mu rhythm and beta [55]. One of the most 

processing paradigms in BMI is motor imagery paradigm in which the mu (8-13 Hz) and beta rhythm (14-30Hz) of the 

sensorimotor cortex are used. The oscillations of the mu and beta rhythm of the sensorimotor cortex decrease when a 

movement is being prepared or during movement-this is called event-related desynchronization (ERD). After a 

movement occurs, the oscillations increase-this is called event-related synchronization (ERS). If a person imagines that 

she/he is moving the left hand, a strong ERD occurs at the right side of the sensorimotor cortex.  

On the other hand, if a person imagines that s/he is moving the right hand, ERD occurs on the left side [56]. Event-related 

Synchronization and Desynchronization (ERS and ERD, respectively) are the EEG patterns characterized by meaningful 

changes in the signal energy in specific frequency bands. An energy increase is associated with an ERS, while an energy 

decrease is associated with an ERD. 
 

 

2  METHODOLOGY  
 

2.1 Dataset 
 

The BCI competition IV stands in the tradition of prior BCI competitions that aim to provide high-quality neuroscientific 

data for open access to the scientific community. As experienced already in previous competitions not only scientists 

from the narrow field of BCI compete, but scholars with a broad variety of backgrounds and nationalities. They include 

high specialists as well as students. The goals of all BCI competitions have always been to challenge concerning novel 

paradigms and complex data[57]. This dataset belongs to Graz university and contains EEG signals on channel C3, Cz, 

and C4 from nine subjects performing two different imagery tasks of Left/Right hands. The datasets include 160 trials for 

each subject. The signals were sampled at 250 Hz and applied the band-pass filter between 0.5-100 Hz. A 50 Hz notch 

filter was also applied to suppress the power line noise. All volunteers were sitting in an armchair, watching a monitor. At 

the beginning of each session, a cross was shown on the black screen, and a short warning tone was given. Then, an 

arrow pointing to either the left or right side was presented. Finally, the subjects were prompted to perform the 

corresponding motor imagery task throughout four seconds. For the evaluation session, the feedback (a gray smiley) was 

centered on the screen, and a short warning beep was given at the beginning of each trial. Then, the cue was presented in 

four seconds. Finally, the subjects were required to move the smiley towards the left or right side by imagining left or 

right-hand movements respectively.  

During the feedback period, the smiley changed to green when moved in the correct direction. Otherwise, it became red. 

One can see in Figure 2 and Figure 3 the timing scheme of the recording technique without and with smiley feedback 

respectively. 
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Fig.2. Timing scheme without feedback 

 

 

 
Fig.3. Timing scheme with Smiley Feedback 

 

2.2 Identifying and Constructing Generic Dataset 
 

The aim of this step is to do a feasibility study about the available BCI competition datasets for their applicability to be 

used in the development and validation of the generic pattern recognition model. Therefore, it has been studied from their 

number of participant’s, number of classes, number of channels, and dataset format. The number of participant’s is very 

important in developing the generic model to handle the subject specific brain signal complexity and intra-subject 

differences. Therefore, it is vital to find the dataset with the largest number of participants. On the other hand, regarding 

to the number of classes, hence the scope of this study is to discriminate between two class EEG-MI signal to be 

deployed in a wheelchair steering control system. Therefore, two class EEG-MI signal is our target in this feasibility 

study. In addition, regarding to the number of channels, minimum number of channels is the third important factor in the 

designing of the BCI based system, Hence, BCI system with a minimum number of channels is preferred to be deployed 

in a real life with a least cost and easy to setup on the participant’s head. Another important factor is the format of the 

datasets. Hence dataset formats that is supported by signal processing and machine learning tools such as MATLAB 

software is preferred.  

On the other hand, the EEG-MI signal was stored in the dataset in the continuous from. Besides the continuous signal 

itself, there are also some labels and markers in the dataset. These markers show the starting of each trial. The labels 

indicate which kind of motor imagery movement the trial is about. However, in order to feed the EEG signal to the 

machine learning algorithm, the continuous EEG signal needed to be separated into trials. shows graphically how the 

continuous EEG signal mapped into trials to build a generic dataset for two class motor imagery EEG signal. 

Moreover, in order to test a generic pattern recognition model for their efficiency to overcome subjects’ differences brain 

complexity, therefore, a subject independent dataset should be used. consequently, for this purpose the dataset of all 

subjects will be combined (Stacked) to build a large dataset from all trials as a generic dataset for different brain 

complexities as shown in Figure 4. To the best of our knowledge, none of the studies in the academic literature of EEG 

signal-based wheelchair control used the stacking techniques to build a generic dataset for developing and validating a 

generic pattern recognition model of two class EEG-MI wheelchair control commands. 
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Fig.4. Generic Dataset Construction 

 

2.3 Preprocessing 
 

In the preprocessing stage as shown in Figure 5, three significant processes were implemented. The first process was 

filtering the two-class EEG-MI signal to remove unwanted artifacts from the signal and for improving the signal to noise 

ratio. The second process was to remove unwanted time window to extract the maximum power of motor imagery 

feedback in an EEG signal using multi-segments techniques. 

 

 
Fig.5. Preprocessing Steps 

 

2.3.1. EEG Signal Filtering 
 

The purpose of EEG signal filtering is to increase the signal-to-noise ratio of the raw brainwaves and enhance the 

relevant information in the motor imagery EEG signal to be used in wheelchair control. The EEG signal contaminated by 

noise from various sources such as body movements, eye blink, facial muscle movement and artifacts from the 

surrounding environment such as electromagnetic fields generated by electrical devices. Therefore, it is essential to filter 

the EEG signal to remove noise and artifacts. Consequently, filters such as band-pass filters are widely used to restrict the 

analysis to frequency bands in which we know that the neurophysiological signals for motor imagery are within the alpha 

and beta band. Therefore, this study uses the Butterworth band-pass filter with fourth order as suggested by [58] to filter 

the EEG signal from the unwanted frequencies located outside the band of interest. 
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2.3.2. Segmentation 
 

Segmentation is a significant phase in signal analysis, and its performance plays a vital role in the efficiency of the 

subsequent steps, such as feature extraction and classification [59]. However, some of the studies in the field of BCI 

based EEG-MI signal used signal segmentation to increase system performance such as  [60-63]. Though, each of the 

studies above used different time courses. Also, the purpose of segmentation is to improve the classification accuracy by 

removing periods, not including feature components and reduces the processing time of the classification algorithm. 

Therefore, to perform feature extraction and classification for brainwaves, it is essential to pre-process the raw brain 

waves by making segmentation process to study different time courses for the motor imagery signal. However, results 

from the fact, that each subject has his strongest motor imagery signal power at a different moment of time in the trial 

because each subject could start (or end) performing the motor imagery task at a slightly different time interval due to the 

difference in subjects’ brain complexities.  Up to our knowledge, none of the studies in the academic literature of 

wheelchair control-based EEG-MI mentioned the best time window that includes the motor imagery feedback to be 

extracted with statistical features in the Frequency domain. Therefore, five different time segment groups have been used 

in this study as shown in Figure 6. 

to check their influence on the classification accuracy and nominating the best time window that gives the highest 

accuracy in each signal domain. The proposed time windows are as follows: Five second time window group which is 

only (3---8s) that represent the entire signal from the start of the motor imagery cue until the end of the signal epoch. The 

next group is four second time window which is divided further into two sub-groups (3---7s, and 4---8s). The next group 

is three second time window which is divided further into three sub-groups (3---6s ,4---7s, and 5---8s). The next group is 

two second time window which is divided further into four sub-groups (3---4s ,4---6s ,5---7s, and 6---8s). The last group 

is one second time window group which is divided further into five sub-groups (3--4s ,4--5s ,5--6s ,6--7s,7--8s). The 

reason behind this division is to study the existence of motor imagery feedback in the period of one, two, three, four, and 

five seconds respectively. 

 

 
Fig.6. EEG-MI Segmentation 

 

 



 

 

88 Al-Qaysi et al, Applied Data Science and Analysis Vol.2024, 82–100 

2.4 Feature Extraction 
 

Technically, a feature represents a distinguishing property, a recognizable measurement, and a functional component 

obtained from a section of a pattern. Extracted features are meant to minimize the loss of relevant information embedded 

in the signal. This is necessary to reduce the complexity of implementation, to reduce the cost of information processing, 

and to cancel the potential need to compress the information. More recently, a variety of methods have been widely used 

to extract the features from EEG signals, among these methods, are time-frequency distributions (TFD), fast Fourier 

transform (FFT), eigenvector methods (EM), wavelet transform (WT), and autoregressive method (ARM), and so on[64]. 

To enable brain-computer interface construction an efficient way of feature extraction from EEG signal is needed [65]. 

FFT method is one of the most important and useful tools in fields like engineering, science, and mathematics because is 

a domain transformation that allows temporal processing signals in the frequency domain, which implies some 

advantages like dimension reduction, feature extraction and normalized data lengths[66]. Brain signals are composed by a 

set of specific oscillations known as rhythms. However, performing a given mental task (such as motor imagery or 

another cognitive task) makes a variance in the amplitude of these different rhythms. These rhythms, which are mainly 

located in the alpha (8-13 Hz) and beta (14-30 Hz) frequency bands, therefore it appears as natural or even essential to 

exploit the frequency components embedded in the EEG-MI signals Therefore, this study uses FFT to transform the time 

domain signal into the frequency domain to extract the power spectrum of the alpha and beta band. Fourier analysis is 

extremely useful for data analysis, as it breaks down a signal into constituent sinusoids of different frequencies. However, 

For sampled vector data, Fourier analysis is performed using the discrete Fourier transform(DFT)[67].Though, Fast 

Fourier Transform (FFT) is an efficient signal processing algorithm for computing the discrete Fourier transform of a 

digital signal because it minimizes the required time for computing the N points from 2𝑁2  to 2 𝑁 𝑙𝑜𝑔2 𝑁 [68]. Since 

FFT can be implemented by a digital signal processor that include FFT hardware accelerator (HWAFFT) that is tightly 

coupled with The CPU, allowing high FFT processing Performance at very low power [69]. Therefore, it can be easily 

deployed for an EEG Based BCI embedded control system. DFT transforms the sequence of N complex numbers 
𝑥0, 𝑥1, . . . , 𝑥𝑁−1 (the time domain) into an N-periodic sequence  𝑋0, 𝑋1, 𝑋2, . . . , 𝑋𝑁−1 (the list of coefficients of a finite 

combination of complex sinusoids, ordered by their frequencies). It is according to the DFT formula [70]: 

 

 

𝑥𝑘 = ∑ 𝑥𝑛𝑒
−𝑗2𝜋𝑘𝑁

𝑁⁄

𝑁−1

0

                  1 

 

 

Each 𝑋𝑘  element encodes amplitude and phase of a sinusoidal component of the function 𝑥𝑛. As for the frequency 

domain, the fast Fourier transform (FFT) is an effective common practice for signal analysis with different frequencies, 

which cannot be identified in the time domain [71]. Finally, by using Fast Fourier transform is possible to convert the 

EEGs signals into the simpler form, remove some noises and get better features [72]. 
 
2.4.1. Statistical Feature Extraction 

 

This study examined five statistical feature extraction methods namely (Maximum, Minimum, Mean, Median, and 

Standard deviation (STD)) to extract signal features located in the alpha and beta band power of the EEG-MI signal. The 

reason behind choosing these five statistical features is to handle the signal features by studying five different statistical 

characteristics as the feature representatives ideally containing all important information of the original signal patterns. 

These characteristics are Maximum and minimum values are used to describe the range of observations in the distribution 

of the signal power. Mean corresponds to the center of a set of values while the median is the middle most observation. 

These two features give a fairly good idea about the nature of the data (shows the “middle value”), especially when 

combined with measurements on how the data is distributed. The Standard deviation describes how observations in a 

distribution are spread out around a typical value (mean). The standard deviation is the average distance between the 

actual data and the mean. The extracted statistical features values are considered as the most valuable parameters for 

representing the characteristics of the MI signals and representing the brain activities [73]. Finally, the feature vector can 

be fed to the machine learning algorithm for training and testing. One can see in Figure7 the process of frequency 

domain based statistical feature extraction. 
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Fig.7. Feature Extraction Process 

 

Finally, many statistical methods have been seen in the academic literature [74-76] to extract the statistical features of the 

brain signals, However, Statistical features that have been used in this study are explained briefly with their mathematical 

formula as: 
 

1. Mean: Mean are fundamental statistical attributes of a signal. The arithmetic mean of a signal is the average expected 

value of that signal in time, frequency, or time-frequency. In some cases, the mean value of a signal can be the operating 

point or working point of a physical system that generates the time series. One can see in Equation 2, the arithmetic mean 

formula. 

1- 𝜇 =
1

𝑁
𝛴ⅈ=1

𝑁  𝐴𝑖              1 

The mean indicated by 𝜇 . The value in the signal X, by letting the index, i, run from (0 to 1). Then finish the calculation 

by dividing the sum by N. 
 
 

2. Median: The median is a simple measure of central tendency. To find the median, arrange the observations in order 

from smallest to largest value. If there are an odd number of observations, the median is the middle value. If there is an 
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X refers to the entire set of the numbers. Median are more robust than arithmetic mean and geometric mean if the raw 

data does not contain significant outliers. 
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3.Standard Deviation: The standard deviation is similar to the average deviation except the averaging is done with 

power instead of amplitude. This is achieved by squaring each of the deviation before taking the average. To finish the 

square root is taken to compensate for the initial squaring. One can see in Equation 3, the arithmetic standard deviation 

formula. 

𝜎 = √ 
1

𝑁
 ∑( 𝑥𝑖 − 𝜇)2

𝑁

𝑖=1

             4 

X is signal with mean 𝜇, N is the number of sample and 𝜎  is standard deviation. 

 

4. Maximum:  The maximum is a simple measure of the largest value of signal amplitude in time domain. However, in 

frequency and time-frequency domain it computes the maximum power spectrum of signal components. One can see in 

Equation 4, the arithmetic mean formula.  
                            X Max= Max [Xn]                  5                                      

 Where X Max is the maximum value, and Xn is the input signal. 

 

5. Minimum:  The maximum is a simple measure of the lowest value of signal amplitude in time domain. However, in 

frequency and time-frequency domain it computes the minimum power spectrum of signal components. One can see in 

Equation 5, the arithmetic mean formula. 
                             X Min= Min [Xn]                6 

 

Where X Min is the minimum value, and Xn is the input signal. 

 

2.5 Classification  
 

EEG signals will be generally represented in high dimensional features space, and it is very difficult to interpret. Machine 

learning methods are helpful for interpreting high dimensional feature sets and analyze the characteristics of brain 

patterns [77]. Many classification algorithms have been developed to distinguish brain activity states during different 

mental tasks [78]. Since the classification method plays a major role and has a direct impact on the discrimination 

between two EEG-MI mental commands. Therefore, by choosing the appropriate feature classifier, high rates of 

classification accuracy will be occupied. Numerous feature classification methods have been seen in the academic 

literature of EEG based wheelchair control that has been conducted by [79] and has been summarized in Table 1. 
 

TABLE I. NUMEROUS FEATURE CLASSIFICATION METHODS IN THE ACADEMIC LITERATURE OF EEG-BASED WHEELCHAIR 

CONTROL 

References Method 

[16, 20, 80-88] LDA 

[4, 33, 41, 46, 54, 56, 61, 89-97] SVM 

[3, 12, 14, 55, 97-104] ANN 
[14, 95, 105, 106] Naive-Base 

[11, 107-109] Decision Tree 

[12, 55] Logistic Regression 
[14, 98] KNN 

 

 

Therefore, in this research, the aim is to develop a generic pattern recognition model two class EEG-MI signal based on 

single and hybrid classifier by using machine learning methods that are listed in Table 1. In addition, these classification 

methods have been tested towards nominating the best one that can work as a generic classifier. The generic classifier 

then will be deployed in a generic pattern recognition model-based EEG-MI of wheelchair steering control. The benefit 

of a generic classifier is to offer the opportunity to be also applied for unknown subjects. But, in the case of developing a 

subject-specific model that means it will fit only to one subject. The framework of the generic pattern recognition model 

of two class EEG-MI based wheelchair control is presented in Figure 8. This intelligent framework describes the whole 

of pattern recognition processes starting from the preprocessing and ending with the evaluation step. 
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Fig.8. Generic Model Development Process 

 

3 RESULT 

Six experiments have been conducted towards developing and validating the frequency domain based generic pattern 

recognition. Hence, the first three experiments have been conducted for the development purpose. However, the other 

three experiments are for the validation purpose. The purpose of experiment one is to examine the five groups of time 

window and test them with seven machine learning towards find the optimal time window as well as the best classifier. 

Result of this experiment shows that, the highest accuracy was achieved with two and four second time window as shown 

in Figure 9. Hence, the accuracy is (68%) for (4—6s), and (4—8s) using (LR, and MLP) respectively. 

 

 
Fig.9. Accuracy Over Time Window 
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Consequently, all the achieved accuracy of this experiment has been presented in Table 2. However, in experiment two, 

LR and MLP that were achieved the best result in experiment one was combined to develop a hybrid classifier 

(MLP+ LR). Result of this experiment shows that, the generic pattern recognition model based generic model-based 

hybrid classifier achieved (65%), and (68%) accuracy for two, and four seconds respectively. 
 

TABLE II. ACCURACY (%) OVER SUBJECTS DATASET IN FREQUENCY-DOMAIN MODEL 

Time-Segment in 

Seconds (s) 
Accuracy of Machine Learning Algorithms (%) 

One LR NB LDA SVM DT MLP KNN 

3-------4s 58 51 57 53 53 58 55 

4-------5s 62 59 59 57 54 62 58 
5-------6s 60 55 59 55 53 59 55 

6-------7s 58 56 57 53 50 58 55 

7-------8s 53 50 52 49 51 54 52 
Two        

3-------5s 66 63 64 64 58 65 60 

4-------6s 68 62 67 68 58 68 64 
5-------7s 64 60 64 64 55 64 59 

6-------8s 62 57 59 61 54 62 56 

Three        
3-------6s 66 61 66 66 60 66 61 

4-------7s 66 61 67 65 60 67 63 

5-------8s 63 59 62 62 55 63 57 
Four        

3-------7s 66 61 65 65 58 65 59 

4-------8s 68 61 67 65 59 68 60 
Five        

3-------8s 61 56 61 60 56 63 58 

 

Moreover, the aim of experiment three is to evaluate the performance of the generic pattern recognition model based 

single and hybrid classifier over single subjects' dataset in this experiment. The results of this experiment are shown in 

Table 3. Independently, three classifiers namely, LR, MLP, and LR-MLP have been examined. The draw of Signal 

Filtering is shown in Figure 10.  

 
TABLE III. THE RESULT OF THE INDEPENDENTLY EXAMINATION EXPERIENCE BY THREE CLASSIFIERS: LR, MLP, AND LR-MLP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 
 

 

 

 

 

 

 

Dataset-I Development Accuracy (%) 

 Using 4----6s Segmentation 

 

Using 4----8s Segmentation 

Subjects LR MLP MLP-LR LR MLP MLP-LR 

S1 70 69 73 70 70 71 
S2 55 51 58 56 53 54 

S3 36 48 42 60 51 61 

S4 90 92 91 82 82 82 
S5 72 74 70 67 72 68 

S6 59 51 57 56 54 52 

S7 76 77 75 68 67 65 
S8 85 85 85 78 78 78 

S9 76 76 75 74 76 65 

Mean 68 69 69 67 67 66 
Variance 273 251 227 86 135 99 

P  0.99   0.94  

Fig.10. Signal Filtering 
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Recently, frequency domain-based pattern recognition models have been engaged in a large number of biomedical 

engineering applications. Therefore, it is vital to validate a generic model to test their efficiency and applicability to be 

deployed in a real-time application. Consequently, two experiments have been conducted for the validation purpose. 

Moreover, the same procedure that have been used in the development process was repeated in the validation but with 

BCI competition IV-2B dataset evaluation version. In experiment one, the single and hybrid classifier have been 

validated over the generic dataset-2. Result of this experiment shows that, by using (4---6s) time window the achieved 

accuracy is (67%,68%) by using single classifier (LR and MLP) respectively. However, by using hybrid classifier 

(MLP-LR) the archived accuracy is (67%). On the other hand, by using (4---8s) time window, the same accuracy has 

been archived by the single classifier (LR and MLP) as well as the hybrid classifier (MLP-LR) which is (63%). 

In experiment two, the aim is to find the generic pattern recognition model with the highest performance as well as better 

consistency among subjects. Therefore, the generic pattern model based single and hybrid classifier have been tested over 

single subject’s dataset. Result of this experiment is presented in Table 4. 
 

TABLE IV. THE RESULT OF THE GENERIC PATTERN MODEL-BASED SINGLE AND HYBRID CLASSIFIER EXPERIMENT OVER A 
SINGLE SUBJECT’S DATASET 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 DISCUSSION AND STATISTICAL ANALYSIS OF THE DEVELOPMENT RESULT OVER SINGLE 

SUBJECTS DATASET 

The achieved accuracy of the generic pattern recognition model based single and hybrid classifiers over single subject’s 

dataset has been analyzed statistically using ANOVA to test the classifiers variance over subjects as well as to check if 

there is any significant difference among the generic pattern recognition model based LR, MLP, and MLP-LR. The 

statistical result shows that by using (4---6s) time window, the P-value is (0.99). This indicates that there is no significant 

difference between the generic pattern recognition model based single classifiers (MLP, and LR) as well as a based 

hybrid classifier (MLP-LR). The highest average accuracy that was achieved is (69%) by the generic pattern recognition 

model is based on single classifier using MLP classifier as well as hybrid classifier using (MLP-LR). However, the 

lowest accuracy is based on LR classifier which is (68%). Also, the lower variance of the generic pattern recognition 

model-based hybrid classifier (MLP-LR) which is (227) compared with LR (273) and MLP (251). Even the same average 

accuracy achieved with generic pattern recognition model based on MLP and (MLP-LR) classifier but the generic pattern 

recognition model-based hybrid classifier model shows lower variance. 

On the other hand, by using (4---8s) time window, the P-value is (0.94). This indicates that there is no significant 

difference between the generic pattern recognition model based single classifiers (MLP, and LR) as well as a based 

hybrid classifier (MLP-LR). The highest average accuracy that was achieved is (67%) by the generic pattern recognition 

model is based on single classifier using LR classifier as well as MLP. However, using hybrid classifier (MLP-LR) the 

average accuracy is lower which is (66%). Also, the lower variance of the generic pattern recognition model based LR 

classifier which is (86) compared with MLP (135) and MLP-LR (99). Even the same average accuracy achieved with 

generic pattern recognition model based on MLP and LR classifier but the generic pattern recognition model based LR 

classifier model shows a lower variance. One can conclude that the generic pattern recognition model-based hybrid 

classifier (MLP-LR) shows better accuracy with (4—6s) than using time (4—8s) time window. Consequently, the generic 

pattern recognition model-based hybrid classifier (MLP-LR) shows more consistency on inter- subject’s differences 

Dataset-I Classifiers Accuracy (%) 

 Using 4----6s Segmentation 

 

Using 4----8s Segmentation 

Subjects LR MLP MLP-LR LR MLP MLP-LR 

S1 59 60 62 62 60 60 

S2 54 51 56 45 51 45 

S3 50 48 52 45 51 51 

S4 81 86 83 83 84 85 

S5 68 69 71 52 53 52 

S6 64 63 63 56 58 52 

S7 70 70 70 65 63 66 

S8 94 93 94 87 87 89 

S9 69 72 72 74 73 73 

Mean 67 68 69 63 64 63 

Variance 183 218 172 239 190 248 

P  0.96   0.98  
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compared with other classifiers. Therefore, the generic pattern recognition model-based hybrid classifier (MLP-LR) 

shows good and acceptable accuracy as well as more reliability than (MLP, and LR) classifier.  

 

5 DISCUSSION AND STATISTICAL ANALYSIS OF THE VALIDATION RESULT OVER SINGLE 

SUBJECTS DATASET 

The achieved accuracy results of the generic pattern recognition model based single and hybrid classifiers over an 

individual subject’s dataset has been analyzed statistically using ANOVA. This statistical analysis aims to test the 

classifiers variance over subjects as well as to check if there is any significant difference among the generic pattern 

recognition model based on LR, MLP, and MLP-LR classifier. The statistical result shows that using (4---6s) time 

window the P-value is (0.96). This indicates that there is no significant difference between the generic pattern recognition 

model based single classifiers (MLP, and LR) as well as a based hybrid classifier (MLP-LR). 

The highest average accuracy that was achieved is (69%) by the generic pattern recognition model is based on hybrid 

classifier using (MLP-LR). However, the average accuracy of the generic pattern recognition model based on MLP and 

LR is (68%) and (67%) respectively. Also, the lower variance of the generic pattern recognition model is based on hybrid 

classifier (MLP-LR) which is (172) compared with LR (183) and MLP (218).  

On the other hand, using (4---8s) time window the P-value is (0.98). This indicates that there is no significant difference 

between the generic pattern recognition model based single classifiers (MLP, and LR) as well as a based hybrid classifier 

(MLP-LR). The highest average accuracy that was achieved is (64%) by the generic pattern recognition model is based 

single classifier using (MLP). However, the average accuracy of the generic pattern recognition model based on MLP and 

MLP-LR is the same which is (63%). Also, the lower variance of the generic pattern recognition model is based on single 

classifier (MLP) which is (190) compared with LR (239) and MLP-LR (248).  

One can conclude that the average accuracy of the generic pattern recognition model using (4—6s) shows better 

performance than (4---8s). However, in term of variability, the generic pattern recognition model using (4---6s) shows 

lower variability compared with (4---8s). Also, the generic pattern recognition model using hybrid classifier (MLP-LR) 

shows better accuracy using (4—6s) time window compared with other classifiers. Consequently, the generic pattern 

recognition model based (MLP-LR) classifier shows more consistency on inter- subject’s differences compared with 

other classifiers. Also, the generic pattern recognition model using (4---6s) time window based (MLP-LR) classifier 

shows good and acceptable accuracy. As well as the lower variance compared with other classifiers. Therefore, MLP-LR 

based generic pattern recognition model using (4—6s) time window suggested being deployed in a real-time standalone 

and IOT based BCI based systems. 

 

6 CONCLUSION AND FUTURE WORKS 

This study proposed a new generic pattern recognition model of two class EEG-MI signal to deployed in a wheelchair 

control system. As this generic pattern recognition model consist of processing pipeline for the EEG-MI signal. It was 

seen from the preprocessing stage that; the motor imagery feedback starting after one minute from the cue and lasting for 

two second. Therefore, it can be concluded by the achieved result with the founded optimal time window (4—6s) that; it 

would be possible to minimize the computation complexity and realize the hardware implementation of the intelligent 

control system-based EEG-MI scheme on an FPGA platform. However, as the feature extraction step is based on 

statistical feature method and Fast Fourier Transform, it was seen that; this technique is viable and effective in decoding 

the EEG-MI signal. Consequently, in the stage of feature classification, it was seen after testing seven machine learning 

algorithms, the hybrid model that is based on composite machine learning algorithm LR-MLP shows their ability in 

handling overlapped and crossed EEG signals by the achieved result. Finally, it can be concluded that, the proposed new 

generic pattern recognition model can provide a key solution to the problem of wheelchair steering control and can be 

deployed in standalone application as well as in an IOT based brain computer interface scheme. 
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