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A B S T R A C T  
 

This paper discusses the significance of Wireless Sensor Networks (WSNs) in collecting critical data 
from various environments, highlighting the challenges presented by the limited resources of small, 
highly mobile sensors. The integration of WSNs into the Internet of Things (IoT) enables the collection 
and transmission of data to centralized locations. Especially in complex network topologies, efficient 
routing of packets is crucial for optimizing resource utilization in WSN nodes. Software-Defined 
Networks (SDNs), in which a centralized controller makes routing decisions based on network and 
packet data, are replacing traditional static routing. Nevertheless, due to the complexity of WSN 
topologies and cost-effectiveness concerns, Machine Learning (ML) techniques are currently being used 
to improve SDNWSN decision-making. This paper presents a technique that employs a neural network 
trained via Deep Reinforcement Learning (DRL) to extend the lifespan of WSNs by optimizing energy 
utilization via efficient routing. 2DCNN and 3DCNN neural networks are evaluated, with 3DCNN 
showing superior performance, resulting in an 18% increase in network lifespan. Additionally, the study 
emphasizes the significance of avoiding resource depletion in high-traffic nodes by considering 
alternative routing paths to guarantee the lifespan of the network.

 

1. INTRODUCTION 

The WSNs  or Wireless Sensor Networks have garnered considerable consideration across diverse fields, encompassing 
environmental monitoring, healthcare, industrial automation, and smart cities. These networks are comprised of numerous 
small sensor nodes that have limited resources and work together to gather and transmit data [1]. Nevertheless, a significant 
obstacle encountered by WSNs is to the constrained energy resources of the sensor nodes. The impracticality of replacing or 
recharging batteries in sensor nodes, primarily due to their remote and difficult deployment locations, underscores the need 
of energy saving as a crucial consideration [2-4]. 

The proliferation of internet connectivity in diverse formats has greatly enhanced network accessibility, hence enabling the 
formation of communication between devices located in distant areas. The enhanced availability of internet access has 
stimulated the usage of the fundamental infrastructure of the internet to connect a wide array of devices to the World Wide 
Web. This connection enables the transfer of data collected by these devices and the execution of commands issued from 
remote locations. These devices range from basic household appliances such as coffee makers to advanced entities like 
driverless vehicles, hence contributing to the emergence of the IoT [5, 6]. 

However, it is important to note that the architecture of the internet, including its communication protocols, was initially 
developed to cater to larger computers that possessed greater resources and exhibited generally stable features. This stands 
in contrast to the sometimes resource-limited and highly mobile nature of IoT devices. The inherent discrepancy has 
presented new and complex obstacles in maximizing the efficiency of these IoT devices [7, 8]. 

One significant issue pertaining to the functioning of IoT devices centers around the considerable energy utilization required 
for their execution of designated functions. In general, in order to address the issue of mobility associated with these devices, 
they depend on energy  sources that possess a restricted energy capacity [9, 10]. Moreover, within expansive WSNs, these 
devices serve as essential nodes that are tasked with the responsibility of efficiently directing data traffic between hosts. 
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These packets can be sent to the sink node, which collects data from the network and facilitates its transmission to the 
internet, or to any other node in the network. The sink node essentially serves as the gateway for the entire network. 

Consequently, in a network, a node's use of energy is affected by more than just the volume of traffic passing through it. The 
node's influence is also determined by the traffic it is responsible for transmitting to other nodes, therefore playing a vital 
part in maintaining uninterrupted connections across the network [11, 12]. 

In the present scenario, the incorporation of SDN principles into WSNs has emerged as a highly promising technique. SDN 
facilitates the consolidation of network control, effective allocation of resources, and flexible reconfiguration, hence enabling 
enhanced intelligent and adaptable management of WSNs [13,14]. When combined with the capabilities of Deep Learning 
methods, SDN has the potential to greatly augment the energy efficiency of WSNs, resulting in extended network durations 
and enhanced sustainability [15]. 

 

2. RELATED WORK 
The employment of Machine Learning techniques in SDN has become prevalent due to their ability to react dynamically to 
incoming data, rather than relying on inflexible and static rules [16]. The strategies gather information pertaining to the 
particular domain in which they are employed by utilizing datasets that have been obtained from said domain [17,18]. ML 
techniques can be classified into 3 main types as shown in Figure 1. 

 

 

Fig. 1.  Three main types of ML. 

Moreover, Artificial Neural Networks (ANNs) are commonly utilized as a prominent approach for the approximation of 
complex functions. These networks have functional similarities to the manner in which actual neurons in the human brain 
transmit signals in order to influence an applicable judgment depending on inputs received as of many sensory sources. As 
a result, ANNs are specifically developed and trained to predict the outcome, sometimes denoted as a reward, of 
implementing a specific activity inside specified status. The training procedure encompasses the provision of environmental 
status information and the corresponding incentives acquired from the environment upon the execution of certain activities. 

During practical implementation, the neural network receives input pertaining to the present condition of the surrounding 
environment. Afterwards, the neural network utilizes this knowledge to generate predictions concerning the expected rewards 
linked to every possible action that might be undertaken. The tool efficiently computes the anticipated benefits associated 
with several feasible courses of action. After conducting this evaluation, the agent responsible for performing the neural 
network algorithm chooses the action that is anticipated to have the largest reward. The objective of this methodology is to 
enhance the functioning of the environment by ensuring that the agent continually selects options that are anticipated to 
produce the most favorable results [19]. 

Neurons inside a neural network are organized in a layered structure, where the outputs of neurons in the layer above are 
added together to form the input of the layer below. The way these inputs are collected distinguishes between different 
varieties of neural networks. Each person has shown a rise in performance after being exposed to certain stimuli [20]. In 
order for the neurons in a convolutional neural network (CNN) to compute their outputs, they use multi-dimensional filters 
that are convolved with the input data. This particular category of neural networks has demonstrated notably improved 
efficacy in identifying localized, multi-dimensional characteristics within input data. Consequently, these networks have 
exhibited commendable performance in tasks involving image processing [21, 22]. Furthermore, it has been observed that 
this particular class of neural networks exhibits favorable outcomes in the realm of DRL when utilized for the controllers of 
SDNs. This can be attributed to their capability of identifying connections between neighboring nodes. Consequently, these 
networks can effectively identify nodes in close proximity to the one responsible for forwarding the packet, irrespective of 
the network's topology [23]. 
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In light of the dynamic and ever-changing characteristics of IoT networks, several approaches have been developed to 
effectively handle packet routing in these networks by leveraging DL techniques [23,25]. Nevertheless, it is important to 
highlight that a significant aspect often disregarded by numerous methodologies is the energy usage within the network. The 
lack of attention to this issue has the potential to result in the exhaustion of energy supplies in particular nodes, contingent 
upon their respective locations within the network. The depletion of energy in the network can significantly affect its total 
lifespan. This is because the loss of these nodes affects communication between network nodes, which in turn hampers the 
timely delivery of data to their intended destinations. 

One approach suggested in the study [23] is to tackle this issue through the implementation of a reward-based framework, 
wherein the network itself serves as the representation of the "environment." The computation of this incentive is contingent 
upon various parameters, encompassing packet latency, packet loss, and network throughput. In this methodology, the NN 
is utilized to prediction a maximum reward, which is hypothesized to align with the most efficient path for packet 
transmission. Nevertheless, it is crucial to acknowledge that this approach places emphasis on identifying the most efficient 
route without necessarily taking into account the equitable distribution of network traffic between nodes. 

Moreover, the primary aim in [25] is to optimize the routing trajectory for individual packets in order to minimize the duration 
of their delivery. The primary objective of prioritizing the reduction of packet travel time is to enhance the efficiency of data 
transmission, hence enhancing the overall responsiveness of the network. In the meantime, a separate methodology is 
presented in [24], specifically designed for VANETs, with the primary objective of improving the probability of successfully 
delivering packets. 

Fundamentally, although these deep learning-based routing algorithms for IoT networks display promising progress, it is 
imperative to acknowledge and tackle the issue of energy  utilization to guarantee a durability as well as dependability of 
IoT network. Ensuring effective and resilient IoT connectivity necessitates the consideration of two crucial factors: balancing 
energy usage and optimizing routing paths. 

 

3. METHODOLOGY 

This section will concentrate on traffic management in Wireless Sensor Networks (WSNs) to effectively extend their 
operational lifespan. This approach relies on DQN to accomplish load balancing among network nodes. The central idea is 
to predict a reward value using DQN, which is directly related to the network's durability after sending a packet to any 
network node. This method chooses the next hop for each packet based on maximizing the network's lifespan, ensuring a 
balanced workload distribution among nodes to perpetuate the WSN. The method recognizes the significance of considering 
network constraints such as node transmission energy and packet delivery rates. Incorporating these constraints is essential 
for determining the efficacy of the approach. For the purpose of evaluating the strategy, numerous neural network 
architectures are analyzed, with exhaustive data on network nodes and transmitted packets. Deep DRL methods are used to 
train neural networks, with the duration of the WSN network being a crucial factor in the decision-making effectiveness. 
Negative reward values are incurred when decisions that exceed network limits incur penalties. Specifically, this 
methodology evaluates the 2DCNN and 3DCNN DQN algorithms. These algorithms play a crucial role in influencing 
decision-making in order to achieve a balance between workload distribution, network lifespan, and compliance with 
communication constraints. 

a. Applied 2DCNN Algorithm. 

In our proposed method, the input to the NN is a 3D-array with the dimensions 1001005. This input format consists of five 

discrete layers, each of which consists of 100100 values representing a specific characteristic: 

1. Remaining Energy of Each Node: The energy that remains of every node in the network is represented by a single 

layer, which can be used to inform key decisions. 

2. Source Host Position: Another layer contains values set to one at the position of the source host to assist the 

network in determining the origin of the packet. 

3. Destination Host Position: Similarly, another layer contains values set to one for the location of the destination 

host, which aids in routing decisions. 

4. Nodes Within Transmission Range: Nodes within range of the node receiving the packet have been assigned values 

of one in this layer. 

5. Route Description: Last but not least, the layer describes the route taken by the packet, listing each host it visited 

before arriving at its current destination. In this layer, a value of zero indicates the original node and a value of 

one indicates the current host. Figure 2 shows the steps of  neural network algorithm. 



 

 

37 Alqaraghuli et al, Babylonian Journal of Artificial Intelligence Vol. 2024, 34–45 

This input structure enables the neural network to make informed decisions regarding the next hop for each packet within the 

WSN. It optimizes routing decisions by utilizing the spatial arrangement of nodes, energy status, source and destination 

information, and network topology. 

 

Fig. 2.  Flowchart for Hops depiction of the neural network algorithm. 

 

A 2D array is the CNN final output. Each node's reward is represented by a value in this array, as a result, the node with the 

largest reward is the one picked to forward the packet. 

b. Applied 3DCNN Algorithm. 

In contrast to 2DCNNs, which detect features predominantly across a single layer of the input array, 3DCNNs excel at 

identifying features that span multiple layers of the input. As our goal is to generate a single reward value for each node, 

resulting in a two-dimensional output, we employ an Average-Pooling layer. This layer is indispensable for aggregating 

the values associated with each node into a single representative value. Within the neural network's hidden layers, the 

Average-Pooling layer effectively combines the information garnered from various layers into a single value. This value is 

then utilized to predict the reward value associated with the selection of this particular node. 

Within the 3DCNN model, the layers, the input values are consistent with the data gathered for the 2DCNN model. The 

filters in the Average-Pooling layer, on the other hand, are designed to combine the results of the original hidden layer's 

feature detection into a single metric. To be more precise, the filter size is (one, one, five), which means it can summarize 

features across all five levels. Adjusting the weight given to each feature value requires weight values to be present between 

the input and initial hidden layers. For example, the value generated by the Average-Pooling filters is modulated by factors 

such as remaining energy and route description. This modulation occurs in accordance with the network's learning process, 

adapting to the demands and needs of the network as determined during training. 

c. Deep Q-Network Model Training 

The neural network (NN) initially operates without knowledge of the rewards for actions, leading to somewhat arbitrary 

transmissions and routing decisions. The NN gains a greater understanding of the network environment and efficient packet 

transmission strategies as it gains knowledge from the feedback generated by these actions over multiple iterations. 

However, this acquired knowledge may not inherently prioritize the key objective of extending the network's lifespan. 

A variable with an initial value of one is introduced to balance the exploration and exploitation of acquired knowledge. 

This variable is compared to random numbers between zero and one, and when the random number exceeds the variable's 

value, the NN's predictions determine the next course of action. When the random number is less than the variable's value, 
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which decreases by 0.99 after each iteration, arbitrary actions are performed. This strategy guarantees a balance between 

informed decision-making and exploratory steps, optimizing routing decisions and network lifespan. 

NN training continues until one of the network nodes runs out of energy at the conclusion of each iteration. This network 

lifespan is used to independently update reward values for each packet, as the delivery of packets is regarded as parallel 

rather than serial. Based on prior research indicating enhanced performance with this value, a discount factor (Gamma) 

with a value of 0.90 is used to reduce the reward value associated with the final packet action. This optimizes the learning 

procedure and routing decisions. The predictions made by the NN are updated by plugging the current value of Q into 

Equation 1. After the packet has been forwarded to the next hop, the agent is in a new state s', and the agent's maximum 

expected reward in this state is max-Q', while the actual reward amount, R, is what the agent receives from the environment. 

 

𝑁𝑒𝑤. 𝑄(𝑏, 𝑐) = 𝑄(𝑏, 𝑐)+∝ (𝑅(𝑏, 𝑐) + 𝑥max𝑄′(𝑏′, 𝑐′) − 𝑄(𝑏, 𝑐))     (1) 

 

The computed value obtained from this formula solely indicates the value of reward associated with the node to which the 

packet is passed. The values of reward for the remaining nodes are preserved according to the predictions made by the NN. 

By employing this methodology, the retention of any pre-existing knowledge is ensured, allowing for the ongoing 

extraction of information even in the presence of randomly selected actions. To expose the necessary learning to the neural 

network (NN) as well as prevent the forwarding of packets to positions lacking nodes, negative reward values of -1, referred 

to as penalties, are assigned to such vacant positions. The training technique is performed subsequent to the depletion of 

the initial node in the network. Instant training is triggered when any of the following conditions are met: 

1. If the destination node is beyond the current node's range of transmission, the packet is forwarded to it. 

2. The packet is sent to a node other than the destination node that lacks the capability to either obtain or packet 

forward. 

3. To prevent infinite recurrence, the packet is only sent to the next hop in the list of hops it has already traversed. 

4. The packet takes more than 10 times as many hops as there are nodes in the network. 

 

4. RESULTS AND DISCUSSION 

The methodology under consideration involves the utilization of diverse neural networks specifically developed for the Deep 
Q-Network. In order to facilitate the training process of artificial neural networks, a dataset including 100 WSNs that have 
been randomly constructed is utilized. The WSNs exhibit variations in the number of nodes, which range from 8 to 32. These 
nodes are uniformly dispersed throughout a square area measuring 1000×1000 square meters. In order to achieve uniform 
network development across all investigated approaches, random seeds with comparable values are utilized. This practice 
guarantees the generation of identical random integers for each trial. 

At the outset, every node is assigned an initial energy level of 1 joule. The process of transmitting or receiving a packet result 
in an energy utilization of 5×10-9 joule. The packets have been configured with a size of 1025 bytes and a transmission rate 
of 2Mbps. The maximum transmission range of a node is specified as 300 meters. Hence, in the event that a packet is 
transferred to a node situated beyond this specified range, it is regarded as an unsuccessful transmission. It is noteworthy to 
acknowledge that every node consumes energy at a rate of 10-10 joule per second in its idle state, wherein no packets are 
being broadcast or received. 

The training procedure encompasses the utilization of designated training data with Programming Language (Python), Neural 
Network Framework Keras with TensorFlow backend, and the generation of network traffic occurs randomly, with randomly 
selected source and destination hosts, until a node exhausts its energy supply. Figure 3 presents a graphical depiction of the 
randomly generated WSNs along with sample traffic, in addition, Table 1 shows the details of the parameters used in the 
experiments. 

 

 

 

 

TABLE I.  PARAMETERS USED IN THE EXPERIMENTS  

WSN Network Specifications 

Training Data  100 randomly generated WSNs 
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Evaluation Data Separate set of 10 networks 

Traffic Generation Random packet production 

 

 

Fig. 3.  Randomly generated WSN and traffic samples. 

 

a. Performance of the 2D-CNN 

In a manner akin to the preceding experiment, the 2D-CNN model undergoes training using an identical collection of 100 
WSNs, followed by evaluation using an additional set of 10 networks. The networks under consideration exhibit an Avg. 
duration of 638169 seconds. The experimental results indicate that, on Avg., the number of hops per packet is 12.37, resulting 
in a PDR of 83.3%. Additionally, the Avg.  prediction time is measured to be 316.03 μs. 

Additionally, the research entails the observation and analysis of the mean minimum remaining energy in the nodes 
throughout their operational period. The data presented in Figure 4 demonstrates a correlation between the decline in 
available energy and the use of measures by the 2D-CNN algorithm to restrict packet forwarding through nodes with 
diminishing energy levels. The observed behavior is distinguished by a declining pattern in the Avg.  minimum energy 
quantity as time develops. 

 

Fig.  4.  Avg. energy of WSNs calculated using the 2DCNN algorithm. 

In addition, the proposed methodology serves as a traffic flow manager by monitoring the mean number of hops throughout 
the operation of WSNs. In order to improve clarity, the values are grouped into periods of 1000 seconds and then Avg. d to 
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obtain mean values. A notable pattern arises wherein the mean quantity of hops exhibits a noticeable rise after surpassing 
the 400,000-second threshold, which aligns with the commencement of critical energy  levels within the nodes. 

As the network approaches its terminal phase, this specific model exhibits a tendency towards favoring shorter pathways. 
The change in preference can be ascribed to the declining energy levels observed in a significant number of nodes, hence 
presenting a greater difficulty for the network to circumvent them. The behavior is visually depicted in Figure 5. 

 

Fig. 5.  2DCNN algorithm Avg.  number of steps vs. time. 

Furthermore, the ongoing monitoring of the Avg.  PDR has been a consistent practice during the operation of WSNs. The 
measure is evaluated at regular intervals of 1000 seconds in order to provide a more thorough viewpoint. As illustrated in 
Figure 6, we notable the ability to sustain a high PDR despite the decrease in energy levels of the nodes and the necessity 
for packets to traverse longer paths. 

 

Fig. 6.  Avg. packet delivery rate across time by 2DCNN algorithm. 

 

b. 3DCNN Algorithm Performance 

After being trained on a dataset containing data from 100 WSNs, the 3DCNN used in the Deep Q-Network to evaluating. 
The evaluation phase employed the identical set of 10 WSNs as utilized in the preceding trials. The observed networks 
displayed a mean lifespan of 678251.62 seconds. Furthermore, the study revealed that the mean number of hops per packet 
was calculated to be 9.81, while the PDR was observed to be 85.1%. It is noteworthy to mention that each prediction within 
this particular context was executed with an Avg.  time utilization of 351.71 μs. 

The calculation of the Avg.  remaining minimum energy in the nodes was performed during their operation and is depicted 
in Figure 7. The presented data demonstrates that the current model has a diminished gradient in comparison to prior 
experiments, suggesting that it has accomplished a more equitable allocation of energy usage among the network's nodes. 
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Fig. 7.  Avg. energy of WSNs calculated by 3DCNN algorithm. 

Furthermore, the approach under consideration operates as a traffic flow manager by consistently monitoring the mean 
number of hops throughout the functioning of WSNs. In order to enhance precision, the data points are gathered at regular 
intervals of 1000 seconds, leading to the computation of mean values that are subsequently subjected to further averaging. 
Throughout the entire lifespan of the network, there is a lack of observable variation in the Avg.  number of hops. The trend, 
in conjunction with the comparatively lower mean number of hops per packet in the 3DCNN model relative to the 2DCNN 
model, implies that the 3DCNN model has implemented measures to distribute the workload more evenly at an earlier phase, 
notably prior to the depletion of the nodes' energy levels as shows in Figure 8. 

 

Fig. 8.  Number of Avg. of steps throughout time by 3DCNN algorithm. 

Furthermore, an ongoing monitoring of the Avg.  PDR has been a consistent practice during the operation of WSNs. The 
measure is evaluated at regular intervals of 1000 seconds in order to provide a more detailed depiction. According to the 
findings presented in Figure 9, the suggested methodology has consistently demonstrated its capacity to sustain a high PDR 
across the whole duration of the wireless sensor network lifespan. 



 

 

42 Alqaraghuli et al, Babylonian Journal of Artificial Intelligence Vol. 2024, 34–45 

 

Fig.  9. Avg.  packet delivery rate across time by 3DCNN algorithm. 

 

5. SUMMARY RESULTS AND DISCUSSION 

Table 2 presents an evaluation of several approaches employed for the management of traffic flow inside WSNs. The method 
known as "3DCNN" exhibits a notably prolonged Avg.  lifespan of WSNs, reaching roughly 678,252 seconds. This duration 
surpasses that of alternative methods, suggesting its efficacy in sustaining network activities over lengthy timeframes. 
Although the "2DCNN" approach has a slightly lower Avg.  prediction time (351.7 μs) compared to the method under 
consideration, it is justifiable to accept this discrepancy due to the longer network lifespan associated with the latter. 
Furthermore, the "3DCNN" approach demonstrates the lowest mean number of hops per packet (9.81), indicating its 
inclination towards shorter transmission pathways. Notably, it attains a PDR of 85.07%, indicating its outstanding ability to 
deliver packets, even over extended periods of network operation. On the contrary, [25] demonstrates the lowest PDR at 
64.71%, suggesting comparatively elevated rates of packet loss. In light of the findings presented, it is evident that the 
"3DCNN" technique demonstrates superior performance in terms of network lifespan and efficacy in delivering packets. 
However, it is important to acknowledge that additional considerations, such as computational complexity, should be taken 
into account when determining the most appropriate approach for specific WSN applications. 

TABLE II. PERFORMANCE MEASUREMENT FOR THE CURRENT AND PROPOSED METHODS.  

Methods Lifespan Time of Prediction Avg. H PDR 

2DCNN 638169 316 uS 12.37 83.3 % 

3DCNN 678252 351.7 uS 9.81 85.1 % 

[24] 541840 341.9 uS 10.53 72.5 % 

[25] 520364 283.1 uS 8.76 65.7 % 

 

 

Fig. 10. Avg. lifespan for our method and current methods. 
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3D-Convolutional Neural Network (3DCNN) model has demonstrated a notable increase of 17% in the duration of the 

network's operational lifespan when compared to the previously documented maximum. Furthermore, this particular model 

has successfully enhanced the PDR of the network while simultaneously preserving a comparable Avg.  number of hops 

needed for data transmission. The results of this study are consistent with the primary hypothesis, indicating that 

incorporating the lifespan of the network as a reward metric can successfully enhance the general network performance. 

Moreover, the explanation advised in this study demonstrates the highest hop count, as shown in Figure 11 expected 

outcome can be attributed to the requirement of the SDN controller to construct extended data transmission routes in order 

to mitigate the risk of resource exhaustion in some nodes. 

 

 
 

Fig. 11. Avg.  number of hops for our method and current methods. 

 

In both (2D and 3D) convolutional neural networks (CNNs), the neural network architecture stays invariant with respect to 

the total amount of nodes and the size of the network's environment.  The assignment of values to a fixed-size array is 

determined by their relative positions inside the chosen region, hence guaranteeing a consistent computational time for 

various methods. In Figure 12, the PDR attained by the proposed and existing approaches is presented. Figure 13 illustrates 

the Avg.  prediction time duration measured by both the proposed and existing methodologies. 

 

 
 

Figure 12: summary of the packet delivery ratio for our method and current methods 
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Figure 13: Avg.  prediction time needed using our method and current methods. 
 

 

 

6. CONCLUSION 

In conclusion, the IoT has given rise to tiny, resource-constrained devices designed for remote data collection and control. 

Optimizing data flow and communication in WSN is essential for the viability of the Internet of Things. SDN has emerged 

as a promising solution, employing a dedicated controller to manage data packet routing and enhance network efficiency. 

This study introduces a novel method for improving SDN management by utilizing DQN to forecast the rewards associated 

with packet forwarding to various network nodes. By providing relevant data to the DQN about packets and network nodes, 

informed decisions can be made to extend the WSN's lifespan. This study employs the network's lifespan as the reward 

criterion in an effort to improve DQN training by balancing overall WSN functionality and optimizing resource utilization 

on an individual node level. Several DQN models, such as 2DCNN and 3DCNN, are examined. CNN-based models 

efficiently process and analyze input data, thereby augmenting SDN packet forwarding decision-making. Future research 

will enhance the DRL model to include packet discard decisions, allowing for the efficient removal of packets destined for 

inaccessible nodes. PDR must be incorporated into reward calculations. By reducing congestion and optimizing resource 

allocation, this augmented reinforcement learning model has the potential to substantially increase WSN network lifespan. 

Further investigation of alternative methods will continue to improve the efficacy and optimization of network control 

systems. 
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