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ABSTRACT   

 
Bus passenger flow prediction integrates data analytics and modelling techniques to forecast the number 

of passengers using bus services, incorporating historical usage patterns, demographics, weather, and 

events for optimal scheduling and resource allocation. The Bi-LSTM fusion model enhances accuracy 

by processing past and future features simultaneously, leveraging bidirectional LSTM layers and an 

attention mechanism to capture temporal dependencies. This approach not only refines insights crucial 

for urban mobility challenges like traffic management and demand forecasting but also improves route 

planning and service efficiency. The SMO algorithm initializes with a diverse spider monkey 

population exploring solution spaces. Through local and global leader phases, it iteratively updates 

positions based on fitness and probabilistic selections, maintaining a balance between exploration and 

exploitation. Perturbation-based updates in the local leader phase ensure adaptability, preventing 

premature convergence, while the global leader phase guides towards better solutions, enhancing 

efficiency in complex optimization tasks and promoting dynamic adaptation. In Dataset 1, the proposed 

model achieved a training time of 137 seconds, slightly longer than HA (115s), SARIMA (112s), GRU 

(123s), and ST-ResNet (113s). It demonstrated superior accuracy at 89%, surpassing HA (66%), 

SARIMA (68%), GRU (63%), DeepST (78%), and ST-ResNet (84%). In Dataset 2, the model exhibited 

the lowest RMSE, MAE, and MAPE%, indicating superior predictive accuracy over SVR, CNN, GCN, 

LSTM, and CONV LSTM models. These findings validate the proposed model's effectiveness in 

enhancing predictive capabilities for transit forecasting, underscoring its potential to optimize urban 

mobility and transportation management strategies significantly. 

 

1. INTRODUCTION  

Predicting passenger flow at bus stations is a crucial task for improving capacity planning, enhancing security, enhancing 

the passenger traveling experience, and promoting infrastructure development. Accurate predictions can help transit 

authorities allocate resources efficiently, prevent overcrowding, and ensure a smooth operation of services [1]. However, 

many existing methods have failed to accurately predict passenger flow due to several challenges, including incorrect or 

incomplete data, and external factors such as weather conditions, traffic information, holidays, and city events. These 

external factors introduce a high degree of variability and complexity into the prediction models, making accurate 

forecasting difficult [2]. Additionally, these traditional methods are inefficient because they do not employ advanced deep 

learning techniques, which are better suited for capturing complex patterns in data. One of the key issues with existing 

methods is their inability to handle the performance degradation of transportation systems during traffic flow calculations 

[3]. Traditional models often lack the robustness needed to adapt to the dynamic nature of passenger flow, leading to less 

reliable predictions. This study aims to address these limitations by predicting the future inbound passenger flow at bus 

stations using a deep learning approach [4]. Specifically, it proposes the use of a Bidirectional Long Short-Term Memory 

(Bi-LSTM) network model to capture data features in both forward and backward directions. Bi-LSTM networks are 

particularly well-suited for time series prediction tasks due to their ability to retain information from both past and future 

data points, providing a more comprehensive understanding of the temporal dependencies in the data [5]. 
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To further enhance the predictive power of the Bi-LSTM model, this study incorporates an attention mechanism. The 

attention mechanism enables the model to focus on the most important features of the data, thereby improving prediction 

results [6]. This is particularly beneficial for handling the nonlinear and periodic nature of bus-passenger-flow data, where 

certain time periods or external conditions might have a more significant impact on passenger flow than others. By 

selectively concentrating on these critical aspects, the attention mechanism helps the model make more accurate 

predictions. Moreover, to address the inherent complexities and variations in passenger flow patterns, the study combines 

the attention-based Bi-LSTM model with Spider Monkey Optimization (SMO). SMO is an optimization algorithm inspired 

by the social behavior of spider monkeys, and it enhances the model's ability to detect and adapt to changing patterns in 

passenger flow  [7]. This combination leverages the strengths of both deep learning and optimization techniques, providing 

a more robust and adaptive approach to passenger flow prediction. The efficacy of the proposed model is validated using a 

pair of transit-passenger-flow datasets, which include diverse and representative samples of passenger flow data under 

various conditions [8]. The results from these datasets indicate that the accuracy of the Attention-based Bi-LSTM model is 

superior to that of baseline models, demonstrating the effectiveness of the proposed approach. The incorporation of the 

attention mechanism and SMO significantly elevates the prediction accuracy, making this approach more effective for 

practical applications in the Bus Transit System (BTS) [9]. This enhanced predictive capability can lead to better-informed 

decisions, ultimately contributing to improved transit service quality and passenger satisfaction. 

2. LITERATURE REVIEW  

Historically, statistical models such as autoregressive models (AR), moving average models (MA), and ARIMA 

(autoregressive integrated moving average) have been pivotal in predicting passenger flow. These methods leverage 

historical data to forecast future trends based on assumptions of linear relationships and stationary data patterns. While 

effective for capturing basic trends and seasonality, traditional statistical models struggle with nonlinearity and fail to 

incorporate dynamic external factors like weather conditions and special events [10]. This limitation significantly impacts 

their predictive accuracy, making them less reliable for real-time decision-making in bus station management. Moreover, 

these models are sensitive to outliers and require consistent data quality and rigorous preprocessing efforts to maintain 

accuracy, which can be resource-intensive and challenging to implement effectively in dynamic urban environments [11]. 

In recent years, machine learning techniques such as support vector machines (SVMs) and decision trees have gained 

popularity for their ability to handle nonlinear relationships and complex data patterns. SVMs, for instance, utilize kernel 

functions to transform data into higher-dimensional spaces, enabling them to capture intricate relationships in passenger 

behaviour [12]. Decision trees segment data into subsets based on feature values, offering interpretable models capable of 

handling categorical data effectively. However, both SVMs and decision trees may struggle with capturing temporal 

dependencies and long-term patterns inherent in passenger flow data [13]. SVMs can be computationally expensive and 

require meticulous parameter tuning to achieve optimal performance, while decision trees are susceptible to overfitting 

without proper regularization techniques. These challenges limit their applicability in accurately predicting passenger flow 

under varying conditions and in scenarios requiring robust generalization capabilities. 

Ensemble learning methods, such as random forests and gradient boosting machines (GBMs), have emerged as powerful 

tools for enhancing prediction accuracy by combining multiple models. Random forests aggregate predictions from diverse 

decision trees to mitigate variance and improve robustness against noisy data and outliers [14]. GBMs sequentially build 

trees to minimize prediction errors, focusing iteratively on challenging data points to enhance accuracy. Despite their 

effectiveness, ensemble techniques necessitate significant computational resources and expertise for optimizing model 

parameters effectively. Moreover, interpreting ensemble models can be complex, posing challenges in transparent decision-

making processes [15]. While these methods address some limitations of individual models, they still face constraints in 

handling the dynamic and nonstationary nature of passenger flow data, limiting their practical applicability in real-world 

transit management scenarios. 

3. PROPOSED WORK  

The proposed Bi-LSTM fusion model offers a novel approach to forecasting bus passenger flow by leveraging the 

bidirectional nature of LSTM networks. This model extracts intricate temporal features from time-series data by processing 

both past and future instances simultaneously. It comprises two LSTM layers: one handling forward data flow to capture 

features up to the prediction moment, and the other conducting backward calculation to extract features after the prediction 

moment. This ensures comprehensive information from both past and future contexts. During training, the model predicts 

in both directions, refining its understanding of temporal patterns. The predictions are then fused to generate the final 
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output, ℎ𝑡 representing comprehensive bus passenger flow information at a specific time. This dual-directional processing 

enhances prediction accuracy and robustness, aiding transportation authorities in resource allocation, route optimization, 

and service planning. Additionally, the Bi-LSTM fusion model addresses challenges like traffic congestion management, 

demand forecasting, and public transportation efficiency, contributing to the development of smart and sustainable urban 

mobility systems. 

 
Fig. 1 The structure of Bi-LSTM network model. 

Incorporating an attention mechanism with the Bi-LSTM model enhances the capture of temporal dynamics in transit 

passenger flow data. By assigning weights to features extracted by the Bi-LSTM model, the attention mechanism refines 

the analysis of variable relevance within the hidden layers. This is crucial for bus operations, where passenger volumes 

fluctuate across weekdays, weekends, and peak hours. The interaction between passenger numbers and preceding time 

periods highlights complex temporal dependencies in transit dynamics. As bus routes evolve, enhancing the Bi-LSTM 

model's ability to recognize long-term dependencies in time-series data is essential. The attention mechanism addresses 

this by dynamically assessing the significance of input properties over time, using key-value pairs assigned to a query. The 

resemblance between the query and each keyword determines the weighting coefficient, reflecting its importance in 

prediction. 

𝐴(𝑄𝑢𝑒𝑟𝑦, 𝑆𝑜𝑢𝑟𝑐𝑒) = Σ𝐿𝑥𝑖 = 1𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑄𝑢𝑒𝑟𝑦, 𝑘𝑒𝑦𝑖) ∗ 𝑉𝑎𝑙𝑢𝑒 (1) 

 

Here, 𝐴(𝑄𝑢𝑒𝑟𝑦, 𝑆𝑜𝑢𝑟𝑐𝑒)represents the final weight assigned to the input features, 𝐿𝑥 denotes the length of the original 

data, and 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑄𝑢𝑒𝑟𝑦, 𝑘𝑒𝑦𝑖)signifies the resemblance between the query and the 𝑖𝑡ℎ key. By computing this 

weighted sum, the attention mechanism effectively prioritizes and amplifies the influence of salient features within the 

time-sequence data, thereby enhancing the predictive accuracy of the Bi-LSTM model. This synergistic fusion of Bi-LSTM 

with an attention mechanism holds immense promise in advancing the modeling and forecasting capabilities in transit 

passenger flow analysis, offering insights crucial for optimizing bus operations and urban mobility management. 

 

3.1 SMO algorithm 

 

 
Fig.2 Spider Monkey Flow diagram. 
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In the initialization stage of the SMO algorithm, a population of N spider monkeys is generated, where each spider monkey 

𝑆𝑀𝑖 (i =1, 2, ..., N)  is represented as a D-dimensional vector. Here, D signifies the number of variables in the optimization 

problem, and each 𝑆𝑀𝑖  serves as a potential solution to be considered. This initial population is crucial as it lays the bedrock 

for the subsequent exploration and exploitation of the search space. The initialization process begins by defining the bounds 

for each dimension of the spider monkey's position. Let 𝑆𝑀 𝑚𝑖𝑛𝑗  and SM𝑚𝑎𝑥𝑗 represent the lower limit and upper limit, 

respectively, for the jth dimension of the spider monkey 𝑆𝑀𝑖. These bounds essentially confine the search space within 

which the spider monkeys will operate. To initialize each spider monkey 𝑆𝑀𝑖 , a random value is generated for each 

dimension within the specified bounds. This random value is drawn from an even distribution ranging between 0 and 1. 

The equation used for initialization is: 

 

SM𝑖𝑗 = 𝑆𝑀 𝑚𝑖𝑛𝑗 + 𝑈(0,1)  ×  (SM𝑚𝑎𝑥𝑗 −  𝑆𝑀 𝑚𝑖𝑛𝑗) (2) 

 

SM𝑖𝑗  denotes the jth dimension value of the ith spider monkey 𝑆𝑀𝑖. U(0,1) represents a uniformly distributed random 

number between 0 and 1. Multiplying this by the difference between the upper and lower bounds of the jth dimension and 

adding the lower bound ensures each spider monkey's position is within the search space. This initialization creates diverse 

solutions across the search space for the SMO algorithm. Each position is a candidate solution refined during optimization 

to converge towards an optimal solution. The algorithm starts by initializing a diverse population, setting leader boundaries, 

and defining a probability parameter. It then calculates the fitness of each individual, often quantified as the distance from 

vital food sources. Through a greedy selection process, global and local leaders are identified. During iterations, individuals 

update their positions based on personal experiences, local leaders' insights, and group wisdom. Probability computations 

guide individual selection towards convergence. The algorithm monitors local and global leadership efficacy, adjusting 

strategies if deviations are detected, and concludes when all criteria are fulfilled, achieving its objectives. 

 

3.2 Local leader phase 

During the Local Leader phase, each solution member (SM) adjusts its present position based on both the experience of its 

local leader and the experiences of other members within the local group. The fitness value of this newly computed position 

is then evaluated. If the fitness value of the updated position surpasses that of the previous one, the SM updates its position 

to this new value. The equation governing the position update for the 𝑖-th SM (part of the 𝑘-th local group) is given by: 

 

SMnew𝑖𝑗 = SM𝑖𝑗 + 𝑈(0,1) × 𝑈(0,1) × (𝐿𝐿𝑘𝑗 − 𝑆𝑀𝑖𝑗) +  𝑈(−1,1) × (𝑆𝑀𝑟𝑗 − 𝑆𝑀𝑖𝑗)       (3) 

 

Here, SM𝑖𝑗  denotes the 𝑗-th dimension of the 𝑖-th SM's position, and 𝐿𝐿𝑘𝑗  represents the 𝑗 -th dimension of the position of 

the local group leader for the 𝑘k-th group. 𝑆𝑀𝑟𝑗 is the 𝑗 -th dimension of a randomly selected SM within the 𝑘k-th group, 

distinct from the 𝑖 -th SM. 𝑈(0,1)is a evenly distributed random number between 0 and 1, while 𝑈(−1,1) is a evenly 

distributed random number between -1 and 1. 

 

Algorithm-1 Perturbation-Based Local Leader Update 

for each member  𝑠𝑚𝑖∈ kth group do 

for each j ∈ {1, ..., D} do 

if U(0, 1) ≥ pr then 

SMnew𝑖𝑗 = 𝑆𝑀𝑖𝑗 + 𝑈(0,1) × 𝑈(0,1) × (𝐿𝐿𝑘𝑗 − 𝑠𝑚𝑖𝑗) +  𝑈(−1,1) × (𝑆𝑀𝑟𝑗 − 𝑆𝑀𝑖𝑗) 

Else 

𝑆𝑀𝑛𝑒𝑤𝑖𝑗 = 𝑆𝑀𝑖𝑗 

end if 

end for 

end for 

position. The range of pr is [0.1, 0.8]  

During the Local Leader Phase, the algorithm updates group members' positions by perturbing their dimensions. Each 

dimension 𝑗 of member 𝑠𝑚𝑖  in group 𝑘 is updated based on the perturbation rate 𝑝𝑟 (0.1 to 0.8). If a random number U(0,1) 

exceeds 𝑝𝑟, the dimension is updated using the local leader’s position 𝐿𝐿𝑘𝑗and a randomly selected member’s position; 
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otherwise, it remains unchanged. This helps the swarm explore the solution space. The local leader's position is updated 

through greedy selection within the group, with the member having the best fitness value becoming the new local leader. 

If the local leader’s position remains unchanged, the LocalLimitCount increments by 1 to monitor stagnation. If unchanged 

beyond a threshold (LocalLeaderLimit), a reinitialization process updates group members' positions using random 

initialization or combined data from the Global and Local Leaders. The position update follows this equation: 

𝑆𝑀𝑛𝑒𝑤𝑖𝑗 = 𝑆𝑀𝑖𝑗 + 𝑈(0,1) × (𝐺𝐿𝑗 − SM𝑖𝑗) +  𝑈(0,1) × (𝑆𝑀𝑖𝑗 − 𝐿𝐿𝑘𝑗) (4) 

 

In this equation, the new position of each member (SM) is determined by two key influences: an attraction towards the 

global leader, represented by the term U(0,1)×(GLj−SMij)U(0,1)×(GLj−SMij), and a repulsion from the local leader, 

represented by the term U(0,1)×(SMij−LLkj)U(0,1)×(SMij−LLkj). This dual mechanism ensures that the members are 

guided towards potentially better solutions in the global context while being pushed away from the local leader to avoid 

local optima. The process focuses to enhance the diversity of the search space, thereby improving the chances of finding 

the global optimum.  

 

3.3 Global leader phase 

Following the completion of the LLP, the Global Leader phase (GLP) commences, ushering in a period where all SMs 

update their positions leveraging insights from the Global Leader and their local group members. The position update 

equation for this phase is articulated as follows: 

 

SMnew𝑖𝑗 = SM𝑖𝑗 + 𝑈(0,1) × 𝑈(0,1) × (𝐿𝐿𝑘𝑗 − SM𝑖𝑗) +  𝑈(−1,1) × (𝑆𝑀𝑟𝑗 − SM𝑖𝑗) (5) 

 

where 𝐺𝐿𝑗  denotes the 𝑗th dimension of the global leader position, and 𝑗 spans the range from 1 to D, representing a 

randomly chosen index. During this phase, SM𝑖  position is recalibrated based on a probability, 𝑝𝑟𝑜𝑏𝑖 , which is intricately 

linked to their fitness. Consequently, candidates with superior fitness stand a greater chance of enhancing their positions. 

This probability, 𝑝𝑟𝑜𝑏𝑖, can be computed utilizing the expression. 

 

                                                             𝑝𝑟𝑜𝑏𝑖 =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖
𝑁
𝑖=1

            (6)  

 

where 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 signifies the fitness value of the 𝑖th SM. Additionally, the fitness of the newly generated positions of the 

SMs is evaluated and juxtaposed against their predecessors, with the superior option being embraced. 

 

Algorithm 2: Iterative Position Updating Algorithm 

count = 0; 

while count < group size do 

for each member SM𝑖 ∈ group do 

if U(0, 1) < probi then 

count = count + 1. 

Randomly select j ∈ {1...D}. 

Randomly select SM𝑟∈ group s.t. r ≠ i. 

𝑆𝑀𝑛𝑒𝑤𝑖𝑗 = 𝑆𝑀𝑖𝑗 + 𝑈(0,1) × (𝐺𝐿𝑗 − SM𝑖𝑗) +  𝑈(−1,1) × (𝑆𝑀𝑟𝑗 − 𝑆𝑀𝑖𝑗) 

end if 

end for 

end while 

Algorithm 2 updates the positions of group members iteratively. A loop ensures each member can adjust their position, 

guided by probabilities and random selections, enhancing group dynamism and adaptability. This iterative process refines 

member positions, improving group performance and efficiency. A key operation in the algorithm is updating the global 

leader's position through greedy selection. The algorithm scans the population to identify the member with the optimal 

fitness level, replacing the current global leader with this elite member. A check ensures continuous evolution of the global 
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leader's position. If this process stalls, the GlobalLimitCount variable is incremented by 1, monitoring potential stagnation. 

These procedures optimize the global leadership position, enhancing the algorithm's efficiency and efficacy. 

4. RESULT  

The dataset utilized is from Hangzhou, China, captures metro passenger flow over 25 days from January 1st to January 

25th, 2019. It includes over 70 million swiping records from 81 subway stations, stored in daily CSV files, e.g., 

'record_2019-01-01.csv'. It also contains a road network map, 'Metro_roadMap.csv'. With 23 days for training and 2 for 

testing, this dataset is ideal for analyzing metro passenger behavior and optimizing transit operations. 

 
Fig.3 . CSV Roadmap 

The second dataset from Harbin, China, focuses on the city's bus transit network. It captures boarding information from the 

bus IC card system, including routes, card numbers, and times. Data from bus lines 363 and 68, covering March to October 

2021, were filtered for peak hours (5:30 to 19:45). With 870,000 swipes and 30,000 records reserved for the last 5 days of 

testing, this dataset provides insights into bus patronage levels and aids in evaluating transit models and optimizing bus 

services in Harbin. After undergoing extensive training, the efficacy of the proposed model alongside various benchmark 

models is meticulously outlined in the provided table. A comprehensive examination of the table reveals that the predictive 

capabilities of the proposed model surpass those of conventional machine learning models, exemplified by the Support 

Vector Regression (SVR) model. This notable disparity underscores the superiority of the proposed model in accurately 

forecasting outcomes, signaling a significant advancement in predictive analytics.  

 

TABLE I. TRAINING TIME COMPARISON OF VARIOUS MODELS  

Models Training time(s) 

HA  115 

SARIMA 112 

GRU  123 

DeepST  125 

ST-ResNet  113 

Proposed Model 137 

Table 1 provides a succinct comparison of the training times (in seconds) for several models, including traditional methods 

like SARIMA, as well as deep learning architectures like GRU, DeepST, ST-ResNet, and a proposed model. The data 

showcases the varying computational requirements for training each model, with the proposed model exhibiting the longest 

training time at 137 seconds. This information aids in understanding the computational resources necessary for 

https://www.mdpi.com/2076-3417/13/18/10266#B10-applsci-13-10266
https://www.mdpi.com/2076-3417/13/18/10266#B31-applsci-13-10266
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implementing these models in real-world scenarios, facilitating informed decision-making during model selection and 

deployment. 

 
Fig.4.  Evaluation Metrics for Dataset 1- 30 min 

 

 

Fig.5.  Evaluation Metrics for Dataset 1- 60 min 

Figure 4, the proposed model shows a significant reduction in RMSE, MAE, and MAPE% compared to other models, 

indicating superior predictive performance. The RMSE and MAE decrease steadily across the models, with the proposed 

model achieving the lowest errors. Figure 5 similarly depicts the proposed model's performance, confirming its 

effectiveness. RMSE and MAE consistently decline as the models progress from HA to the proposed model, with the latter 

achieving the best results. MAPE% also shows a downward trend, further validating the proposed model's accuracy. 
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TABLE II. COMPARATIVE ANALYSIS OF PREDICTION MODELS  

Models Accuracy(%) 

HA 66 

SARIMA 68 

GRU  63 

DeepST 78 

ST-ResNet  84 

Proposed Model 89 

 

Table.2 presents a comparative analysis of various prediction models based on their accuracy percentages. The models 

evaluated include the Historical Average (HA), SARIMA, GRU, DeepST, ST-ResNet, and a Proposed Model. The accuracy 

percentages range from 63% to 89%. Notably, the Proposed Model demonstrates the highest accuracy at 89%, 

outperforming all other models including state-of-the-art methods like ST-ResNet. 

  

 
Fig. 6.  Evaluation Metrics for Dataset 2- 30 min 

 

 

Fig. 7.  Evaluation Metrics for Dataset 2- 60 min 

https://www.mdpi.com/2076-3417/13/18/10266#B10-applsci-13-10266
https://www.mdpi.com/2076-3417/13/18/10266#B23-applsci-13-10266
https://www.mdpi.com/2076-3417/13/18/10266#B29-applsci-13-10266
https://www.mdpi.com/2076-3417/13/18/10266#B31-applsci-13-10266
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Figure 6 and figure 7 compare the performance of SVR, CNN, GCN, LSTM, CONV LSTM, and a Proposed model using 

RMSE, MAE, and MAPE metrics. The Proposed model consistently has the lowest errors across all metrics, indicating it 

provides the most accurate predictions among the evaluated models. 

 

TABLE III. TRAINING TIME COMPARISON OF PREDICTIVE MODELS  

Models Training time(s) 

SVR 90 

CNN 112 

GCN 134 

LSTM 121 

CONV LSTM 116 

Proposed 134 

 

Table. 3 presents a comparison of the training times for various predictive models. The Support Vector Regression (SVR) 

model has the shortest training time at 90 seconds, while both the Graph Convolutional Network (GCN) and the proposed 

model have the longest training times at 134 seconds each. The Convolutional LSTM (CONV LSTM) , Convolutional 

Neural Network (CNN), and Long Short-Term Memory (LSTM), models have intermediate training times of 112, 121, and 

116 seconds, respectively. This information is crucial for understanding the computational efficiency of each model relative 

to its performance, as discussed in the broader analysis. 

 

TABLE IV. COMPARATIVE ACCURACY OF PREDICTIVE MODELS  

Models Accuracy(%) 

SVR 67 

CNN 65 

GCN 69 

LSTM 64 

CONV LSTM 72 

Proposed 87 

 

Table. 4 compares the accuracy percentages of various predictive models. The proposed model demonstrates a significantly 

higher accuracy (87%) compared to traditional machine learning models such as Support Vector Regression (SVR) with 

67%, CNN with 65%, Graph Convolutional Networks (GCN) with 69%, Long Short-Term Memory (LSTM) with 64%, 

and Convolutional LSTM (CONV LSTM) with 72%. This indicates that the proposed model offers a substantial 

improvement in predictive performance over the other benchmark models. 

 

5. CONCLUSION AND FUTURE WORK  

Bus passenger flow prediction is challenging due to the dynamic and irregular nature of transportation systems. Variables 

like traffic conditions, weather changes, and fluctuating passenger demands complicate the development of accurate 

predictive models. This research utilizes a Bi-LSTM network to tackle these challenges. Bi-LSTM captures sequential 

dependencies by processing information in both ahead and behind directions, providing a comprehensive understanding of 

temporal patterns and improving prediction accuracy. To further enhance the model, Dynamic Feature Attention is 

employed, dynamically adjusting attention weights to emphasize the most relevant features at each time step. The model 

achieves superior accuracy in RMSE, MAE, and MAPE%, demonstrating its effectiveness in transit forecasting and 

potential for optimizing urban mobility. Future research could focus on enhancing computational efficiency and integrating 

real-time data streams to further refine predictions. Exploring hybrid approaches that combine deep learning with statistical 

methods could also improve prediction accuracy and robustness. These advancements aim to support more efficient public 

transportation systems, benefiting urban communities and stakeholders. 
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