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A B S T R A C T  
 

The increasing occurrence of cyberattacks specifically aimed at critical infrastructure has led to the 

adoption of network intrusion detection techniques for the Internet of Things (IoT).  AI is transforming 

multiple sectors today, the growth of adversarial attacks on AI models and models present imperative 

privacy issues which hinder its larger implementation. Some of the Privacy-Preserving Artificial 

Intelligence (PPAI) methods including HE make it possible to secure data during the calculation 

process. Yet conventional HE techniques experience certain disadvantages at present with applicability 

to highly scalable and resource-limited applications. Moreover, this paper presents an HHE technique 

that is designed by integrating symmetric cryptography with HE to overcome the above-mentioned 

challenges successfully. To this end, we propose the GuardAI framework for end devices with limited 

resources such that encrypted data can be classified while preserving the privacy of input data and AI 

models. To show the effectiveness of the HHE, we apply it to the actual problem of heart disease 

classification based on the easily contaminated ECG signals. In this way, the proposed method maintains 

the privacy of the data with little computational and communication cost for analysts and devices and 

has a fairly reasonable level of accuracy in comparison with unencrypted inference. This work therefore 

provides a foundation for secure and private approach in AI especially for those developed to suit 

devices and systems with limited resources by incorporating HHE into the PPAI systems.

1. INTRODUCTION 

AI has become one of the most effective innovations throughout various sectors since it improves automation, decision 

making and results in the forms of analytics. Nevertheless, recent upgrade of AI systems as components of applications 

operating with personal data has stirred up great concerns about privacy. These include, but are not limited to, bypassing 

of crucial security safeguards for Deep learning models that can be applied on resource-constrained devices or in joint 

environments, and thus raising the dangers of data leakage and malicious use. They dent public confidence in AI 

applications and keep them from being adopted broadly for fear of data leaks, breaches especially in sensitive areas like 

the medical, the financial, and the governmental. 

Privacy- Preserving Artificial Intelligence (PPAI ) has emerged as a key field of study to develop the protection of user 

data as well as the efficient safe execution of the AI model. From the existing techniques in the field of secure data 

computation, there is a technique known as Homomorphic Encryption (HE) that does allow computations to be carried out 

on data without the content ever being revealed. HE makes it possible to perform actual operations such as addition, 

multiplication of plaintext without actually exposing data to unauthorized persons. This work stems from Gentry’s Fully 

Homomorphic Encryption (FHE) scheme [1] on which subsequent developments CKKS [2], TFHE [3], and BFV [4, 5] 

improved to make HE applicable in real life AI as in MLaaS [6-13]. 

All the same, HE has the following limitations, which can be seen as threats to its success: computational overhead and the 

increased size of the ciphertexts. It also has limitations in its application due to scalability and resources to be used in 

resource-demanding AI project. To overcome these problems, researchers proposed such an advanced form of the HE 

algorithm as Hybrid Homomorphic Encryption (HHE), the application of which is based on the combination of the 
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symmetric and the HE approaches [14, 15]. HHE incurs relatively low communication overhead and a compact ciphertext 

size relative to the basic HHE while requiring a relatively small number of iterations to establish a critical level of security. 

HHE empowers the first stage of transformation of data using a symmetric key algorithm, and then homomorphically 

encrypting the resultant symmetric key. This data is subsequently encrypted twice by the server and then the ciphertexts 

are combined in a way suitable for performing the homomorphic operations. This approach not only leads to the reduction 

of the Ciphertext size but also solves problems of high computational cost and an increase in the multiplicative depth that 

is inherent to pure HE schemes. Recent development in the HE Friendly symmetric cipher like HERA and Rubato have 

made the HHE more efficient which provides some light on the HHE as the solution to implement security in AI models. 

 

2. LITERATURE REVIEW  
The field of Privacy-Preserving Artificial Intelligence (PPAI) has experienced rapid growth in recent years, driven by the 

increasing demand for secure and efficient AI systems that protect sensitive data. Among the techniques designed to address 

these concerns, Homomorphic Encryption (HE) has emerged as a cornerstone due to its unique ability to perform 

computations directly on encrypted data. This capability ensures that data confidentiality is maintained throughout the 

computational process, making HE highly suitable for applications in privacy-sensitive domains. 

The foundation of HE was laid by Gentry’s Fully Homomorphic Encryption (FHE) scheme, which allowed unlimited 

computations on encrypted data for the first time. However, the initial FHE models were computationally expensive, 

leading to the development of more efficient schemes. The BFV scheme, for instance, enables arithmetic operations on 

integer ciphertexts and eliminates the need for costly bootstrapping, making it suitable for applications requiring moderate 

computational depth [16]. Similarly, the CKKS scheme, introduced by Cheon et al., facilitates computations on floating-

point data, making it particularly useful for real-world AI applications that involve approximate numerical calculations 

[17]. The TFHE scheme, proposed by Chillotti et al., improves bootstrapping efficiency and supports an unlimited number 

of binary operations, making it ideal for binary data processing task [18]. 

These advancements have enabled HE schemes to be integrated into various AI applications, such as privacy-preserving 

machine learning (PPML). For example, TFHE has been used for implementing lookup table (LUT) searches for non-linear 

activations, while polynomial approximations have been adopted in BFV and CKKS for similar purposes [19]. Notable 

implementations like TAPAS and FHE-DiNN have demonstrated the potential of HE in achieving high accuracy in PPML 

tasks [20]. 

Despite its promise, HE faces significant challenges, particularly regarding computational overhead and ciphertext 

expansion. These limitations hinder its scalability and practical applicability in large-scale AI environments. 

Computationally intensive operations and the storage requirements for expanded ciphertexts remain barriers to the 

widespread adoption of HE in real-time and resource-constrained applications [21]. 

To address these challenges, researchers have explored Hybrid Homomorphic Encryption (HHE), which combines 

symmetric cryptography with HE to reduce computational costs and communication overhead. Early HHE implementations 

relied on symmetric ciphers such as AES. However, AES's high multiplicative depth proved inefficient for HHE, prompting 

the development of optimized symmetric ciphers tailored for HHE [22]. 

Several HHE schemes have been proposed to enhance the efficiency and practicality of HE. HERA, for instance, supports 

floating-point operations and integrates Weighted Modular Arithmetic (WMA) to improve performance. Elisabeth, 

designed for TFHE, optimizes operations on binary data, while PASTA, tailored for BFV, focuses on integer computations 

to ensure scalability in resource-constrained environments [23]. 

HHE has shown promise in real-world PPML applications, addressing the computational inefficiencies of traditional HE 

schemes. It has been successfully applied in secure computation, privacy-preserving AI, and scalable AI models. However, 

its practical deployment remains limited due to the complexity of implementation and the scarcity of large-scale use cases 

in the literature. For instance, HERA and CKKS enable operations on floating-point objects, while Elisabeth and TFHE 

optimize binary computations, highlighting the versatility of HHE in addressing diverse privacy-preserving requirements 

[24]. 

The advancements in HE and HHE have significantly improved the feasibility of privacy-preserving AI applications, 

providing robust solutions for secure computations. However, challenges such as high computational overhead and 

practical deployment persist, necessitating further research. This study builds on these advancements by proposing a novel 

framework leveraging HHE to enhance privacy and scalability in AI services, demonstrating its applicability in sensitive 

domains such as healthcare.  
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TABLE I.  SUMMARY OF HE AND HHE SYSTEMS AND THEIR APPLICATIONS IN PRIVACY-PRESERVING PPAI 

Scheme Supported HE Framework Focus Area Applications Challenges 

BFV Integer ciphertexts Arithmetic computations Machine learning, encryption Limited scalability 

CKKS Floating-point data Approximate operations AI model training High ciphertext expansion 

TFHE Binary operations Bootstrapping efficiency Real-time AI tasks Computational overhead 

HERA CKKS Floating-point objects Secure computation Requires advanced optimizations 

Elisabeth TFHE Binary data optimization Privacy-preserving AI High computational cost 

PASTA BFV Integer computations Scalable AI models Complexity in integration 

 

3. METHODOLOGY  

3.1. Model of System 
The system for PPML involves a user group that encrypts data, with a unique key for each user. Many CSPs collect 

symmetrically encrypted data from users. An analyst with a machine-learning model interprets the outcomes of machine-

learning operations on pre-encrypted data stored at CSP. Decrypted information is obtained from the HE evaluation of 

collected encrypted data to understand users' data. The system design is illustrated in Figure 1.  

 
 

Fig. 1. Data Privacy Model for Secure ML. 

 

 

3.2. 2GML Protocol in GuardML 
This section outlines the development of the 2GML protocol within the GuardML framework. The 2GML protocol 

constitutes the second phase of the GuardML solution within the Hybrid Homomorphic Privacy-Preserving protocol. This 

phase is designed to address the requirements of specific machine learning applications intended for commercial use, with 

the models being owned by the CSP. Encrypted data and models stay confidential while Cloud Service Providers can 

perform computations. This configuration is effective for machine learning tasks when analysts do not want model 

information but require computational resources from the cloud service provider.  

The architectural architecture of the 2GML Protocol comprises Secure Symmetric Encryption (SKE), ABFV-based Hybrid 

Homomorphic Encryption (HHE), Public-Key Encryption Scheme (PKE), Signature Scheme (𝜎), and Cryptographic Hash 

Function (H(·)). These components strengthen the security of the message's integrity, signature, decryption, and encryption. 

They are ideally suited for commercial environments as they allow CSPs to possess ML models and offer backend 

computing, as illustrated in Figure 2. As well as Table 2 delineates the essential processes and operations of the 2GML 

protocol, as outlined in GuardML, focusing on its core capabilities for enabling secure machine learning interactions 

between a user and a Cloud Service Provider. 
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Fig. 2. Parts of the 2GML Protocol, Presumptions about Security, and Appropriate Use Cases. 

 

TABLE II.  PROCESS STAGES OF 2GML APPROACH. 

Phase Description 

2GML.Setup 

• User uiu_iui generates HHE keys (pkui, skui, evkui) and shares pkui with CSP while sending evkui separately. 

• CSP generates its PKE key pair (pkCSP, skCSP). 

• User uiu_iui signs and CSP verifies the setup message m1m1m1. 

2GML.Upload 

• User uiu_iui encrypts data xix_ixi with SKE.Enc using a symmetric key Ki, producing ciphertexts cxicxicxi and 

cKicKicKi. 

•  User uiu_iui homomorphically encrypts Ki into cKicKicKi with HHE.Enc. 

• User uiu_iui signs and CSP verifies the upload message m2m2m2. 

2GML.Eval 

• CSP decrypts cxicxicxi into c′xic'xic′xi with HHE.Decomp. 

• CSP uses c′xic'xic′xi, ML model parameters (w,bw, bw,b), and evkui in HHE.Eval to compute crescrescres. 

• CSP signs and sends crescrescres to uiu_iui in m3m3m3. 

2GML.Classify 
• User uiu_iui decrypts crescrescres with HHE. 

• Dec to obtain resresres, the prediction. 

 

3.3.  Model of Attack and Security Analysis  

GuardML's security can be assessed utilizing an attack model predicated on the adversary's capabilities; for instance, ADV 

may execute several assaults to undermine protocol security and privacy. Diverse attack methodologies, encompassing 

algebraic approaches such as Linearization and Gröbner Basis assaults, alongside statistical techniques like differential and 

linear assaults, have failed to compromise GuardML's cryptographic framework. The threat model focuses on the 

communication between entities within the protocol rather than the cryptographic system itself. Although mitigating the 

risk of basic man-in-the-middle attacks, ADV can compromise the Cloud Service Provider (CSP) and many users. The 

Ciphertext Substitution Attack and the ML Model Unauthorized Access Attack are two potential threats. In these attacks, 

the perpetrator unlawfully acquires access to the CSP's or analyst's ML model and substitutes the generated ciphertexts 

with undetectable alternatives. 

 
TABLE III.  A CRITICAL REVIEW OF THE 2GML PROTOCOL FOR GUARDML SECURITY 

Attack Type Description Security Assurance 

Ciphertext Substitution 

Attack 

ADV attempts to replace genuine ciphertexts in 2GML.Upload 

or 2GML.Eval phases with indistinguishable fabricated ones. 

EUF-CMA secure signature scheme (𝜎) ensures 

forgery resistance; negligible probability of success. 

ML Model Unauthorized 

Access Attack 

ADV colludes with users or compromises CSP to gain 

unauthorized access to the multi-layered ML model (𝑓) used in 

2GML. 

Security relies on the complexity of multi-layered 

ML models and the semantically secure HE 
scheme. 
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4. RESULTS  
The study evaluated encrypted inference in plaintext ECG data using floating-point and integer arithmetic across 

experiments with varying numbers of data inputs. The ecgPPML framework was evaluated for its effectiveness, focusing 

on high accuracy regardless of data volume and type. The results showed that the ecgPPML framework's efficiency and 

reliability were mainly focused on the high level of accuracy, even with newly implemented homomorphic encryption 

noise. The accuracy loss in comparison with plaintext techniques was minimal, even with newly implemented 

homomorphic encryption noise. The ecgPPML framework addresses specific issues in privacy-preserving machine 

learning, produces robust performances, and guarantees data protection, making it suitable for various real-world 

applications. The accuracy varied among different cases, with the ecgPPML framework maintaining robust performance 

even with larger datasets. The results provide a wide panoramic view of how the ecgPPML addresses specific issues in 

privacy-preserving machine learning, producing robust performances and ensuring data protection, making it suitable for 

various real-world applications. 

In general, Table 4 delivers a wide panoramic view of how the ecgPPML addresses specific issues in privacy-preserving 

machine learning, produce robust performances and simultaneously guarantee the data protection, and therefore is fit for 

various real-world applications. 

 
TABLE IV.  EXAMINING ACCURACY WITH ECGPPML 

 
 

Figure 3 illustrates the efficacy of 2GML in performing secure machine learning tasks. In point (a), we used the SKE 

approach to encrypt a symmetric key; the total result is that time. Due to the increased computational burden per data point, 

this time grows in relation to the input dimensions. The evaluation phase decryption, which involves breaking EKCT into 

sub-plaintexts, likewise increases dramatically when the inputs are numerous. It is efficient to decrypt results from 

homomorphic encrypted outputs because the amount of time it takes to do elliptic curve point multiplication is independent 

of the number of inputs, regardless of how difficult the computational issue is. A crucial component in the creation of 

secure data handling in sensitive applications is the capacity of the protocol to execute calculations on the encrypted data 

and address performance difficulties. This capability is illustrated in the following image. As shown in Figure 3 . 

 
Fig. 3.  outcome of the 2GML procedure. 
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Despite its user-friendliness, the 2GML framework requires a lot of processing power. Among the many processes involved 

are setup, data uploading, assessment, and data classification. However, setting everything up only takes 243 milliseconds, 

whereas uploading takes 607 milliseconds. After 300 data inputs, the assessment step takes 3597.7 seconds to finish on the 

server. Classification takes 900 milliseconds from the user's perspective. The overall efficiency and speed of the 2GML 

framework are enhanced by these operations, as shown in Table 5. 

 
TABLE V.  THERE ARE 300 DATA INPUTS WITH 2GML. 

 
 

5. CONCLUSION  
This paper presents the PPML approach, which has been created independently, through HHE. This strategy aims to 

encompass many PPML methodologies and domains, including pervasive computing, by delivering optimal machine 

learning capabilities while safeguarding user privacy. The authors addressed the fundamental challenges of data collecting 

and administration at devices with constrained processing capacity, such as IoT sensors and mobile devices, by using HHE. 

This approach ensures robust security with minimal impact on the execution of machine learning. This paper elucidates the 

interplay between cryptography and machine learning in delivering efficient and secure privacy-preserving machine 

learning (PPML) services across various architectures, including cloud, edge, and resource-constrained environments. Data 

security and integrity are critical in various sectors, including healthcare, banking, and smart cities. This approach creates 

new opportunities for the development of private, secure apps across several domains. The paper's findings serve as a basis 

for future progress in privacy-preserving machine learning (PPML), facilitating the development of efficient, high-quality, 

and safe machine learning systems. 
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