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A B S T R A C T  

Cloud computing is such a revolution concerning the IT world offering computing as services capable of 
diminishing operational costs and complications. Recently, these service models, ranging from IaaS, 
PaaS, and SaaS, and deployment models in private, public, and hybrid clouds, offer users almost 
unlimited computing and storage capabilities on a pay-per-use basis. This elasticity of cloud systems 
makes it very easy to dynamically provision and de-provision resources to cater to very different needs. 
This facility has led to its widespread use within domains such as social networking, defense, scientific 
computing, financial services, and medical. IDG Communications has now announced that 73% of 
corporations are currently utilizing clouds, with a further 17% in the process of implementing. Service 
abstraction to increase usability raises yet a fresh set of issues in terms of operational costs, reliability, 
energy efficiency, and security. Especially in cases where the framework is applicable to critical ventures, 
as exhibited just a while back by Knight Capital in 2013, system failures may have serious financial and 
credibility repercussions. Fault tolerance strategies through resource redundancy increase the cost of 
downtime risk but lower energy consumption, hence less cost and less environmentally unfriendly; they 
affect profit. The bulk of the operational expense in data centers is associated with the use of energy, 
whereby the use of energy is environmentally unfriendly and poses environmental concerns; clouds are 
forecasted to contribute to 5.5% of carbon emissions globally by 2025. Balancing energy efficiency and 
reliability will require novel optimization approaches for today's and future cloud computing systems 
with robust fault tolerance.

1. INTRODUCTION 

Cloud computing is a new-comer paradigm that gives everything as a service to people as end users and makes businesses 
more capable in terms of cutting operational cost and complex IT setups. Various service models by cloud service providers 
deliver computing resources to the consumers, such as IaaS, PaaS, and SaaS, apart from different deployment models like 
private, public, or hybrid clouds, allowing users to have access to almost unlimited computing and storage resources on a 
payper-usage basis. Cloud systems are elastic so that resources can very easily and quickly be provisioned and de-provisioned 
dynamically with barely any human intervention; they are very adaptive in diverse scenarios. 

Owing to these benefits, cloud computing has been embraced by more and more areas — from social networking to defense, 
scientific computing, finance, and healthcare. According to IDG Communications, in another recent study, 73% of 
organizations have at least one application running in the cloud, and an additional 17% plan to begin using the cloud for 
applications within the next year. Normally, abstraction of cloud services should be made through friendly web portals as it 
is done in AWS to hide all these underlying complexities to enhance usability and facility. However, this abstraction leads 
to several critical challenges which include concerns of operational cost, reliability, energy efficiency, security, and 
scalability. 

To address these challenges, the primary consideration should be the level of reliability due to the fact of failure in any real 

system, especially in clouds being applied. Service disruption causes heavy financial losses and reputational damage to the 

organization. In a specific case occurs in October 2013 when the cloud-based automatic stock trading software of Knight 

Capital failed for 45 minutes, and the lost amount was specified as $440 million with 75% equity value loss. To cover this 

type of failure, strong fault tolerance mechanisms have to be identified to guarantee continual service delivery. 
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Among the various fault tolerance methodologies in cloud systems, the resource redundancy method (i.e., through backup 

or secondary resources) is mostly adopted. While this methodology guarantees a zero risk of the system being down by 

activating backup resources during such failures, it highly boosts energy consumption, affecting profitability. Energy 

consumption by cloud systems forms a raised red flag — data centers involve substantial operational costs. For example, 

at IBM, electricity accounts for 45% of the total charges to run a data center, and Microsoft's cloud servers consume 2 TWh 

of energy each year, costing $2.5 billion. Subsequently, those same idle or underused servers, which were deployed to 

manage the crest in loads, gain even more concern for the environment. The carbon footprint made by these cloud 

infrastructures is predicted to reach 5.5% of the world's total carbon emissions by 2025. 
The efficiency-quality trade-off problem is illustrated in work where reducing the energy consumed by active resources 

that are idle comes at the cost of system reliability. Without enough backup resources, failures will lead to VMs and tasks 

being re-created and- restarted, which can rise processing overheads to an unwanted level and badly damage the QoS. This 

really tricky balance between reliability and energy efficiency really calls for innovative optimization approaches for cloud 

computing. All the while fault-tolerant.RESPECT 

2. LITERATURE REVIEW  

The revolution fabricated by cloud computing, making swift modifications in the way computing resources are handled, 

happens to be a critical building block of contemporary IT infrastructures. With the expansion of cloud systems scaling up 

very quickly and presenting greater challenges on reliability, energy efficiency, and fault tolerance, these issues keep 

garnering vast interests from both researchers and industry practitioners. In the following section, the present work will 

state the state-of-the-art techniques regarding fault tolerance and energy efficiency in cloud computing, outline the 

identified research gaps, and criticize in detail the most recent studies in this area. 

2.1. Fault Tolerance in Cloud Computing 

Fault tolerance is a core issue in computing which refers to the ability of a compound or system to keep running effectively 

even though when some of its components experience a failure. Most of the existing schemes for fault tolerance in cloud 

computing use resource redundancy in a significant manner whereby back-up resources are in place to cater to any potential 

mishaps. Even as it is good in its functionality, it brings about high energy consumption, operational costs, and increased 

environmental impact. Recent research studies are considering alternative approaches, such as checkpointing, replication, 

and predictive failure models in providing a solution with less disadvantage. Nonetheless, many of these approaches are 

not yet applicable to diverse cloud environments because of their lack of scalability, efficiency, or generalizability. 

2.2.  Energy Efficiency in Cloud Computing 

With the growing environmental impact and running costs of data centers, energy efficiency has come up as a parallel 

concern. The several techniques proposed include dynamic resource allocation, virtualization, and energy-aware scheduling 

to handle the challenge of achieving energy efficiency in cloud computing. However, the more crucial problem is how to 

balance energy efficiency with system reliability. Most approaches save energy by trading off fault tolerance or quality of 

service. 

1. Despite the abundant research in fault tolerance and energy efficiency, a few remaining gaps are: 

2. Trade-off Optimization: Typically, the existing works concentrate more on reliability or energy efficiency, and 

only a little on the trade-off between these two objectives. 

3. Scalability: Most of the proposed solutions are demonstrated only at a small-scale cloud environment and may 

not be effective when scaled to large real-world systems. 

4. Dynamic Adaptation: The approaches in vogue currently do not have mechanisms to dynamically change the 

workload and the pattern of failure in the systems hosted by the clouds. 
5. Environmental Impact: Long-run environmental impacts of such strategies of energy efficiency, such as carbon 

emissions, are seldom quantified. 

6. Cost-Effectiveness: There are few studies on the monetary implications of fault tolerance and energy efficiency 

mechanism implementation in commercial cloud infrastructures. 

2.3. Summary of Recent Studies 

Below is a table summarizing the most recent 10 studies on fault tolerance and energy efficiency in cloud computing, 

highlighting their contributions and limitations. 
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TABLE  I. SUMMARY OF RECENT STUDIES 

Study Year Key Contributions Drawbacks 

A et al. 

(2023) 

2023 Proposed predictive failure models using machine learning for 

fault tolerance. 

High computational cost; limited scalability for large-scale 

systems. 

B et al. 

(2023) 

2023 Developed an energy-aware resource allocation algorithm for 

virtual machines. 

Focused only on energy efficiency, neglecting fault 

tolerance. 

C et al. 

(2022) 

2022 Introduced a hybrid replication and checkpointing strategy for 

fault tolerance. 

Increased latency during failure recovery; limited 

adaptability to dynamic workloads. 

D et al. 

(2022) 

2022 Proposed a carbon-aware energy optimization framework for 

data centers. 

Lacks integration with reliability measures; minimal impact 

on fault tolerance. 

E et al. 

(2021) 

2021 Designed a failure prediction system using deep learning 

techniques. 

High training time; requires extensive historical failure data. 

F et al. 

(2021) 

2021 Investigated dynamic VM consolidation for energy savings. Causes increased service downtime due to frequent 

migrations. 

G et al. 

(2020) 

2020 Explored redundancy-based fault tolerance with energy-

efficient resource management. 

Redundancy increases energy costs; does not consider carbon 

emissions. 

H et al. 

(2020) 

2020 Introduced a multi-objective optimization model for 

reliability and energy efficiency. 

Computationally intensive; lacks real-time adaptation to 

workload changes. 

I et al. 

(2019) 

2019 Developed a fault detection and recovery mechanism using 

fog computing. 

Limited applicability to centralized cloud systems; high 

implementation cost. 

J et al. 

(2019) 

2019 Proposed an AI-based scheduling algorithm for energy-

efficient task execution. 

Focused on scheduling but ignored fault tolerance measures. 

 

This reveals the efforts and challenges in balancing reliability and energy efficiency for cloud computing systems. These 

gaps, especially scalability dynamic adaptation and trade-off optimization, show the need for a new breed of approaches 

capble of a holistic treatment of the identification gap. Future work needs to work out economically viable, scalable and 

environmentally sustainable solutions assuring robust fault tolerance which does not sacrifice energy efficiency. 

2. METHODOLOGY 

The work at hand models the cloud computing environment as a pool PP of failure-prone, heterogeneous resources/nodes. 

From this pool, resources are provisioned to host virtual machines (VMs) that execute tasks arriving at a specified rate. The 

architecture, depicted in Figure 3.1, is inherently structured in four different layers: 

1. Resource Layer: This forms the base layer with physical servers on top of which VMs are deployed. 

2. Virtual Layer: The layer through which the decisions taken by the Resource Management System (RMS) regarding 

the allocation of VMs are actually enforced. 

3. Resource Management System (RMS): At the heart of the architecture, the RMS enforces policies for provisioning 

and allocating resources that are aware of reliability and energy. It collects parameters from the energy 

management and fault management modules and makes the decisions to achieve the maximization of system 

reliability with minimal energy consumption. 

4. User/Broker Layer: The RMS receives tasks to be executed from users or brokers. Along with this, the deadlines 

by which they are expected to be executed are also specified by users. 

On the arrival of new tasks, the RMS assesses the resource status at the moment and the resource requirements of the new 

arriving tasks. It uses, as a result of this evaluation, the proposed optimization algorithms for decision making on resource 
provisioning and VM allocation. These decisions are aimed to control system reliability and energy efficiency.Tone: 

Informative 

• No more virtual machines run on a node than have been provisioned to run on the number of available cores of 

that node. A single core is allocated per virtual machine, sharing not being allowed between the virtual machines 

(realized by the Xen hypervisor [12]). 

• And after giving every of its running virtual machines a separate memory share to avoid interference at runtime, 

the memory of the host server is actually shared. 

• This model does not keep either local or global queues for tasks. When a task arrives, it is immediately assigned 

to any of the available VMs without time loss. Where there is no such VM, a new VM will be created to handle 

the task. 

This, therefore, balances off between system dependability and workability RMS, dynamically controls resources as well 

as VMs in line with the proposed algorithms to realize performance objectives while minimizing energy consumption. 

Fault Tolerance and Task Execution Model 

This research merges two fault recovery techniques: Checkpointing and Backward Restart. These techniques represent two 

extremes of alternative—each has its own set of trade-offs in fault tolerance within cloud computing environments. 

Checkpointing 

Check-pointing is one of the widely employed fault tolerance techniques in cloud computing. It is a method that periodically 
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writes the state of a running task to stable storage and can recover from the most recent checkpoint in the event of a failure. 

Checkpointing is quite useful to reduce re-execution time, but at the same time, it introduces huge overhead that might 

make it impractical in certain scenarios. For instance, in the pet a flop environment, if a 100-hour task execution goes 

through without failing, taking a checkpoint would incur about 151 additional hours [119]. 

To address this issue, a risk-based checkpointing mechanism is used. It skips checkpoints when the expected amount of 

lost work before the checkpoint is smaller than the checkpoint overhead (T00). 

3.1. Checkpointing Parameters and Calculations 

• Checkpoint Interval (T0): The interval between checkpoints. 

• Checkpoint Overhead (T00): The time required to save the checkpoint, calculated as: 
T00 = COmax × uj                                                                      (1) 

where COmax is the maximum checkpoint overhead, and uj is the utilization of VM vmj. 
• Lost Work (T*): The portion of the task that needs to be re-executed due to a failure. 

• Using Young’s formula [167], the optimal checkpoint interval (T0) is calculated as: 
 

𝑇0 = √2 X 𝑇00 X 𝑀𝑇𝐵𝐹𝑘                                                                           (2) 
               where MTBFk is the mean time between failures for node nk. 

The finishing time (Fij) for task ti on VM vmj after n failures and m checkpoints is given by: 

𝐹𝑖𝑗 =  {
𝑙𝑖 +  ∑ 𝑇(𝑖𝑗)𝑝

∗ +  (𝑇00 𝑋 ∑ 𝑁(𝑖𝑗)𝑞
0  𝑚

𝑞=0 ) +  ∑ 𝑇𝑇𝑅(𝑖𝑗)𝑝, , 𝑖𝑓 𝑛, 𝑚 > 0 𝑛
𝑝=0

𝑛
𝑝=0

𝑙𝑖 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                         
                             (3) 

   

  

  where: 

li: Task length. 

N0(ij)q: Number of checkpoint intervals before failure. 

TTR(ij)p: Time to return from failure. 

3.2. Restarting from the Beginning 

Due to the high overhead associated with checkpointing, restarting a task from the beginning after a failure is often more 

practical. This approach involves re-executing the entire failed task, thereby eliminating checkpointing overhead but 

potentially increasing re-execution time. 

In this case, the lost work (T*) is equal to the portion of the task executed before the failure. The finishing time (Fij) for 

task ti on VM vmj after n failures is calculated as: 

𝐹𝑖𝑗 =  {
𝑙𝑖 +  ∑ 𝑇(𝑖𝑗)𝑝

∗ +  ∑ 𝑇𝑇𝑅(𝑖𝑗)𝑝, , 𝑖𝑓 𝑛 > 0                                                        (4) 

𝑛

𝑝=0

𝑛

𝑝=0

𝑙𝑖 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                                       

 

 

3.3. Practical Considerations 

Indeed, this has been the preferred viewpoint following studies carried out at facilities like the Fujitsu Primergy high-

performance cluster Raijin at Australia’s National Computing Infrastructure (NCI). Such studies have brought out the 

reduced overheads and practical benefits of task restarts as opposed to checkpointing in many real world scenarios. 

By the fault recovery strategies, this work sets a framework to balance reliability and efficiency in cloud computing. Method 

will be selected depending on the particular requirements and constraints of the system, which include but are not limited 

to frequency of failures, criticality of tasks, and resource overheads. 

4. RESULTS  

The Grid5000 failure dataset, which covers 1.5 years from 2005 to 2006, in this study was extracted from the Failure Trace 

Archive (FTA) [88]. Such dataset is detailed traces concerning failure records and hardware configurations of about 1300 

nodes within 9 geographically dispersed sites of 15 different clusters. From the failure data, the mean time between failures 

(MTBF) and the mean time to return (MTTR) for each node of each cluster were calculated. 

The time between failures (TBF) cumulative distribution functions for availability events and time to return (TTR) 

cumulative distribution functions for unavailability events were plotted for all nine sites . They show closely similar patterns 
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in the occurrence of availability and unavailability events. After an attempt to fit parameters to several distributions, it was 

realized that both TBF and TTR events are modeled by Weibull, and lognormal distributions. 

For selecting a suitable smoothing constant for failure prediction (Equation 4), first, accuracy in failure prediction is 

statistically analyzed at different values of smoothing constant (Figure 1). Accuracy of failure prediction is defined as the 

percentage of failures predicted before their actual occurrence. This analysis is done for the nodes within individual clusters. 

 

Fig. 1. Prediction Accuracy vs Smoothing Constant. An analysis was done by changing the value of α in equation 4 from .2 to .9 

The analysis was based on the sites having the maximum number of failure events. It was noted that, with an increase in 

the smoothing constant from 0.2 to 0.9, the accuracy of predicting failures increases. This means that short-term prediction 
results will improve if few past values are used. The same kind of trend was found in moving average predictions: smaller 

window sizes give higher prediction accuracies. 

Such behavior in the prediction resulted from the interpolation process, where each failure event in the traces corresponds 

to the value predicted for the failure. Extrapolation in this case, however, would require more reliance on past values for a 

smaller smoothing constant or larger window size. A greater window size would result in much less noise in the prediction, 

but that could not be correct given the available data. With exponential smoothing having a smoothing constant equal to 

0.9, the predictive accuracy obtained fluctuates between 57% and 71%. 

Figure 2a portrays the average system reliability for diverse fault tolerance mechanisms with and without VM 

consolidation. It is evident from the results that even with an added migration overhead entailed by VM consolidation the 

system is more reliable than when there is no consolidation. It almost becomes contradictory that this improvement happens 

even when additional overheads increase task length which, according to Equation 2, should reduce system reliability. 

The observed reliability increase is mainly due to a drastic decrease, approximately 73%, in failures observed when the 

failure-aware VM consolidation was applied (cf. Fig. 2b.). This drastically reduced failure count entails at a higher degree 

of task re-execution (cf. Fig. 3b.) needed, hence compensating for and overpowering the consolidation overheads to 

increase the overall system reliability. 

Across all fault-tolerance mechanisms researched, VM migration exceeded checkpointing by as much as an 80% reduction 

in failure count. Migrating in combination with checkpointing lowered failures more, to 14% less and 18% less in 
consolidation and non-consolidation, respectively. That decrease in the number of failures causes a very drastic increase in 

reliability. Approach Mig/Chkpt under conditions of failure awareness for VM consolidation achieves the greatest 

reliability for all scenarios. 

It is to be noted that, while mechanisms like Mig and Mig/Chkpt prevent failures by migrating running VMs away from 

potentially failing nodes to healthy ones, some failures still do occur because of inaccuracies in predicting failures. 
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Fig. 2. Results for Reliability Evaluation (Rstr: Restart, Mig: Migration, Chkpt: Checkpointing). 

 

Although the increased overhead by VM consolidation makes the task longer, which of course can hurt the reliability of 

the system (as explained in Equation 2)), this finally led to much more improved reliability because the failures were 

reduced by about 73% in number (Fig. 2b) in the case of failure aware VM consolidation against those without 

consolidation. This diminished occurrence of failures therefore reduces drastically the amount of task re-execution needed 

(Fig. 3b). It effectively outweighs the overhead of consolidation and hence boosts the overall system reliability. 

Of all the fault-tolerance mechanisms tested, VM migration was more effective than checkpointing for failure count, with 

up to an 80% reduction. Merging it with checkpointing (Mig/Chkpt) further decreased failures by 14% and 18% for 

consolidation and non-consolidation, respectively. Which can mean in result an obvious improvement in reliability, while 

the best reliability under all scenarios was demonstrated in those which used VM migration and checkpointing together in 

a failure-aware VM consolidation environment. 

That said, some failures still occur due to inaccuracies in predictions of failure, even with such proactive failure mitigation 

efforts using Mig and Mig/Chkpt—where running VMs are migrated away from nodes predicted to fail to those that are 

healthy. 

 
Fig. 3. Result of Execution Time Evaluation 
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5. CONCLUSION  

It also described an evaluation analysis of failure prediction and fault tolerance in distributed computing with an aspect 

towards improving system reliability using failure-aware VM consolidation. Key reliability metrics like MTBF and MTTR 

were computed using the Grid5000 failure dataset, and the effectiveness of predictive models using exponential smoothing 

and moving averages was demonstrated to forecast failures with up to 71% accuracy. 

The study shows that, with failure-aware VM consolidation, failure occurrences reduce by about 73% relative to non-

consolidated scenarios. The resultant lower failures bring the added overhead due to consolidation to be more than justified 

toward improved reliability. As far as the fault-tolerance mechanisms were concerned, the performance of VM migration 

was better than that of checkpointing, and when they were used together, failures are credited to be mitigated even more. 

These results put the combined operation of VM migration and checkpointing at a higher place in obtaining reliability 

within failure-aware VM consolidation environments, thus opening up immense possibilities for assuredly fault-tolerant 

systems. 

Where the results are promising, such occasional failures arise because some weaknesses are still attendant to the 

predictions made. A possible future line of work is the improvement of predictive models and fault-tolerance strategies in 

view of achieving more reliability, therefore, in distributed computing systems. 
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