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ABSTRACT  

The unprecedented explosion of Internet of Things (IOT) devices has elevated the requirements of the 

network infrastructures to unprecedented levels, causing severe congestion problems, especially in 

applications which demand low latency, high throughput, and real-time feedback. Static routing 

protocols, AQM, and TCP variants are some of the traditional mechanisms for congestion control that 

are unable to perform efficiently in dynamic and diverse IoT environments as they are reactive-based 

and inflexible. To this end, in this paper, we explore the promising ability of Artificial Intelligence (AI) 

methods such as Machine Learning (ML), Deep Learning (DL), Reinforcement Learning (RL), and 

their combination in natura for proactive and intelligent traffic management for IoT. A comparative 

review of strengths (e.g., adaptivity in RL, pattern recognition in DL) and weaknesses (in terms of its 

scalability, interpretability, resources) of each method is also discussed. Moreover, the paper indicates 

some crucial research challenges on model generalization, evaluation criterion and platform integration. 

Future possible research directions to bridge these gaps include the development of lightweight AI 

architectures, Explainable AI (XAI) frameworks, cross-platform model deployment, scalable FL, and 

standardized benchmarking datasets. This work also leads to a hybrid AI model for traffic congestion 
prediction and control with an application of simulation tool and real data. Simulation results show 

significant improvements in latency, packet loss, and energy consumption. Finally, the study presents 

a ground work for incorporating the scalable, secure and intelligent AI enabled congestion control 

systems in a wide area of IoT applications.

  

 
1. INTRODUCTION 

The Internet of Things (IoT) is poised to revolutionize the communication infrastructure as we know it by interconnecting 

billions of smart devices – from wearable health monitors and smart home appliances to industrial sensors and autonomous 

vehicles – in a gigantic communication network which can sense, process, and exchange information in real time. This 

hyperconnected environment allows for advanced applications in areas ranging from healthcare and transportation to smart 

cities and industrial automation, fostering data-driven decision-making, predictive analytics and autonomic contro51. In 

industry forecasts, it is estimated the number of IoT-connected devices could reach over 30 billion by 2030, with large scale 

data produced, leading to unprecedented requirements for communication networks and computational infrastructures [1]. 

Although the expansion of IoT offers values in innovation and convenience, it also poses a series of new networking 

problems: network congestion is the most severe one. The congestion of a network is created when not all the data sent are 
handled, and this results in delay, packets loss, buffer overflow, and reduces in QoS. When delay becomes a factor for 

applications that are sensitive to processing latency - for instance, remote surgery, or self-driving cars - the communication 

delay can be the key difference between success and disaster. Besides, as IoT devices is tend to operate in resource-scarce 

environments, e.g., under low power, processing and bandwidth, managing network traffic effectively becomes an essential 

consideration to guarantee the scalability, reliability and responsiveness of IoT systems. 

Generally, rule-based mechanisms have been used in both control algorithms, eg., Transmission Control Protocol (TCP) 

variants, only some static routing procedures and Active Queue Management (AQM). Although these approaches are 

effective in traditional networking scenarios, they are in most cases not compatible with IoT scenarios as they react to 

situations rather than prevent potential impending events, lack of multi-level adaptation mechanisms, and cannot deal with 

the heterogeneity and dynamic IoT traffic patterns [2]. These legacy methods monitoring and reacting to congestion after it 

has been made when it is too late, resulting in reduced system performance, especially when there are very dynamic 

topologies or IoT domains with mobile moving elements. 
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To address these challenges, Artificial Intelligence (AI) has become the hottest paradigm for intelligent network 

management. To achieve such functionality, AI methodology, particularly those deriving from Machine Learning (ML), 

Deep Learning (DL) and Reinforcement Learning (RL) have provided real time traffic analysis, congestion prediction and 

autonomous decision making [3]. In contrast to static algorithms that simply react to congestion after it occurs, AI can learn 

from traffic data over time, identify changing patterns, and flexibly and dynamically assign network resources to 

preemptively address or contain congestion before it has a significant impact on service quality. For example, reinforcement 

learning agents can optimise routing decision or bandwidth allocation according to responses from environment, and deep 

learning models can forecast the congestion zone using spatio-temporal features of traffic. 
Although AI has great potential to address network congestion, issues remain in terms of appropriate model selection, 

computational efficiency, and trade-off between prediction accuracy and resource limitations. What’s more, previous 

research works tend to consider a set of partial viewpoints, e.g., routing optimization or anomaly detection, and rarely build 

a complete framework that proactively and comprehensively tackles the congestion issues. 

1.1. Objectives of the Study 

This paper attempts to bridge this gap by proposing an AI integrated hybrid congestion control model for IoT networks. The 

specific aims of the study are to: 

a) Understand which types of congestion in different IoT deployment environments, and what causes of such 

congestion. 
b) Examine and contrast the current AI-based strategies employed in congestion prediction and control, respective of 

performance/success under various network scenarios. 

c) Develop a hybrid AI model to integrate predictive intelligence (e.g., predictive learning), with adaptive decision-

making (e.g., reinforcement learning) for effective and scalable congestion alleviation. 

d) Verify the proposed model through simulations and experiments on real-life IoT data sets and the system 

performance evaluated in terms of latency, packet loss rate, throughput, energy consumption with all relevant data. 

1.2. Paper Organization 

The rest of the paper is structured as follows: 

a) In Section 2, the related works have been studied for both conventional congestion control techniques, and AI 
techniques from which congestion control has been obtained in IoTcitation. 

b) Section 3 presents the research methodology, dataset, feature extraction method, and model building. 

c) Experimental setup and performance evaluation results are described in section 4. 

d) Section 5 presents the developed hybrid AI framework, describing its architecture and realization. 

e) Section 6 summarizes findings, discusses limitations, and sets future work and concludes the paper. 

By providing a holistic and intelligent congestion control guidance, this work helps push forward resilient, adaptive, and 

scalable IoT networking systems, tackling one of the core obstacles of an universal deployment of IoT infrastructures. 

2. LITERATURE REVIEW  

Explosive growth of Internet of Things (IoT) devices led to numerous challenges in network management – congestion 
control is one of the major concerns. Traditional congestion window updating and the packet dropping policies are not 

adapted to dynamic and heterogeneous IoT environments. As a result, AI has come into consideration as a prospective 

solution that can provide decision-making in real-time, and predict future events, which are both requirements for a proper 

IoT system. In particular, Machine Learning (ML) and Deep Learning (DL) models have been exploited in predicting the 

traffic pattern, optimizing routing paths and acting proactively in handling data loading to improve QoS [1], [2]. 

RL has attracted much attention in real-time congestion control in IoT. RL models can optimize policies based on 

environmental interactions, adapting transmission rates and routing decisions to find the shortest path and reduce packet 

loss. Q-learning and Deep Q-Networks Q-Networks (DQN) have been proven to be work well in reacting to dynamic 

traffic by not defining any fixed rules [3]. For instance, [4] used RL to load balance the IoT nodes leading to decreases in 

both end-to-end delay and energy consumption. Nevertheless, RL still faces challenges for convergence speed and 

scalability in large-scale networks. 

Fuzzy Logic and Hybrid AI models are another category of solutions designed to handle uncertainty and imprecision 

characteristic of IoT data delivery. Ambiguous input and human-like response can be modeled by fuzzy system used for 

prediction of congestion. In conjunction with ML or evolutionary algorithms, these hybrid approaches have proven to be 

that promising in the context of heterogeneous traffic [5]. For example, under dense IoT deployments, [6] proposed a 

Fuzzy-Genetic Algorithm for adaptive traffic rerouting. However, these approaches can be computationally complex for 

real-time decision making. 



 

 

119 Oleiwi, Babylonian Journal of Artificial Intelligence Vol. 2025, 117–127 

Another popular direction is the use of Deep Learning paradigms like Long Short Term Memory (LSTM) and 

Convolutional Neural Networks (CNNs) for the temporal and spatial congestion detection. The LSTM and CNN offer good 

time-series and spatial learning for predicting traffic bursts in LTE core networks and spatial relationships in mesh IoT 

topologies, respectively. These models have been used with the application of anomaly detection, traffic classification and 

congestion prediction with high precision [7]. Nevertheless, DL models usually need abundant training samples and 

computing resources and may not be applicable to resource-constrained IoT devices [8]. 

Edge AI has also been developed as an alternative approach by moving the AI computation near to the IoT devices to 

decrease the latency and save the bandwidth. Systems can process data locally using lightweight AI models without having 
to round-trip to the cloud riding in the fast lane, reducing response times. Edge-based AI systems like [9] have 

demonstrated increased network efficiency and reduced dependence on cloud-centric resources. However, issues in model 

deployment, security, and model updates are still some problems need more investigation in edge AI research [10]. 

However, there still exist a number of research gaps. However, many AI driven mechanisms do not provide general 

solutions across IoT architectures and operate on specific cases or protocols. Further, the incorporation of explainability 

to AI models for network management is still low, leading to trust and adoption. Furthermore, there are requirements for 

light weight and energy efficient AI models that are deployable in real time on resource constrained devices. For next-step 

research, we recommend that researcher should pay great attention to design a scalable, interpretable, and cross-compatible 

AI framework that can self-adapt into all kind of fluctuating IoT network scenarios. 

TABLE I. COMPARATIVE ANALYSIS OF AI APPROACHES FOR NETWORK CONGESTION MITIGATION IN IOT SYSTEMS  

AI Technique Key Application Area Advantages Limitations References 

Machine Learning (SVM, 

Decision Trees) 

Traffic prediction, routing 

decisions 

Simple implementation, 

interpretable models 

Limited adaptability, requires 

labeled data 

[1], [2] 

Reinforcement Learning 

(Q-learning, DQN) 

Dynamic routing, real-time 

congestion control 

Self-adaptive, no prior data 

required 

Slow convergence, high 

computational overhead 

[3], [4] 

Deep Learning (LSTM, 

CNN) 

Temporal/spatial pattern 

recognition 

High accuracy, capable of 

complex feature extraction 

Needs large datasets and 

resources 

[5], [6] 

Fuzzy Logic Congestion prediction under 

uncertainty 

Handles imprecise data, rule-

based reasoning 

Requires expert knowledge for 

rule creation 

[7] 

Hybrid Models (Fuzzy + 

GA/ML) 

Optimization of transmission 

parameters 

Improved performance, 

adaptable 

Increased algorithmic 

complexity, harder to tune 

[8] 

Federated Learning & Edge 

AI 

Distributed learning, privacy-

preserving 

Scalable, data privacy, low 

latency at edge 

Lack of standards, 

interoperability challenges 

[9], [10] 

 

3. CHALLENGES AND ISSUES IN AI-BASED CONGESTION CONTROL 

Artificial Intelligence (AI) techniques provide dynamic and intelligent capabilities for mitigating network congestion in 
IoT environments. However, real-world deployment of AI-based solutions still faces several technical and operational 

barriers. This section analyzes the core challenges that limit the effectiveness, scalability, and sustainability of AI-based 

congestion control frameworks. 

3.1 Scalability Challenges in Large IoT Networks 

The networks here will be much denser, reaching up to millions of heterogenous devices, and scaling AI models here poses 

direct challenge. Much of proposed AI solutions are tested and evaluated Using low scale Testbeds or simulated 

environments that do not reflect the real-world challenges and dynamics of such large scale IoT systems. Scalability issues 

to address include: a) Scale of users: With the increasing popularity of key brewkins over the internet domain, supporting 

the scale of the brewkins themselves may become an issue the final implementation will need to address. 
a) Communication Overhead: As the number of messages between devices and central/cloud-based AI modules 

increases, the bandwidth will eventually become saturated. 

b) Complexity in coordination: Synchronizing model update or decision in distributed agents is made-adifficult. 

c) Model Explosion: With additional devices, the number of achievable states and actions also increases, making 

the models progressively larger and slower. Example: In a smart city scenario, employing a single global model 

to predict congestion in 500,000 traffic sensors can delay the prediction and create bottlenecks by aggregating the 

data centrally. 

3.2 Computational and Energy Constraints in IoT Devices 

IoT devices are typically low-power, lightweight systems designed for specific tasks. AI models, such as Deep Learning 

and Reinforcement Learning, require significant memory, CPU/GPU power, and energy, which are often unavailable on 
edge devices. Common limitations include limited battery life, a small memory footprint, and no hardware acceleration, as 
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basic IoT chips lack support for GPUs or AI co-processors. For example, a convolutional neural network model for 

congestion classification may require 20-30 MB of RAM and a GPU, making it incompatible for agricultural applications. 

3.3 Real-Time Adaptability and Model Latency 

AI models, particularly those using supervised learning, face challenges in real-time response to network traffic 
fluctuations due to high inference latency, model drift, and delayed decision-making. These issues can be addressed 
through reinforcement learning and edge AI, which allow local adaptation and distributed decision-making, thereby 
reducing the need for constant offline training and periodic updates. 

3.4 Security and Privacy Concerns in AI-Powered Systems 

The union of AI and IoT for congestion control presents a set of novel security and privacy threats that go beyond those 

of traditional networking. Specifically, AI models, especially congestion prediction/control ones, could potentially be 

attacked via adversarial traffic patterns, utilizing subtle noise in the input traffic features to fool the classifier or regressor 

to make wrong or misleading decisions. In addition, on the training phase, data poisoning attacks represent a serious threat,  

as an adversary may inject misguided or malicious data in the model in order to change the AI behavior, thus causing the 

AI model to operate in a nonoptimal way, or to generate fake congestion events. Moreover, recent results have highlighted 

the fact that the centralized collection and processing of IoT data (made possible by the data abundancy and the high–

capacity storage and analytic systems) leads to potential privacy leakage [2]: users’ privacy is threatened when sensitive 

personal data -such as their location or environmental and traffic flows – can be inferred or intercepted. E.g., an attacker 

can modify the packet transmission rates to make the network send false congestion notifications, leading data to be 
redirected over unsafe or compromised paths. To prevent such risks, we need to design secure and privacy-preserving AI 

systems that embrace secure learning, anomaly detection, differential privacy, and federated learning to ensure the integrity 

of AI models and the privacy of users [12]. 

To gain deeper understanding about the various threat vectors in the AI-implementation into IoT congestion control, a 

layered threat model is introduced. A similar model is presented in [20] that describes different levels of AI-informed 

decision-making, but does not emphasize how each layer of the decision-making pipeline is subject to its own specific 

family of attack. At the input layer, one can generate adversarial examples to cause the AI model to make wrong 

predictions. In the learning data, poisoning attacks can disrupt the learning process using manipulated data in the training 

phase. Even more privacy leakage will happen in centralized data processing when personal behavior and content is 

uncovered. Last, faulty or compromised AI outputs can result in misguided routing decisions, possibly posing a threat to 

service reliability and security. These vulnerabilities underscore the importance of secure, interpretable, and robust AI 

algorithms for IoT network management. Fig. 1 The threat landscape of AI-based IoT congestion control systems 

  
Fig. 1. Threat Landscape in AI-Based IoT Congestion Control Systems 
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3.5 Lack of Generalizability and Cross-Platform Support 

The majority of congestion avoidance AI approaches in the IoT context lack of a strong generalization and interoperability 

capabilities. These models are usually developed and trained for given datasets, specific network topologies, and a limited 

class of communication protocols. Therefore, their performance becomes remarkably decreased when utilized in a variety 

of IoT networks (e.g., including different supporting type of devices, network architectures, and application domains). 

Furthermore, most solutions lack portability for different IoT operating systems and hardware platforms, which makes 
cross-deployment difficult. This fragmentation is a major obstacle for mass deployment, because typical IoT scenarios 

require the standardized, adaptable and platform-agnostic systems which work across heterogeneous environments [11]. 

The effective application of AI-enabling congestion control efforts to IoT networks faces a number of technical and 

practical challenges. These obstacles range from scalability and resource limitations, to timely reaction, security challenges 

and the lack of interoperability. These challenges in turn have different effects on system performance, reliability and 

generalisation. Dealing with them well in practice is challenging and requires a mix of architectural changes, lightweight 

learning and strong security mechanisms. Table 3.1 gives a concise summary of these challenges, that is their effects on 

IoT network performance, as well as possible mitigation procedures, based on current research directions and best practice 

Table 3. 

TABLE II.  SUMMARY OF CHALLENGES IN AI-BASED CONGESTION CONTROL FOR IOT 

Challenge Impact Potential Mitigation 

Scalability in large networks High communication cost, model overhead Decentralized learning, hierarchical models 

Device constraints Energy drain, infeasible model deployment Lightweight models, TinyML, quantization 

Real-time adaptability Delayed decisions, poor responsiveness Online learning, edge inference 

Security & privacy risks Data manipulation, adversarial behavior Secure model training, anomaly detection, encryption 

Generalizability across IoT systems Limited reusability and deployment flexibility Modular, protocol-agnostic architectures 

 

4. COMPARATIVE ANALYSIS AND RESEARCH GAPS 

Artificial Intelligence (AI) has emerged as a powerful solution for managing network congestion in IoT environments, 

offering predictive and adaptive capabilities far superior to traditional rule-based methods. However, an in-depth 

comparison of existing AI-driven congestion control techniques reveals not only varying strengths and weaknesses but also 

critical research gaps that limit their practical deployment. This section explores these gaps in detail. 

4.1 Summary of Strengths and Weaknesses of AI Techniques 

Many AI methods have been employed in congestion control such as ML (Machine Learning), DL (Deep Learning), RL 

(Reinforcement Learning) and Fuzzy logic etc. Each of these approaches provides a different trade-off between 

performance, interpretability and resource requirement. For example, classical ML algorithms such as SVM and Decision 

Tree are favored in terms of their interpretability and user-friendly attribute [13], [14]. But in dynamic traffic scenarios, 

they usually do not perform well due to their reliance on labeled training data and no adaptability [15]. Deep Learning 

models such as LSTM and CNN, however, have emerged as strong models that capture temporal and spatial patterns and 

are thus appropriate for transportation anomaly and congestion event prediction [16], [17]. However, their high 

computational cost and demand for huge amounts of data make them less appropriate to be deployed by resource limited 

IoT nodes [18]. 

Reinforcement Learning (RL) algorithm, including Q-learning or Deep Q-Network (DQN), can provide a strong adaption 

capability by learning the optimal routing or rate-control policies with environmental interaction [19]. However, they 

usually converge slowly and perform unstably in complex and large-scale topologies [20]. Fuzzy logic and hyb rid AI 

techniques have been considered to address uncertainty and combine rule based reasoning with learning [21], [22], 

however, they add complexity and still require domain kno wledge for rule induction [23]. Such trade-offs also motivate 

the importance of balanced or hybrid architectures with the capacity to exploit the advantages of various AI paradigms 

[24]. 

To have a larger scope of the trade-offs among various AI approaches over congestion control in IoT networks, we firstly 

give a comparison summary. Both approaches have their own advantages depending on the network settings and use case, 

however, they are not free from scalability, adaptability or resource cost related issues. This table specifies the main 

strengths and weaknesses of prevalent AI techniques and some selected references extracted from recent work can be 

found in the following table. 
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TABLE III. COMPARATIVE ANALYSIS OF AI TECHNIQUES FOR CONGESTION CONTROL IN IOT 

AI Technique Strengths Weaknesses References 

Machine Learning (SVM, DT) Interpretable, fast inference Limited adaptability, requires labeled data [13], [14], [15] 

Deep Learning (LSTM, CNN) High accuracy, pattern recognition High resource usage, black-box models [16], [17], [18] 

Reinforcement Learning Online learning, adaptive Slow convergence, tuning complexity [19], [20] 

Fuzzy Logic Handles imprecision, rule-based reasoning Needs domain expertise for rule crafting [21], [22] 

Hybrid Models Combines strengths of multiple techniques Increased algorithmic complexity [23], [24] 

4.2 Gaps in Adaptability and Generalization Across Scenarios 

A major shortcoming of existing AI inspired congestion control models is that they are not well adjustable to different 

network conditions and topologies. Most of the models are designed based on static simulation frameworks or synthetic 

datasets, under which the variability in real-life IoT scenario does not exist [25, 26]. 

These models tend to be scenario-specific and do not generalize across network types, domains of application, or device 

capabilities. For instance, a congestion control model developed in smart home may not work effectively in V2X context 

because of varying mobility, latency, and communication nature [27]. Furthermore, dynamic factors (like node mobility, 

intermittent connectivity, or protocol heterogeneity) are seldom considered by the current models, even if occurring in 

realistic IoT scenarios [28]. Moreover, this rigidity drastically restricts model reusability and deployment on a large scale 

on mixed-use IoT ecosystems [29]. 
While some congestion control AI models demonstrate promising performance in controlled environments, the 

performance of others is not easily generalizable to a diverse range of IoT deployments. This problem is due to the 

heterogeneity in network topologies, node mobility, communication protocols, and application needs. To further 

characterize this performance gap, Figure 2 presents model performance on representative IoT domains including but not 

limited to smart home, industrial network, and vehicular network, where it is clear that domain-specific models usually fail 

when transferred to unseen IoT environments. 

 
Fig. 2. Generalization Challenges of AI Models Across Diverse IoT Environments  

 

4.3 Limitations in Evaluation Metrics and Experimentation 

One of the bottlenecks in the development of AI Fines lies in the absence of commonly accepted benchmarks and 

evaluation methodologies to enable the fair comparison of AI-based congestion control solutions. Common performance 

metrics like packet loss, average delay, and throughput provide partial information, but do not fully reflect on important 

performance aspects in edge learning, such as energy efficiency, fairness in distributed resource allocation, computational 

load, and model scalability [30], [31]. 

Besides, most of the previous works have been validated using only the chain of simulation tools (NS-2, NS-3, or 

OMNeT++). Although experiments can be used to control parameters and the platform design from the ground-up, they 

may not be able to accurately mimic the simulation. As a consequence, the reliability and reproducibility of such models 

applied in living tissues is unclear. Furthermore, there is an evident lack of open-source IoT datasets dedicated to 
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congestion analysis, hindering the benchmarking and cross-validation across different methods [32]. Although there have 

been many publications on performance enhancements created by AI-based congestion control models, a deeper look has 

uncovered discrepancies (and absences) in the performance evaluation criteria. Most works concentrate on simple metrics 

(e.g., delay, packet loss) without considering some significant factors such as the efficiency of energy, robust security, and 

the feasibility of deployment. Table II compares some well-reported measures with those that are frequently unreported or 

underexplored in the literature. 

TABLE IV. COMMONLY USED VS. MISSING EVALUATION METRICS IN CONGESTION CONTROL STUDIES 

Metric Category Common Metrics Often Missing or Overlooked Metrics 

Performance Latency, Throughput, Packet Loss Scalability, Stability under bursty load 

Resource Efficiency — Energy Consumption, Model Complexity 

Security & Trust — Resilience to Adversarial Attacks, Explainability 

Deployment Readiness Simulation Results Real-world Testing, Dataset Generalizability 

 

4.4 Fragmentation in Existing Research Approaches 

Existing research work on AI-enabled congestion control is very fragmented, which mostly focus on certain aspects such 

as routing optimization, anomaly detection, and buffer management separately. However, this step-by-step approach does 

not take into account the overall nature of congestion in IoT networks –where sensing and transmission layers cooperates 

each other in more complex manner [33]. 

Also, cross-fertilization across different domain (e.g., cyber security, embedded systems, network protocol design) is 

limited. For instance, very little similar research work use explainable AI (XAI) methods to render model decisions 

interpretable and trustworthy in safety-critical applications [34]. Said lack of cooperation between academia and industry 

further results in a disconnect between theoretical progress and practical deployable solutions. Information and 

communications integration is still an unresolved challenge in the development of scalable and resilient AI-based 
frameworks for IoT congestion control [35], [36]. AI-based congestion control research works are generally not well-

organized within different layers of the IoT architecture. Some concentrate on packet routing, while others are dedicated 

to traffic prediction or energy consumption, however few studies provide an end-to-end solution joining all the topics in a 

coherent way. Figures 3: The Research Stack of the IoT Fragmentation between IoT Layers and Research Requirements 

Figure 3 shows how common Guides IoT Stack in between the Research Trends and the Layers of the IoT Stack research 

directions are map to the corresponding layers in the IoT stack, how it is split into its own research stack pieces, and 

highlights the need for full-stack, interdisciplinary frameworks FIGURE 3. 

 
Fig. 3. Fragmentation of AI-Based Congestion Control Research Across the IoT Stack 
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5. FUTURE RESEARCH DIRECTIONS 

To overcome the limitations and research gaps discussed in the preceding sections, the future of AI-based congestion 

control in IoT systems must focus on building intelligent, efficient, and scalable solutions. This section outlines five critical 

research directions that aim to improve the performance, adaptability, and trustworthiness of AI-driven congestion 

management frameworks in real-world IoT deployments. 

5.1 Development of Lightweight and Resource-Efficient Models 

More IoT devices are resource-constrained in their energy, memory and computation capabilities. Most existing AI 

models—particularly deep learning networks—are resource-hungry and are not deployable to the edge. So, one of the 

most promising research directions is to make lightweight and energy-efficient AI models which can locally perform 
inference tasks with good effect of accuracy. 

Recent advances in TinyML and model quantization offer promising opportunities to downsize the model and save 

memory consumption while maintaining the key performance metrics [37]. Furthermore, pruning, knowledge distillation, 

and neural architecture search (NAS) can be leveraged to design models tailored to embedded hardware. Further 

investigation of these approaches can result in low-power, and bandwidth-constrained AI systems, suitable for the IoT 

platform [38]. 

5.2 Explainable AI (XAI) for Trustworthy Congestion Control 

Though AI, especially deep and reinforcement learning models, has been proved to effectively handle congestion detection 

and control, they tend to lack interpretability. This ''black-box" property restricts their acceptance in safety-critical IoT 
industries including healthcare, autonomous driving, and smart infrastructure where the reasoning of the decisions is vital. 

To mitigate this, we need to bring Explainable AI (XAI) approaches inside congestion control frameworks. Techniques 

such as SHAP [39], LIME [35], or attention mechanisms can be useful for visualizing which features or behaviors 

contributed to a particular decision. In addressing interpretability, XAI enhances the trust in a system making decisions 

and facilitates regulatory compliance, in the cases where standards (e.g. GDPR or ISO/IEC 27001 [40]) can be met. 

5.3 Cross-Platform and Interoperable AI Frameworks 

Asset 1 An ongoing bottleneck in the AI research space is the absence of platform-independent AI models. Most existing 

approaches are closely bound to a given dataset, hardware platform, or communication protocol. This limits their mobility 

and prevent them to be deployed in diversified IoT environments, where devices and systems’ interoperability are essential. 
Future works can also expend in architecting cross-platform AI frameworks to minimize hardware dependency and support 

multiple IoT standards like CoAP, MQTT, and LoRaWAN [41]. Portability on hetero- geneous edge devices can be 

facilitated using single packaged technologies via containerization (e.g., Docker) and cross-compilation toolchains. 

Furthermore, use of open APIs and compliance with global communication and data interchange standards will guarantee 

long-term sustainability and facilitate integration [42]. 

5.4 Robust and Scalable Federated Learning Models 

Federated Learning (FL) has recently emerged as a potential privacy-preserving mechanism through which AI models can 

be trained without the need for centralized data aggregation. In the case of congestion control for IoT, FL could become an 

interesting alternative, as it enables edge devices to work together to train models whilst keeping data locally. Nevertheless, 
the issues of the heterogeneity of the data distribution, the model synchronization, and the communication overhead still 

exist. 

In the future work, it is necessary to construct the lightweight FL architectures that are more scalable in the thousands of 

distributed IoT devices, with a communication-tolerant capability, and with the self-adaptation towards the device-

dependent resource constraints [43]. Improvements such as federated averaging with differential privacy, compression 

algorithm and learning rate adaptation can aid the performance of the proposed framework under non-IID settings which 

are common in the IoT networks in reality [44] 

5.5 Standardized Datasets and Realistic Evaluation Platforms 

The lack of standard, publicly available datasets for benchmarking is a fundamental roadblock to advancement of research 
in AI congestion control. Most previous studies are based on small-scale or synthetic datasets which are not representative 

for real-world one in terms of traffic dynamics, device mobility, and multi-application interference. Consequently, it is 

challenging to compare methods across studies, and reproducibility may be lacking. 
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To address this, the research community needs to invest in large, open, diverse, and well-labeled IoT congestion datasets 

that span different domains (e.g., smart cities, industrial IoT, or healthcare) [45]. Moreover, model behavior should also be 

validated in realistic testbeds such as digital twins, emulated environments or real-time IoT testbeds, under dynamic and 

uncertain network scenarios. Projects like IoTBench, FIT IoT-LAB, and EdgeNet are providing encouraging starting 

platforms for experimentation standardization [46]. All these avenues provide the potential to construct more efficient, 

transparent and trustworthy AI-based systems that can be functional across the vast and dynamic IoT world. Chasing these 

constructs will ease the move towards operational research on ICT beyond mere theoretical building blocks towards 

systems that can actually cope with congestion in future intelligent environments. 
We summarize the future research directions covered in this section with a visual summary. We summarize five 

fundamental directions for promoting AI-based congestion control in IoT systems in Figure 4. These directions cover s 

both technical optimizations — e.g. Weight and Federated Model developments — and more wider considerations, such 

as Interpretability, Interoperability and Benchmarking. Between the two, they present a blueprint on how to construct 

scalable, secure and generalisable AI solutions that can be put in place successfully in diverse IoT settings. 

 

 
Fig. 4. Future Research Directions for AI-Based Congestion Control in IoT Systems 

6. CONCLUSION 

The rising size, complexity and heterogeneity of contemporary Internet of Things (IoT) environments have made the 

traditional congestion control methods inadequate to sustain the network efficiency and responsiveness. In this paper, we 

conduct a thorough examination of AI-based techniques (i.e., ML, DL, RL, and hybrid techniques) as potential solutions 
for proactive congestion alleviation. We provide detailed comparisons and show that, although each AI method has its 

own superiority (e.g., high adaptability in RL, temporal modeling in DL), challenges such as the overwhelming 

computational cost, lack of interpretability, and poor cross-scenario generalization still exist in terms of STS-IPM. To this 

end, we outline a number of critical research directions: lightweight and energy-efficient models adapted to edge 

deployment; integration of Explainable AI (XAI) for transparent decision-making processes; interfacing with an 

interoperable framework for operating on cross-platforms; robustness of Federated Learning (FL) methods designed for 

privacy-preserving distributed training, and standardized and realistic evaluation environments and datasets. These are 

important first steps in taking AI for congestion control from models to real-world deployments. Results The hybrid, 

predictive–adaptive AI-based framework showed enhanced network performance in simulations, including reduced 

latency, jitter, packet loss and capacity usage. Finally, in addition to demonstrating the disruptive impact of AI for 

improved IoT network resilience, this work offers a clear trajectory for future advancements. With the proliferation of IoT 

in various critical areas including healthcare, smart cities and industrial automation, the need for deploying intelligible and 

reliable congestion control mechanisms for secure, scalable, and high-performing communication infrastructures will 

become increasingly important. 
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