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1. INTRODUCTION

Physics-Informed Neural Networks (PINNs) have emerged as a transformational framework for solving partial differential
equations (PDEs) by directly incorporating physical rules into the neural network learning process. PINNs, which were first
presented by Raissi et al. [1], use automatic differentiation to estimate PDE residuals and enforce governing equations as
simple constraints within loss functions. This concept enables PINN to professionally handle both forward and inverse issues
by learning precise mappings from sparse data. Wide-ranging applications in computational mechanics, fluid dynamics,
electromagnetics, and heat transfer have been facilitated by PINN's mesh-free capability and ability to integrate observational
data with analytical models. [2]-[4]. Training PINNSs is still difficult in the face of PINN conceptual applicability. The
composite loss function, which is naturally a weighted sum of data, boundary/initial condition, and residual of PDE terms,
sometimes experiences an imbalance between gradient and optimization, leading to low precision or sluggish convergence.
The Neural Tangent Kernel (NTK) architecture has been used in academic papers [5], [6], which reveal that all of these
diseases develop from differential gradient magnitudes across loss terms, motivating research into adaptive weighting and
regularization techniques. In order to speed up convergence, adaptive weighting dynamically tunes the relative relevance of
several elements of loss during the training phase [7], [8]. To guarantee consistent learning throughout the solution process,
self-adaptive PINNs [9] and suspicion-weighted PINNs [10] use gradient scaling or modification. These techniques were
especially useful when treating nonlinear PDEs, where greater certainty is required for spatial regions with robust gradients.
Adaptive weighting enhances accuracy and convergence without requiring changes to the underlying architecture.
Regularization offers extra constraints that ease learning and enhance generalization in addition to the weighting method.
One of the oldest methods is Tikhonov-type (L2) gradient regularization. Tikhonov regularization penalizes parameter or
residual gradients, encouraging smoother solutions and reducing overfitting for solutions.
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This technique originated in inverse problem theory [11]-[13]. Many extensions, such as Lavrentiev and iterated Lavrentiev
regularization, have been devised for ill-posed inverse problems based on this basis. In particular, Al-Mahdawi and associates
have demonstrated their efficacy in similar contexts: hybrid metaheuristic parameter adjustment utilizing particle-swarm
optimization in Tikhonov [17], inverse heat-conduction issues [14], [15], and finite-dimensional approximations [16].
Motivated by these advancements, the current study examines two improved loss formulations to solve the nonlinear PDEs
in one-dimensional viscous Burgers' equation: gradient-regularized PINNs. Burgers' equation, which has an analytical
solution via the Cole—Hopf transform and smooth-to-shock transitions, is a prime example of nonlinear convection diffusion
behavior [18-20]. All models support the same network designs, sampling plans, and optimization parameters, enabling a
fair comparison that focuses only on the effects of loss formulations.

2. GOVERNING EQUATION AND PROBLEM SETUP

The 1-D viscous Burgers’ equation is active as the benchmark problem to estimate the accuracy, steadiness, and the
behavior of convergence for the proposed Physics-Informed Neural Network (PINN). Burgers’ equation delivers an ideal
prototype for nonlinear convection diffusion systems, catching significant features of the motion for viscous fluid, shock
formation, and dissipative propagation of waves, while residual is analytically manageable for purposes of validation.

The main partial differential equation (PDE) describing the system is expressed as
Ou/ot + udu/dx = v 0*u/ox? (1)
where
* u(x, t) - velocity field,
e vrepresents the coefficient of kinematic viscosity,
e (x, 1) €[0, 1] x [0, 1] specify respectively the spatial and temporal domains.

Equation (1) represents a nonlinear convective term (u 0u/0x) and a linear diffusive term (v 6%/0x?). In the inviscid limit
(v — 0), the diffusive mechanism vanishes and the solution progresses steep discontinuities or gradients, yielding a structure
with shock-type term. This characteristic makes the Burgers’ equation a test case with high rigorous for measuring the
numerical stability, and representational capacity.

In order to guarantee a well-posed value of the initial-boundary problem, the following conditions are forced:

u(x, 0) = —sin(7zx) )
u(0, 1) = u(l, ) =0 (3)

The given initial condition generates a smooth distribution of sinusoidal velocity that changes into a nonlinear wave under
the competing effects of diffusion and convection. The homogeneous of the Dirichlet boundary conditions impose zero
velocity at both ends of domain, corresponding physically to a fixed or impermeable boundary. These specifications
simplify direct comparison with the analytical transformation Cole—Hopf, which produces an exact reference solution [18].

The closed-form analytical solution resulting through the transform of Cole—Hopf [19] way is specified via

u(x,t) = -2vaz- [exp(—iz2 v t) sin(7x) } / [ 1 + exp(-n* v t) cos(zx) } 4)
This solution aids as a benchmark for enumerating the prediction error of calculations for the PINN. The model accuracy
is assessed using the L.-norm error between the predicted velocity field and the analytical reference solution.

PINN framework has continuous function u(x, ¢) which it approximated by a neural network #(x, ¢, ) parameterized via
set of trainable weights 0 [1]. Automatic differentiation is working to calculate the derivatives which is required to construct
the residual function for PDE:

f(x, 1) = oalor + doalox — vl ox (5)

The baseline loss function integrates contributions from the residual terms for the boundary [8], the initial, and PDE as
the following:

L = L(data)+ L(IC) + L(BC) + L(PDE) (6)
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n

LUC) = (1/ NUIC)) > |di(x;, 0) = up(x;) |2 ™
i=1
L(BC) = (1/ NBO) Y[ (0, 4) |* + [a(L, 1) |* ] )
i=l1
LPDE) = (1/ N(N) Y| f (s 1) | 2
k=1

Here, N(IC) N(BC), and N(f) mean the number of collocation points experimented from the initial, boundary, and inside
(PDE) domains, respectively. Minimizing L work as director the network to a solution that simultaneously satisfies the
constraints of data and the laws of physics which encoded by PDE.

3. BASELINE PINN AND GRADIENT-REGULARIZED PINN ALGORITHMS

Here, we describe in detail the PINN training method, which incorporates restrictions and physical principles into a single
learning framework. Collocation point production, loss function creation for physical problems, and network parameter
enhancement through the use of sophisticated gradient-based novel techniques (gradient regularization) are all part of the
training process. Accuracy and convergence stability are increased by improvements by adding gradient regularization.
The algorithms that follow provide an explanation of the methodical computing processes for the baseline PINN, and
gradient-regularized PINN, models. While keeping a uniform framework in terms of network design, optimization method,
and evaluation metrics, each algorithm emphasizes the distinctive features of loss formulation.

Algorithm 1 — Baseline PINN

The basic paradigm for this work is the baseline PINN. Burgers' equation was solved using the baseline PINN model, which
learns by minimizing the overriding PDE's residual in addition to the initial and boundary conditions. The automatic
differentiation method is used to calculate the necessary derivatives with regard to time and space. The sum of all sub-
losses equals the overall loss, which is enhanced by combining the Adam and L-BFGS methods to accomplish both
exploration and convergence.

In this algorithm the following notes need as following:

e Inputs: viscosity v;
e Domains Qx = [0,1], Qr = [0,1]; initial/boundary conditions;
o Collocation sizes N, N;c, Npc ; network depth/width;

e  Optimizers (Adam, L-BFGS).
e  Outputs: trained parameters 6" and predictor #(x,t,6).

The following stages explain the necessary action need to implement the Baseline PINN algorithm

Stage:1 Governing Equation

u u o%u
— 4 - —

=
ot Ox  ox*
Stage:2 Conditions of Initial and Boundary values

u(x,0) = —sin(zx)
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u(0,1)=0, u(l,1)=0
Stage:3 Network Approximation

u(x,t;0) defend as neural network approximation solution for u(x,t), where 6 = {W,b} signifies all parameters
of training.

Stage:4 Residual Function (by using Automatic Differentiation)

on .on 0%
x,t0)= —+i——y——r
f( ) dt ox 6x2

Stage:5 Loss Function Components

Nic

Step 1: Initial Condition Loss: L, = NL Z[ﬁ(xi, 0;0) —uy (x; NE
IC =1
1 Npc
Step 2: Boundary Condition Loss: Lg- = 2[12(0, tj;6’)2 —u(l, tj,0)2]
BC Jj=1
N,
. 1 - 2
Step 3: PDE Residual Loss: Lpp, = N—Z[f(xk,tk;ﬁ)]

[ k=1

Step 4: Total Loss: L,

otal = Lic + Lpc + Lppe
Stage:6 Training Procedure
Step 1: Initialize network parameters 6 (e.g., Xavier initialization).

Step 2: Generate collocation points:

e Interior points: (x;,%,),k=1,..., Nf

e Initial points: (x;,0),i=1,... N

e Boundary points: (O,tj),(l,tj),j =1,...,Npc

Step 3: Compute outputs of network #(x,#;0) (for all sampled points).

Step 4: Compute derivatives Ji/5t, 01/ Ox, o%i/ox? (via automatic differentiation).

Step 5: Evaluate f(x,t;0) and losses L, Lgc, Lppg; then L,
Step 6: Optimize parameters:

otal -

e Adam optimizer, learning rate = 107



Al-Mahdawi et al, Babylonian Journal of Mathematics Vol. 2026, 1-10

ALtotal

e L-BFGS until <107°

total

* - Uexac
Step 7: Evaluate #(x,t;6 ) versus analytical Cole—Hopf solution by compute: L, error = " t"2

[

Stage:7 Implementation Notes
e  Typical setup: 5 hidden layers x 50 neurons, activation = tanh.

e N, =10000,N, =200,Ng- =200

e Normalize (x, t) to [0,1] or (—1,1) in order to improve the convergence rate.
Algorithm 2 — Gradient-Regularized PINN

The purpose of this algorithm to enhance the stability and smoothness of the algorithm 1-baseline PINN by penalizing large
parameter-gradient variations inside physics-residual term. This regularization performances as a Tikhonov-type
smoothness, ensuring a flatter optimization site and well convergence under conditions of stiff or noisy data.

We need to modify the stage 5: Loss Function Components by add the following step:
Call algorithm 1 > stage 5: run all steps, ADD > step 5

Step 5 : Gradient-Regularized Extension
Ler = Ligtar + /1||V9LPDE "2
where
e A >0 is the regularization coefficient, controlling smoothness;
o V,Lppg is the gradient of the physics loss with respect to network parameters;

This formulation penalizes large fluctuations in the gradient for PDE residual, thus smoothing of optimization trajectory
and preventing overfitting to residuals of noisy or high-frequency patterns.

In the stage 6: Training, need to update by adding the following:
Call algorithm 1 > stage 6: run all steps, Modify > step 6
Step 6: Optimize 0 by alternating optimizers:

e Adam (learning rate = 107%) for coarse exploration;

e L-BFGS until ALG% <107].
'GR

In the stage 7 we need add the following notes:
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Call algorithm 1 > stage 7: run all steps, ADD > notes
e  Regularization coefficient 4 typically chosen from [107¢, 1074].
e A small 1 ensures stability without hindering convergence speed.
e  Gradient term I Lppr can be computed efficiently via Jacobian-vector products using automatic differentiation.

e  The regularized model generally exhibits smoother residual fields and enhanced robustness in high-gradient
(shock) regions.

A stabilizing penalty term is announced to the function of baseline loss by the gradient-regularized PINN. Large gradients
in the parameter space are penalized by this regularization term, which encourages smoother optimization and lessens
overfitting to irregularities in the residual spreading. Similar to Tikhonov regularization, the technique works especially
well for PDE of stiff or noisy training data.

4. NUMERICAL EXPERIMENTS AND RESULTS

To ensure consistent treatment of input space, Latin Hypercube Sampling (LHS) is used to discretize the computational
domain for computational configuration. N(f) = 10,000 collocation points, N(IC) = 200 starting points, and N(BC) = 200
boundary points are used for training. Each of the five completely connected hidden layers in the neural network has 40
neurons with tanh activation functions. There are two phases to optimization:

e Adam optimizer (learning rate = 1 x 1073) for initial exploration
e L-BFGS for fine-tuning until the relative change in total loss falls below 107.

To guarantee efficiency and repeatability, the computations are carried out using an NVIDIA RTX-class GPU. Using the
1-D equation for viscous Burgers as a benchmark problem, the suggested (PINN) Physics-Informed Neural Network
structures are numerically proven. Because it shows nonlinear convection and diffusion tendencies, the Burgers equation
is a perfect case study for quantitative evaluation of correctness, convergence stability, and robustness. The domain has a
clear definition: x€[0,1], t€[0,1]. The initial, boundary, and central PDE conditions are as follows:

ou ou o%u
—tUy—=v—
ot ox é’xz

u(x,0) = —sin(zx)
u(0,1)=0, u(l,1)=0

where v=0.01/r is chosen to maintain a moderately viscous rule that still demonstrates nonlinear behavior over time. The
exact solution, obtained from the Cole—Hopf transformation, which it is used for validation:

vt .
e sin(7x)
Uexact ('x7 t) ==2v

1—e™™ cos(7x)

The algorithms (Baseline, Gradient-Regularized PINN) are using an identical network architecture for fair comparison:
e Hidden layers: 5
e  Neurons per layer: 50

e Activation function: tanh
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e Training samples:
* N=10,000 (collocation points)
* Nic=200 (initial points)
* Npc=200 (boundary points)

e  Optimizers: Adam (learning rate 107> — L-BFGS refinement

e  Stopping criterion: <107

For the enhanced models:
e Regularization parameter A=10°
e  Stability constant =108

The experiments implemented in TensorFlow 2.15 and executed on an NVIDIA RTX 3090 GPU (24 GB memory). Model
performance is assessed using the Mean Squared Error (MSE) and the relative Lz error norm, which are defined respectively
as the following:

N
MSE:%Z[ﬁ(xi,ti;H)—u

i=1

2
exact (xi H ti ]

Lyerror = "12 — Yexact "2

Jtesaer

The convergence behavior and physical fidelity of solutions are estimated by using quantitative measures MSE and L.
error.

Figure 1 (below) depicts the evolution of the total loss through training stage for all models. While the baseline PINN
converges slowly and often stagnates at a loss with higher value, the Gradient-Regularized PINN establishes smoother
and more stable convergence. The Adaptive-Weighted PINN converges faster in early epochs but may experience slight
oscillations before success to reach stability. The Hybrid PINN achieves the lowest overall loss with speedy and
monotonic convergence.

Mean Squared Error (MSE) vs. Iterations Relative L2 Error vs. lterations
Baseline PINN 4% 1072 Baseline PINN
4x1073 Gradient-Regularized Gradient-Regularized
3% 1072
3x1073
.
g
i 0 2% 1072
W 2%10 ~
2 E
=
1]
o]
-4
103} 107
6x1073
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Iterations Iterations

Fig. 1. Training loss vs. iteration for (Baseline, GR-PINN, AW-PINN, Hybrid) PINN.
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The accuracy, stability, and computing efficiency of all PINN algorithms were assessed quantitatively in order to balance
the qualitative findings and convergence assessments previously reported. Three primary measures were used to compare
the Baseline and Gradient-Regularized approaches: Mean Squared Error (MSE), the relative L2 error norm, and
convergence behavior through training. To assess the computational efficiency, the entire training duration was also noted.
The outcomes, which are compiled in Table 1, show distinct variations amongst the algorithms and offer a quantifiable
indicator of the gains made over gradient regularization.

TABLE I: QUANTITATIVE PERFORMANCE METRICS COMPARING TWO PINN MODELS.

PINN Training Time MSE Relative L: Convergence
Model (s) Error Behavior
Baseline 520 23 x103 1.65x 1072 Slow & oscillatory
Gradient- 610 15%10° 1.01 x 102 Smooth & stable
Regularized

Fig 2 compares the PINN forecast solutions #(x,#) with the analytical Cole—Hopf u,,,,, (x,t) at three time instances:
t=0.2,0.5, and 0.8.

Predicted vs. analytical solution att = 0.2 Predicted vs. analytical solution att = 0.5
0.000r 0.00f
—-0.025f
-0.02
—0.050
N A —0.04}
o =0.075 o
4 3
X —0.100 < —0.06F
=l =
—0.125 Analytical —0.08 - Analytical
Baseline PINN Baseline PINN
—0.150 — Gradient-Regularized —— Gradient-Regularized
-0.10
-0.175F
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 06 0.8 1.0
X X

Predicted vs. analytical solution at t = 0.8

0.00
-0.02
&
§ —0.041
-~
z
E]
—0.06 Analytical
Baseline PINN
—— Gradient-Regularized
—-0.08

0.0 0.2 0.4 0.6 08 1.0

Fig. 2. Predicted vs. PINN analytical solutions.

The Baseline demonstrations visible diffusion close steep gradients. The Gradient-Regularized PINN captures smoother
transitions but slightly undervalues close the boundaries. In order to visualize deviation of pointwise, the spatial distribution

of the absolute error is calculated by using E(x,¢) = |ﬁ(x,t;6’) ~ U et (X, t)| , Fig 3 shows the error maps over the spatial-

temporal domain.
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|G — u_exact| — Baseline PINN |G — u_exact| — Gradient-Regularized PINN

1.0 ;
0.0150
0.008
0.8F 0.0125 8l
0.0100 0.006
(] (2
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0.0075 u 0.004 ¢
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ad 0.0050 2 2
o [ A %
8 .002 2
0.0025 < 0.002.2
0.2+ 0.0000 2+ 0.000
-0.0025
%30 0.2 0.4 0.6 0.8 1.0 %90
t t

Fig. 3. Spatial-temporal error delineation maps for the PINN algorithm.

5. CONCLUSIONS

In order to solve the nonlinear Burgers' equation, this study provided a methodical comparative analysis of enhanced loss
terms for Physics-Informed Neural Networks (PINN). The analysis shown that gradient regularization efficiently smoothest
the optimization process and prevents parameter instability. The comparative analysis of the four PINN formulations
elucidates a number of important aspects of their effectiveness in solving nonlinear PDE, particularly the viscous Burgers'
equation. A control model called the Baseline PINN illustrates the inherent limitations of the conventional physics-based
loss preparation. Although the results are reasonably accurate, optimization is difficult because it takes a long time to
converge and the gradient magnitudes between sub-loss components are not always the same. By adding a smoothness that
penalizes the gradients parameter, the Gradient-Regularized PINN flattens the optimization. This extra term improves
training stability, reduces oscillations, and speeds up convergence. However, the computer will have to work a little harder
with the additional regularization, and underfitting may occur if the regularization coefficient A is too large.
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