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ABSTRACT

Motivated by recent progress in adaptive schemes for convex optimization, this work develops a
proximal-gradient framework that enforces global convergence without resorting to linesearch
procedures. The proposed approach accommodates widely used step-length rules, including Barzilai—
Borwein updates and one-dimensional Anderson-type acceleration. Importantly, the analysis applies to
problems where the smooth component admits only local Holder continuity of its gradient. The resulting
theory unifies and strengthens several existing results, while numerical experiments confirm the practical
benefits of coupling aggressive step-length selection with adaptive safeguarding mechanisms.

1. INTRODUCTION

Convex optimization problems involving nonsmooth terms appear in numerous engineering and data-driven applications,

such as image restoration [1], signal processing and communications [2], machine learning [3], and control systems [4]. A

large class of these problems admits the composite formulation

min @(x): = f(x) + g(x), )

XERM

where f: R™ = R is convex and differentiable, while g: R™ — (—o0, +00] is proper, convex, and lower semicontinuous.

A standard algorithmic tool for solving (1) is the proximal-gradient (PG) method, which generates iterates according to

k+1

Xk = proxy, o (¢F = Vi VF (x5)), 2)

where the proximal operator associated with g is defined, for any y > 0, by

. 1
prox,(x): = argmin {g(w) +5 lw—x II§}. (3)

The efficiency of (2) depends critically on the choice of step-lengths {y;,1}. Classical constant step-length rules require

global Lipschitz continuity of Vf, while backtracking strategies reduce regularity assumptions at the expense of additional

inner-loop computations. Adaptive step-length mechanisms, initiated by Malitsky and Mishchenko [5] and extended to
proximal settings [6, 7], eliminate explicit linesearch while dynamically adjusting the steps. More recently, such ideas have
been extended to locally Holder-smooth objectives [8] and to quasi-Newton-inspired step-lengths, notably the Barzilai—
Borwein (BB) rules [9]. Despite their strong empirical performance, BB step-lengths are known to admit global
convergence guarantees without linesearch only in narrow settings, such as strongly convex quadratic problems [10, 11].
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Stabilized variants [12] address this issue but rely on conservative tuning. The recently proposed adaPBB method [13]
combines BB updates with adaptive control to obtain robust convergence. The present work develops a general
safeguarding principle, grounded in adaptive proximal-gradient methods, that ensures global convergence for a broad
family of fast step-length oracles (including BB, Anderson-type, and Martinez rules) under mild regularity assumptions.

1. Notation and assumptions
The Euclidean norm and inner product are denoted by |-l and (:,-), respectively. Throughout the paper we impose the

following conditions on problem (1).
2. Assumption I
[label=A:,leftmargin=*]

i.  f:R™ - Ris convex and its gradient is locally Holder continuous of order v € (0,1].
ii. g: R™ - (—o0, 4] is proper, convex, and lower semicontinuous.
iii. The solution set is nonempty: argming # @.

When v = 0, Vf(x) is interpreted as an arbitrary subgradient in df (x); several intermediate arguments remain valid for
v € [0,1].

3. Contributions
The paper introduces a linesearch-free globalization mechanism that embeds fast step-length rules into an adaptive

proximal-gradient backbone (denoted adaPG,). The main contributions are summarized as follows:

* A general convergence recipe, expressed through Properties P1-P3, characterizing which step-length oracles
can be safely integrated via adaptive safeguarding.

* Global convergence guarantees under local Holder continuity (v > 0), extending and sharpening existing
analyses [14, 15].

* Concrete examples of admissible step-length rules (BB long/short, Martinez selection, Anderson acceleration) together
with numerical evidence highlighting the advantages of safeguarded quasi-Newton-type updates.

2. ADAPTIVE METHODS AS SAFEGUARDS

Adaptive strategies compute step-lengths from locally available information, thereby avoiding explicit linesearch. At

iteration k, typical quantities used for this purpose include
.. = (WG )
k-— ”xk_xk—l"Z 4

__ IVFER-vreRTI (5)
ke ™ (Vf(xk)—Vf(xk_l),xk_xk—l)’

f®)—fF k1)
= (6)

llack—xk—1)2

Lk:

The classical BB step-lengths correspond to the reciprocal values of #;, (long BB) and ¢, (short BB). In the safeguarded

adaptive framework, the step-length update takes the generic form

: 1
Virr = min{y (L+-[D), v (D)
safe

where y,;*'® enforces lower and upper control ensuring stability and descent.
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The adaptive scheme adaPG,, parametrized by q € [1,2], moderates overly aggressive step-length proposals while still

allowing large average values. The present analysis extends the guarantees of [14] to locally Holder-smooth objectives and
to a richer class of fast step-length oracles.

3. CONVERGENCE OF ADAPTIVE METHODS REVISITED
This section summarizes the main convergence ingredients and states the principal result.

3.1 Preliminary results
Following [15], define

Di: = y)’j‘l, P.:= ¢(x*) — ming, ppmin. — mi,?Pi' (8)
k 1<

For v € [0,1], introduce the scaled step-length

At = ——te— 9)

Ve "xk_xk—lul—v’

along with the scaled quantities £, ,, and Ly, ,, defined analogously.

Fact 1 (adapted from [13]).

Suppose Assumption I holds with v € [0,1]. If the iterates generated by (2) satisfy Properties P1 and P2, then an
appropriate Lyapunov-type function is nonincreasing and the sequence (x*) remains bounded.

3.2 Convergence recipe (Properties P1-P3)
We say that (x*) and (y;) satisfy Properties P1-P3 if there exist v € (0,1], ¢ € [1,2], and A, > O such that, for all k:

*1+qpx — qpi; 2 0;

*1-pilvili — =il +1—q = 0;

* either yy1 = yy or there exists ji, < k such that min{y;,, Vi+1} = Aminy | X76 — xJ671 |17V,

These conditions ensure both boundedness and sufficient descent of an associated potential function.
3.3 Main theorem
e Theorem.
Let Assumption I hold with v > 0. Suppose that (x¥) is generated by the proximal-gradient method (2) and that Properties
P1-P3 are satisfied for some q € [1,2] and Ay, > 0. Then (x¥) converges to a solution x* € argming. Moreover, for

every K = 1 there exists C > 0 such that

: c
minP, < —.
k<K K+1

e Sketch of proof.

The result follows by combining the monotonic decrease of the Lyapunov function, boundedness of the iterates, and the
uniform lower control on the scaled step-lengths. Summation over iterations yields the stated sublinear rate; see [16] for
full technical details.

4. CHOICE OF STEPSIZES

k-m
)

We now specialize the convergence recipe to concrete step-length oracles I'45t (x ..., x%) that can be safely

embedded in the adaptive framework.
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4.1 Barzilai-Borwein: long and short
Define s*: = x* — x*¥~1 and y*: = Vf(x*) — Vf(x*~1). The BB step-lengths are given by

BB—long __ (sXy%)

k+1 - "yk”Z )
y BB=short _ lIs1?
k+1 (sk,yk)

With suitable damping or geometric averaging when v < 1, both rules satisfy the safeguarding conditions.

4.2 Martinez rule

Martinez’ heuristic selects between long and short BB updates by comparing secant and inverse-secant errors. A
safeguarded version is obtained by taking the minimum between this fast proposal and the adaptive safe step.
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4.3 Anderson acceleration
A one-dimensional Anderson-type update can be written as

AA _ ; k [ L (12
Vi = argmin Qizg—m4q Iy — s 1%

which corresponds to a weighted average of recent BB-short step-lengths. For v = 1 the safeguarding conditions are
automatically satisfied, while for v < 1 a mild averaging modification is required.

5. NUMERICAL RESULTS

A collection of numerical experiments was carried out in order to assess the performance of the adaptive safeguarding
mechanism adaPG, when combined with the five step-length strategies introduced in Section IV. In the figures, methods
employing safeguarded step-lengths are denoted by the label “adaPG A”. All experiments were implemented in Julia,
relying on the publicly available code of [17], and were conducted on benchmark problems drawn from the LIBSVM
dataset [18].

Throughout the experiments involving adaPG,, the parameter was fixed to ¢ = 1.2, in accordance with the favorable
empirical behavior reported in [19]. For the Anderson acceleration scheme (20), a memory size of m = 4 was adopted.
The safeguarded variants were compared against the baseline adaPG, method (4) and the adaptive Barzilai-Borwein
algorithm adaPBB.

For a comprehensive description of the experimental setup and datasets, I refer the reader to [20]; the experiments presented
here follow the same protocol with only minor modifications. In each figure, the upper panels display the best-so-far

residual

+k

k-1
—X k k-1
— (V) = VF k1)),
Yk
while the lower panels report the cumulative average of the step-lengths, given by
1vk
; Z i=1 )/l .

The horizontal axis represents the number of gradient evaluations, which coincides with the iteration count for all
considered methods.

The numerical results consistently demonstrate that incorporating quasi-Newton-inspired step-length rules within adaptive
schemes leads to substantial performance gains. In particular, faster convergence is strongly associated with larger effective
step-lengths, in agreement with the theoretical insight of Fact 1 Among all tested strategies, Anderson acceleration with
memory m = 4 emerges as the most effective, systematically outperforming the remaining approaches.

1, =

6. CONCLUDING REMARKS

This paper presented a unified safeguarding framework that guarantees global convergence for a wide range of fast step-
length strategies within adaptive proximal-gradient algorithms under local Holder smoothness. The results generalize
existing theory and are supported by numerical evidence.
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