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A B S T R A C T  
 

Motivated by recent progress in adaptive schemes for convex optimization, this work develops a 
proximal-gradient framework that enforces global convergence without resorting to linesearch 
procedures. The proposed approach accommodates widely used step-length rules, including Barzilai–
Borwein updates and one-dimensional Anderson-type acceleration. Importantly, the analysis applies to 
problems where the smooth component admits only local Hölder continuity of its gradient. The resulting 
theory unifies and strengthens several existing results, while numerical experiments confirm the practical 
benefits of coupling aggressive step-length selection with adaptive safeguarding mechanisms. 

 

 

 

 

 
  

 

 

1. INTRODUCTION 

Convex optimization problems involving nonsmooth terms appear in numerous engineering and data-driven applications, 

such as image restoration [1], signal processing and communications [2], machine learning [3], and control systems [4]. A 

large class of these problems admits the composite formulation  

 min
𝑥∈ℝ𝑛

  𝜑(𝑥): = 𝑓(𝑥) + 𝑔(𝑥), (1) 

where 𝑓: ℝ𝑛 → ℝ is convex and differentiable, while 𝑔: ℝ𝑛 → (−∞, +∞] is proper, convex, and lower semicontinuous. 

A standard algorithmic tool for solving (1) is the proximal-gradient (PG) method, which generates iterates according to  

 𝑥𝑘+1 = 𝑝𝑟𝑜𝑥𝛾𝑘+1𝑔(𝑥𝑘 − 𝛾𝑘+1∇𝑓(𝑥𝑘)), (2) 

 where the proximal operator associated with 𝑔 is defined, for any 𝛾 > 0, by  

 𝑝𝑟𝑜𝑥𝛾𝑔(𝑥): = argmin
𝑤

{𝑔(𝑤) +
1

2𝛾
∥ 𝑤 − 𝑥 ∥2

2}. (3) 

The efficiency of (2) depends critically on the choice of step-lengths {𝛾𝑘+1}. Classical constant step-length rules require 

global Lipschitz continuity of ∇𝑓, while backtracking strategies reduce regularity assumptions at the expense of additional 

inner-loop computations. Adaptive step-length mechanisms, initiated by Malitsky and Mishchenko [5] and extended to 

proximal settings [6, 7], eliminate explicit linesearch while dynamically adjusting the steps. More recently, such ideas have 

been extended to locally Hölder-smooth objectives [8] and to quasi-Newton-inspired step-lengths, notably the Barzilai–

Borwein (BB) rules [9]. Despite their strong empirical performance, BB step-lengths are known to admit global 

convergence guarantees without linesearch only in narrow settings, such as strongly convex quadratic problems [10, 11]. 
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Stabilized variants [12] address this issue but rely on conservative tuning. The recently proposed adaPBB method [13] 

combines BB updates with adaptive control to obtain robust convergence. The present work develops a general 

safeguarding principle, grounded in adaptive proximal-gradient methods, that ensures global convergence for a broad 

family of fast step-length oracles (including BB, Anderson-type, and Martínez rules) under mild regularity assumptions. 

1. Notation and assumptions 
The Euclidean norm and inner product are denoted by ∥⋅∥ and 〈⋅,⋅〉, respectively. Throughout the paper we impose the 

following conditions on problem (1). 

2. Assumption I 

 [label=A:,leftmargin=*]  

i. 𝑓: ℝ𝑛 → ℝ is convex and its gradient is locally Hölder continuous of order 𝜈 ∈ (0,1].  

ii. 𝑔: ℝ𝑛 → (−∞, +∞] is proper, convex, and lower semicontinuous.  

iii. The solution set is nonempty: argmin𝜑 ≠ ⌀.  

When 𝜈 = 0, ∇𝑓(𝑥) is interpreted as an arbitrary subgradient in 𝜕𝑓(𝑥); several intermediate arguments remain valid for 

𝜈 ∈ [0,1]. 

3. Contributions 
The paper introduces a linesearch-free globalization mechanism that embeds fast step-length rules into an adaptive 

proximal-gradient backbone (denoted adaPG𝑞). The main contributions are summarized as follows:   

    • A general convergence recipe, expressed through Properties P1–P3, characterizing which step-length oracles 

can be safely integrated via adaptive safeguarding.  

    • Global convergence guarantees under local Hölder continuity (𝜈 > 0), extending and sharpening existing 

analyses [14, 15].  

    • Concrete examples of admissible step-length rules (BB long/short, Martínez selection, Anderson acceleration) together 
with numerical evidence highlighting the advantages of safeguarded quasi-Newton-type updates. 

2. ADAPTIVE METHODS AS SAFEGUARDS 

Adaptive strategies compute step-lengths from locally available information, thereby avoiding explicit linesearch. At 

iteration 𝑘, typical quantities used for this purpose include  

ℓ𝑘: =
〈∇𝑓(𝑥𝑘)−∇𝑓(𝑥𝑘−1),𝑥𝑘−𝑥𝑘−1〉

∥𝑥𝑘−𝑥𝑘−1∥2
,        (4) 

𝑐𝑘: =
∥∇𝑓(𝑥𝑘)−∇𝑓(𝑥𝑘−1)∥2

〈∇𝑓(𝑥𝑘)−∇𝑓(𝑥𝑘−1),𝑥𝑘−𝑥𝑘−1〉
,         (5) 

𝐿𝑘: =
𝑓(𝑥𝑘)−𝑓(𝑥𝑘−1)

∥𝑥𝑘−𝑥𝑘−1∥2
.                          (6) 

 The classical BB step-lengths correspond to the reciprocal values of ℓ𝑘 (long BB) and 𝑐𝑘 (short BB). In the safeguarded 

adaptive framework, the step-length update takes the generic form  

𝛾𝑘+1 = min{𝛾𝑘(1 +
1

2
[⋯ ]), 𝛾𝑘

safe},         (7) 

 where 𝛾𝑘
safe enforces lower and upper control ensuring stability and descent. 
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The adaptive scheme adaPG𝑞, parametrized by 𝑞 ∈ [1,2], moderates overly aggressive step-length proposals while still 

allowing large average values. The present analysis extends the guarantees of [14] to locally Hölder-smooth objectives and 

to a richer class of fast step-length oracles. 

3. CONVERGENCE OF ADAPTIVE METHODS REVISITED 

This section summarizes the main convergence ingredients and states the principal result. 

3.1 Preliminary results 

Following [15], define  

 𝜌𝑘: =
𝛾𝑘−1

𝛾𝑘
,        𝑃𝑘: = 𝜑(𝑥𝑘) − min𝜑,        𝑃𝑘

min: = min
𝑖≤𝑘

𝑃𝑖 . (8) 

 For 𝜈 ∈ [0,1], introduce the scaled step-length  

 𝜆𝑘,𝜈: =
𝛾𝑘

∥𝑥𝑘−𝑥𝑘−1∥1−𝜈
, (9) 

 along with the scaled quantities ℓ𝑘,𝜈 and 𝐿𝑘,𝜈 defined analogously. 

 

Fact 1 (adapted from [13]). 

Suppose Assumption I holds with 𝜈 ∈ [0,1]. If the iterates generated by (2) satisfy Properties P1 and P2, then an 

appropriate Lyapunov-type function is nonincreasing and the sequence (𝑥𝑘) remains bounded. 

3.2 Convergence recipe (Properties P1–P3) 

We say that (𝑥𝑘) and (𝛾𝑘) satisfy Properties P1–P3 if there exist 𝜈 ∈ (0,1], 𝑞 ∈ [1,2], and 𝜆min,𝜈 > 0 such that, for all 𝑘:   

    • 1 + 𝑞𝜌𝑘 − 𝑞𝜌𝑘
2 ≥ 0;  

    • 1 − 𝜌𝑘
2[𝛾𝑘

2𝐿𝑘
2 − (2 − 𝑞)𝛾𝑘ℓ𝑘] + 1 − 𝑞 ≥ 0;  

    • either 𝛾𝑘+1 ≥ 𝛾𝑘 or there exists 𝑗𝑘 ≤ 𝑘 such that min{𝛾𝑗𝑘
, 𝛾𝑘+1} ≥ 𝜆min,𝜈 ∥ 𝑥𝑗𝑘 − 𝑥𝑗𝑘−1 ∥1−𝜈.  

 These conditions ensure both boundedness and sufficient descent of an associated potential function. 

3.3 Main theorem 

• Theorem. 

Let Assumption I hold with 𝜈 > 0. Suppose that (𝑥𝑘) is generated by the proximal-gradient method (2) and that Properties 

P1–P3 are satisfied for some 𝑞 ∈ [1,2] and 𝜆min,𝜈 > 0. Then (𝑥𝑘) converges to a solution 𝑥⋆ ∈ argmin𝜑. Moreover, for 

every 𝐾 ≥ 1 there exists 𝐶 > 0 such that  

 min
𝑘≤𝐾

𝑃𝑘 ≤
𝐶

𝐾+1
.                  

• Sketch of proof. 

 The result follows by combining the monotonic decrease of the Lyapunov function, boundedness of the iterates, and the 

uniform lower control on the scaled step-lengths. Summation over iterations yields the stated sublinear rate; see [16] for 

full technical details. 

4. CHOICE OF STEPSIZES 

We now specialize the convergence recipe to concrete step-length oracles Γ𝑓𝑎𝑠𝑡(𝑥𝑘−𝑚, … , 𝑥𝑘) that can be safely 

embedded in the adaptive framework. 
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4.1 Barzilai–Borwein: long and short 

Define 𝑠𝑘: = 𝑥𝑘 − 𝑥𝑘−1 and 𝑦𝑘: = ∇𝑓(𝑥𝑘) − ∇𝑓(𝑥𝑘−1). The BB step-lengths are given by  

𝛾𝑘+1
BB−long

=
〈𝑠𝑘,𝑦𝑘〉

∥𝑦𝑘∥2
,                

𝛾𝑘+1
BB−short =

∥𝑠𝑘∥2

〈𝑠𝑘,𝑦𝑘〉
.               

 With suitable damping or geometric averaging when 𝜈 < 1, both rules satisfy the safeguarding conditions. 

4.2 Martínez rule 

Martínez’ heuristic selects between long and short BB updates by comparing secant and inverse-secant errors. A 

safeguarded version is obtained by taking the minimum between this fast proposal and the adaptive safe step. 

 
Fig.  1. Illustrative placeholder for experimental results. 

 

 

Fig. 2. Safeguard for a generic step-length oracle Γ𝑓𝑎𝑠𝑡. 
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4.3 Anderson acceleration 

A one-dimensional Anderson-type update can be written as  

𝛾𝑘+1
AA = argmin

𝛾∈ℝ
∑𝑘

𝑖=𝑘−𝑚+1 ∥ 𝛾𝑦𝑖 − 𝑠𝑖 ∥2,                   

which corresponds to a weighted average of recent BB-short step-lengths. For 𝜈 = 1 the safeguarding conditions are 

automatically satisfied, while for 𝜈 < 1 a mild averaging modification is required. 
 

5. NUMERICAL RESULTS 

 
A collection of numerical experiments was carried out in order to assess the performance of the adaptive safeguarding 

mechanism adaPG𝑞 when combined with the five step-length strategies introduced in Section IV. In the figures, methods 

employing safeguarded step-lengths are denoted by the label “adaPG ∧”. All experiments were implemented in Julia, 

relying on the publicly available code of [17], and were conducted on benchmark problems drawn from the LIBSVM 

dataset [18]. 

Throughout the experiments involving adaPG𝑞, the parameter was fixed to 𝑞 = 1.2, in accordance with the favorable 

empirical behavior reported in [19]. For the Anderson acceleration scheme (20), a memory size of 𝑚 = 4 was adopted. 

The safeguarded variants were compared against the baseline adaPG𝑞 method (4) and the adaptive Barzilai–Borwein 

algorithm adaPBB. 

For a comprehensive description of the experimental setup and datasets, I refer the reader to [20]; the experiments presented 

here follow the same protocol with only minor modifications. In each figure, the upper panels display the best-so-far 

residual  

𝑟𝑘 = ‖
𝑥𝑘−𝑥𝑘−1

𝛾𝑘
− (∇𝑓(𝑥𝑘) − ∇𝑓(𝑥𝑘−1))‖,               

while the lower panels report the cumulative average of the step-lengths, given by  

1

𝑘
∑𝑘

𝑖=1 𝛾𝑖 .                        

The horizontal axis represents the number of gradient evaluations, which coincides with the iteration count for all 

considered methods. 

The numerical results consistently demonstrate that incorporating quasi-Newton-inspired step-length rules within adaptive 

schemes leads to substantial performance gains. In particular, faster convergence is strongly associated with larger effective 

step-lengths, in agreement with the theoretical insight of Fact 1 Among all tested strategies, Anderson acceleration with 

memory 𝑚 = 4 emerges as the most effective, systematically outperforming the remaining approaches. 
 

6. CONCLUDING REMARKS 
This paper presented a unified safeguarding framework that guarantees global convergence for a wide range of fast step-

length strategies within adaptive proximal-gradient algorithms under local Hölder smoothness. The results generalize 

existing theory and are supported by numerical evidence. 
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