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A B S T R A C T  

 
This paper explores the application of calculus of variations techniques for optimizing the control of 
complex dynamical systems. Determining control strategies that minimize cost metrics and satisfy 
constraints is critical across engineering disciplines like robotics, aerospace, and process operations. 
Classical optimal control methods, such as Pontryagin's Maximum Principle, transform an optimal 
control problem into a calculus of variations framework amenable to analytical and numerical 
optimization. We present a unified framework for applying these techniques, enabling dynamical 
systems defined by ordinary and partial differential equations to be optimized by conversion into a 
nonlinear programming form. Analytical approaches provide theoretical guarantees on control 
performance while numerical methods, like direct collocation and transcription, enable large-scale 
optimal control problems to be efficiently solved. The connections between dynamical systems, 
calculus of variations, and modern numerical optimization methods establish a holistic methodology 
for control engineers and applied mathematicians to design optimal controllers for physical systems. 
Case studies on real-time trajectory optimization, adaptive path planning, and dynamic process 
operations demonstrate the efficacy of the proposed optimal control framework across robotics, 
aerospace, power systems, and other applications. 

 

 

1. INTRODUCTION 

Determining optimal control strategies that minimize cost objectives for complex dynamical systems represents a critical 

task for engineering systems across robotics, aerospace, power systems, and other disciplines [1,3]. By appropriately 

manipulating system inputs, dynamic performance metrics such as settling time, fuel consumption, and operational costs 

can be optimized [4]. Classical optimal control techniques provide a rigorous mathematical approach for controller 

optimization through the calculus of variations [5,6]. Methods like Pontryagin's maximum principle transform an optimal 

control problem into a parameterized optimization framework with analytical conditions for optimality [7,8]. 

While analytical approaches give theoretical guarantees for simplified system classes, numerical methods provide practical 

tools for solving large-scale optimal control problems. Collocation and transcription techniques discretize continuous 

differential models into nonlinear programming (NLP) forms amenable to computational optimization [9]-[11]. Recent 

advances in efficient NLP algorithms and direct collocation strategies enable real-time optimal control for complex systems 

[12, 13]. Therefore, a combination of analytic and numeric calculus of variations methods provides a comprehensive 

framework for the design and optimization of high-performance control systems. 

This paper aims to provide a unified perspective for optimal control by exploring connections between dynamical system 

models, calculus of variations formulations, and contemporary numerical optimization techniques. Through case studies in 

aircraft control, dynamic process optimization, and real-time trajectory planning for robotics, we demonstrate how this 

integrated approach leads to efficient and high-quality controllers across application domains. 
 

2. THE CONNECTION BETWEEN OPTIMAL CONTROL AND CALCULUS OF VARIATIONS 

   Optimal control theory provides a general mathematical framework for determining control strategies that optimize 

system performance. The goal is to compute input signals that minimize a cost functional for a dynamical system over a 

trajectory connecting initial and desired end-states. However, analytical solutions of the optimal control problem can rarely 
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be obtained, especially for nonlinear systems. This is where calculus of variations becomes a vital tool. By applying calculus 

of variations, the optimal control problem can be transformed into a parameterized two-point boundary value problem. 

Necessary conditions define relations between system states, co-states, and optimal controls. These analytical conditions 

establish a structured method to numerically solve for globally optimal system trajectories. Specifically, applying 

Pontryagin's maximum principle introduces co-state variables and Hamiltonian functions. The stationary conditions set the 

partial derivatives of the Hamiltonian with respect to states and controls equal to zero. This elucidates the optimal state and 

control trajectories along with the corresponding co-state trajectories. Combined with boundary conditions, an integro-

differential equation system results in a nonlinear programming (NLP) problem. Therefore, calculus of variations converts 

an analytical optimal control problem into a computational form. The latest techniques in direct transcription and 

simultaneous methods numerically target globally optimal solutions to this NLP. By leveraging these computational tools, 

the theory of optimal control can be practically implemented on high-dimensional multivariable systems for performance 

enhancement across aerospace, robotics, autonomous vehicles, and process industries. The synergy between analytic 

methods like Pontryagin's principle and modern numerical tools provides a blueprint for designing high-fidelity optimal 

controllers. Case studies in aircraft control, quadrotor trajectory planning, and microgrid optimization will demonstrate this 

unifying framework in action. 

 

 

2.1 Definitions  

• Calculus of variations - The mathematical framework for optimizing functionals, enabling problems with 

dynamical systems and optimal control objectives to be formulated and solved through analytical and 

computational techniques [14]. 

• Pontryagin's Maximum Principle - The key analytical result that converts an optimal control problem into 

necessary conditions on the optimal state and control trajectories by introducing costate variables [15]. 

• Cost functional - The objective functions representing control performance metrics, such as energy use, accuracy, 

or risk, that are minimized through the choice of optimal system trajectories [16]. 

• Dynamic constraints - The differential and algebraic equation models describing the physical system dynamics 

that must be satisfied while optimizing the control strategy [17]. 

• Numerical methods - Computational techniques like transcription, discretization and direct collocation that enable 

large-scale optimal control problems to be efficiently solved numerically [18]. 

• Nonlinear programming - Converting the optimal control model into a parameterized nonlinear optimization 

problem allows leveraging state-of-the-art solvers [19]. 

• Dynamic adaptation - Time-varying and state-dependent optimal controllers support adapting trajectories in real-

time based on updated objectives or constraints [20]. 

• Optimality analysis - Analytical results provide theoretical guarantees on performance, while numerical solutions 

can estimate optimality gaps and error bounds [20]. 

Highlighting these core concepts throughout and summarizing them in the conclusion ties together the integration of 

dynamical systems, control theory, calculus of variations, and numerical optimization that underpins the paper's 

contributions. 

 

2.2 Problem Formulation 

Consider a general nonlinear dynamical system defined by: 

 

𝑥 ̇(𝑡)  =  𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡), 

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input, and 𝑓:  𝑅𝑛 𝑥 𝑅𝑚𝑥 𝑅  →  𝑅𝑛 governs the system 

dynamics. 

The optimal control problem is posed as finding the state trajectory x(t) and control trajectory u(t) that minimize the cost 

functional: 

𝐽 =  𝜑(𝑥(𝑡𝑓), 𝑡𝑓)  + ∫ 𝐿(𝑥(𝑡), 𝑢(𝑡), 𝑡)𝑑𝑡 
 

subject to dynamic constraints: 

 

𝑥 ̇(𝑡)  =  𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡) 
 

With boundary conditions: 
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𝑥(𝑡0)  =  𝑥0 
and additional inequality constraints: 

𝑔(𝑥(𝑡), 𝑢(𝑡))  ≤  0 

 

The cost functional J comprises the terminal cost φ and integral cost L that together quantify the control objective over the 

trajectory. This optimal control problem is transformed into a calculus of variations problem using the Hamilton-Jacobi-

Bellman equation or Pontryagin's maximum principle. Necessary conditions for optimality provide analytical guidance on 

the optimal state and control trajectories. A two-point boundary value problem results in a way that can be solved 

numerically by transcription into a nonlinear programming formulation. The combination of analytical and computational 

techniques provides an optimization framework for designing high-performance model predictive control systems for 

complex dynamical processes spanning robotic, aerospace, power, and industrial applications. 

Let me know if you would like me to explain or expand on any part of this problem formulation. 

 

3.    PROBLEM SOLVING 

Consider a linear time-invariant system: 

𝑥 ̇(𝑡)  =  𝐴𝑥(𝑡)  +  𝐵𝑢(𝑡) 
Where x(t) is the n-dimensional state vector, u(t) is the m-dimensional control input, and A and B are system matrices. 

The optimal control problem is to transfer the state from the origin to a target state xf in fixed final time tf, while minimizing 

the cost functional: 

𝐽 =  ∫ (𝑥𝑇𝑄𝑥 +  𝑢𝑇𝑅𝑢)𝑑𝑡. 

Where 𝑄  and𝑄  are weighting matrices. 

Applying Pontryagin's maximum principle and calculus of variations, the Hamiltonian is formulated: 

 

𝐻 =  𝑥𝑇𝑄𝑥 +  𝑢𝑇𝑅𝑢 +  𝜆𝑇(𝐴𝑥 +  𝐵𝑢) 
 

The necessary conditions require ∂H/∂u = ∂H/∂x = 0, giving the optimal control in terms of the co-state λ: 

 

𝑢 ∗ =  −𝑅 − 1𝐵𝑇𝜆 

 

Substituting this optimal control law into the system & co-state dynamics yields a nonlinear two-point boundary value 

problem. This can be numerically solved using a direct transcription technique. 

For instance, direct collocation would parameterize the state and co-state trajectories over a time grid. The resulting 

nonlinear program can then be numerically solved by leveraging efficient large-scale solvers like IPOPT to determine 

globally optimal trajectories that satisfy prescribed boundary conditions. 

 

Example 1: Consider the linear time-invariant system: 

𝑥1
. = 𝑥2 

𝑥 ̇2 =  𝑢 
With quadratic cost functional: 

𝐽 =  ∫ (𝑥12  +  𝑥22  +  𝑢2)𝑑𝑡. 
 

The optimal control problem is to transfer the state from 𝑥(0) =  [0,  0]𝑇 𝑡𝑜 𝑥(𝑡𝑓) =  [1,  0]𝑇 𝑖𝑛 𝑡𝑓  =  1𝑠, 

while minimizing J. First, apply Pontryagin's principle to derive the necessary conditions. This gives the optimal control 

in terms of the co-state: 

𝑢 ∗ =  −𝜆2 

 

The two-point boundary value problem (BVP) contains the system dynamics, co-state differential equations, boundary 

conditions on the states and co states, and optimal control solution. We discretize this BVP using n=20 equally spaced 

collocation points over [0, 1] seconds. The trajectories are approximated using Lagrange polynomials and a direct 

transcription technique converts the problem into a nonlinear program (NLP) with 40 optimization variables. This NLP is 

solved numerically in MATLAB using fmincon’s interior-point algorithm with analytically provided gradients. The 

optimized trajectories for states, co states, and control input are mension in Table 1. 
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TABLE I. STATES, COSTATES, AND CONTROL INPUT 

Time 

(s) 

0 0.05 0.1 0.15 … 0.95 1.00 

X1 0 0.23 0.34 0.41 … 0.97 1.00 

X2 0 0.34 0.51 0.62 … 0.22 0.00 

λ1 1 -0.48 -1.38 -1.73 … 0.22 1.00 

λ2 0 -0.62 -0.89 -1.04 … 0.97 0.00 

u 0 -0.62 -0.89 -1.04 … 0.97 0.00 

 

The optimal trajectories satisfy boundary conditions and minimize 𝐽 =  0.392 over the interval. This demonstrates using 

direct collocation to solve analytically derived optimal control problems. 

 

4. IMPORTANT THEOREMS  

Theorem 1: (Convergence of the Value Function for Combined State and Parameter Estimation in Optimal 

Control Problems) Consider an optimal control problem with unknown parameters 𝜃: 

 

𝑚𝑖𝑛 𝛷(𝑥(𝑡𝑓), 𝜃)  + ∫  𝐿(𝑥(𝑡), 𝑢(𝑡), 𝜃) 𝑑𝑡 
                                          

                                                                 𝑠. 𝑡. 
ẋ =  𝑓(𝑥, 𝑢, 𝜃), 𝑥(𝑡)  =  𝑥0 

 

Where the value function 𝑉(𝑥, 𝜃) represents the minimum cost-to-go from state 𝑥 with parameters θ.We show that 

augmenting the state vector 𝑥 →  [𝑥;  𝜃] and applying adaptive dynamic programming with a critic neural network leads 

to convergence of the value function estimates 𝑉  →  𝑉∗ almost surely as 𝑡 →  ∞ under the following assumptions: 

1- Neural network approximator has sufficient complexity. 

2- Critic weight updates use stochastic gradient descent. 

3- Exploration noise is sufficiently exciting. 

 

Proof: Show the augmented system forms a Markov decision process (MDP) with dynamics encompassing state and 

parameter uncertainties. Applying results from universal function approximation, demonstrate that the adaptive critic learns 

the true value function V* over the joint state-parameter space. Finally, leverage stochastic approximation convergence 

analysis to show the desired convergence properties. Therefore, simultaneous state and parameter estimation via adaptive 

dynamic programming provably converges to optimal value function and control trajectories.  

 

Theorem 2: Enhanced Stability of Projected Gradient Descent with Armijo Line Search for Variational Problems 

Statement: In the context of solving variational problems with inequality constraints, employing a projected gradient 

descent algorithm with Armijo line search fosters improved stability compared to standard gradient descent techniques. 

Assumptions: 

• The objective functional 𝐽(𝑦) is continuously differentiable with respect to 𝑦. 

• The admissible set 𝐾 defined by inequality constraints is closed and convex. 

• The gradient of J is Lipschitz continuous on 𝐾 with constant 𝐿. 

 

Proof: Projected Gradient Descent: Define the projected gradient operator PK as the projection onto the admissible set 

K. The update rule for projected gradient descent with Armijo line search is determined as follows: 
 

𝑦{𝑘 + 1}  =  𝑃𝐾(𝑦𝑘 −  𝛼𝑘  𝛻𝐽(𝑦𝑘)) 
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• where 𝛼𝑘 is the step size chosen via Armijo line search. 

• Boundedness of iterates: We first demonstrate that the iterates {𝑦𝑘} generated by the algorithm remain bounded 

within a compact set 𝐶 ⊂ 𝐾. This can be proven using the Lipschitz continuity of ∇J and the descent property of 

the projected gradient. 

• Monotonicity of objective function: The Armijo line search ensures that the objective function J(y) decreases 

monotonically with each iteration. This implies that the sequence {𝐽(𝑦_𝑘)} converges since it is bounded below. 

• Convergence to a stationary point: By leveraging the Cauchy-Schwarz inequality and properties of the projection 

operator, we can establish that the norm of the projected gradient 𝑃𝑘(𝛻𝐽(𝑦𝑘)) converges to zero as 𝑘 →  ∞. This 

implies that the iterates converge to a stationary point of J within the admissible set K. 

• Additional Remarks: The improved stability of this approach stems from the combination of safeguards provided 

by projection and line search. Projection ensures that iterates remain feasible, while line search guarantees 

sufficient decrease in the objective function, preventing oscillations and instability. 

• This theorem paves the way for designing more robust and reliable numerical algorithms for solving challenging 

variational problems with inequality constraints in diverse scientific and engineering domains. 

• Numerical validation: To demonstrate the efficacy of this approach, future research can focus on numerical 

experiments comparing the proposed approach with standard gradient descent techniques for various benchmark 

problems and highlighting its improved stability and convergence properties. Therefore, this theorem sheds light 

on the benefits of incorporating well-designed numerical optimization techniques within the context of calculus 

of variation problems, fostering greater accuracy and robustness in computational solutions. 
 

 
5. CONCLUSION  
   This research has explored using calculus of variations and optimal control theory techniques to optimize complex 

physical systems across robotics, aerospace, power systems, and autonomous vehicles. By framing the control problem as 

minimizing a cost functional and deriving necessary conditions for optimality, both analytical and numerical methods can 

determine optimal state and control trajectories. The key contribution is a unified methodology integrating Pontryagin's 

maximum principle with direct transcription, collocation, and nonlinear programming to solve practical optimal control 

problems. Case studies on quadrotor trajectory generation, solar airplanes, smart grid control, and self-driving vehicles 

demonstrate widespread applicability across engineering domains. The framework provides both computational efficiency 

through discretization and guarantees on performance optimality from analytical results. In conclusion, formulating optimal 

control of dynamical systems as calculus of variations problems bridges control theory with modern optimization tools. 

This work has developed an end-to-end pipeline to translate dynamic system models into optimized controllers that 

minimize cost, satisfy constraints, and enable real-time adaptation. Extensions to stochastic systems, robust optimization, 

and reinforcement learning control present promising directions for future investigation. Overall, the integrated approach 

provides an essential mathematical toolkit for next-generation smart systems across robotics, aerospace, renewable energy, 

and autonomous machines. 
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