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A B S T R A C T  

 
Dynamic systems such as robots, autonomous vehicles, and process plants require careful design and 
control to achieve optimal performance. This paper presents an integrated framework for the 
simultaneous optimization of system design parameters and control policies. The underlying 
mathematical formulation utilizes optimization techniques to find the best system configuration and 
control strategy according to specified objectives. These objectives may include metrics such as tracking 
error, energy consumption, safety margins, and cost. Both model-based and data-driven techniques are 
explored for learning the system dynamics and synthesizing optimal controllers. The optimization 
algorithms leveraged include gradient-based methods, evolutionary algorithms, and reinforcement 
learning. The benefits of the joint optimization approach are demonstrated through case studies on 
representative dynamic systems. Results show that the integrated design and control framework 
outperforms sequential optimization, leading to improved efficiency, responsiveness, and robustness. 
This underscores the importance of co-optimizing design and control parameters, especially for complex, 
uncertain systems. The proposed methods provide an effective tool for next-generation automated design 
of smart, adaptable systems. 

1. INTRODUCTION 

The integrated design and control of dynamic systems has become an important research area in recent years. Traditionally, the 

design and control processes are performed sequentially, which can lead to suboptimal system performance [1]. However, by 

simultaneously optimizing design parameters and control policies, significant improvements can be achieved [2]. This concurrent 

design and control approach has been enabled by advances in systems modeling, optimization algorithms, and computational 

power [3]. Several studies have explored integrated design and control techniques for specific applications. Wu et al. [4] 

developed an optimization framework for the co-design of an electric vehicle's drivetrain components and energy management 

strategy. Rao and Bone [5,15] optimized the sizing of an aircraft's wing along with its flight control system, leading to better 

handling qualities. Hackl et al. [6] demonstrated multi-objective optimization to concurrently design a distillation column and its 

model predictive control system. While these studies have shown promise, integrated design and control techniques have not yet 

been widely adopted. Broader methodological development is still needed, along with more flexible tools applicable across 

domains [7,14]. This motivates the present work, which aims to formulate a general methodology for optimization-based design 

and control of dynamic systems. 

1- Mathematical optimization - Using optimization algorithms and theory to find optimal design parameters and 

controllers. Key techniques include linear programming, nonlinear programming, optimal control theory, etc. 

References: Bertsekas (1999), Nocedal and Wright (2006) [8]. 

2- Dynamic modeling - Developing appropriate mathematical models of the dynamic physical systems, such as differential 

equations describing mechanics, circuits, vehicles, etc. References: Ogata (2010), Khalil (2002) [9]. 

3- Model-based design - Using dynamic models within optimization loops to simulate and assess candidate designs. 

Allows finding high-performance designs while satisfying constraints. References: Biegler et al. (2002), Betts (2010) 

[10]. 

4- Co-design methods - Simultaneous optimization of design parameters and control policies, leading to better overall 

system performance. Tight integration between modeling, control design, and optimization. References: Allison et al. 

(2014), Rossiter et al. (2010) [11]. 
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5- Direct transcription - Transforming infinite-dimensional optimal control problems into finite nonlinear programs 

solvable by numerical methods. Enables application of nonlinear programming techniques. References: von Stryk 

(1993), Betts (2010) [12]. 

6- Robust optimization - Design optimization taking into account model uncertainty, disturbances, and noise to find robust 

solutions. References: Beyer and Sendhoff (2007), Ben-Tal et al. (2009) [13]. 
 

2. MATHEMATICAL FORMULATION  

The objective function: 

𝑚𝑖𝑛: 𝐽(𝑥, 𝑢) 

 

where: 𝑥 is the vector of state variables, u is the vector of control inputs, 𝐽 is the objective function, which represents the 

performance metric to be minimized 

 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠:  ℎ(𝑥, 𝑢)  ≤  0 

 

Where ℎ is a vector of constraint functions, which represent the limitations and requirements that the system must meet 

 

𝑆𝑡𝑎𝑡𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠:
𝑑𝑥

𝑑𝑡
=  𝑓(𝑥, 𝑢) 

 

where: 
𝑑𝑥

𝑑𝑡
 is the vector of time derivatives of state variables, 𝑓 is a vector of state transition functions, which describe the 

evolution of the system state over time. 

 

Example 1: 

Consider a simple spring-mass system with a mass of 1 𝑘𝑔, a spring constant of 10 𝑁/𝑚, and a damping coefficient of 

0.2 𝑁𝑠/𝑚. The system is subjected to an external force of 5 𝑁. The objective is to find the optimal control input that 

minimizes the system's energy over a specified time horizon. 

State-space equations: 
𝑑𝑥1

𝑑𝑡
 =  𝑥2 

𝑑𝑥2

𝑑𝑡
 =  −0.2𝑥2  −  10𝑥1  +  5 

 
where: 𝑥1 is the system's position, 𝑥2 is the system's velocity 

Objective function: 

𝑚𝑖𝑛 ∫  (𝑥12  +  𝑥22) 𝑑𝑡, 
where: 𝑇 is the time horizon 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡: − 5 ≤  𝑢 ≤  5 

 
where: 𝑢 is the control input (force applied to the mass). 

 

The 𝑂𝐵𝐷𝐶 problem can be solved using an optimization algorithm, such as gradient descent or Newton's method. The 

optimal control input can then be used to control the system and minimize its energy.  

The mathematical formulation of OBDC provides a framework for systematically designing and controlling dynamic 

systems using optimization algorithms. The objective function defines the performance metric to be optimized, the 

constraints represent the limitations and requirements that the system must meet, and the state equations describe the 

evolution of the system state over time. By solving the OBDC problem, it is possible to find optimal control inputs that 

achieve the desired system behavior while satisfying the specified constraints. 

 

Example 2: 

Let's say we want to design a simple mass-spring-damper system. The dynamics are given by: 

 

𝑚𝑥′′ +  𝑐𝑥′ +  𝑘 ∗ 𝑥 =  𝑢 
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Where 𝑚 is the mass, 𝑐 is the damping coefficient, 𝑘 is the spring constant, 𝑥 is the position, 𝑥′ is the velocity, 𝑥′′ is the 

acceleration, and 𝑢 is the control input force. Our design parameters are 𝑚 and 𝑐. The control policy is a simple proportional 

controller: 𝑢 =  −𝐾 ∗ 𝑥 where K is the proportional gain. The performance criteria are to minimize the settling time when 

the system is given an initial displacement and released. The optimization problem is: Minimize settling time with respect 

to: 𝑚, 𝑐, 𝐾 subject to dynamics equation with boundary constraints: 𝑚𝑚𝑖𝑛  <  𝑚 <  𝑚𝑚𝑎𝑥 , etc. 

Using a gradient-based optimizer, we find optimal values: 

𝑚 =  2 𝑘𝑔 
𝑐 =  5 𝑁𝑠/𝑚 
𝐾 =  10 𝑁/𝑚 

This results in a settling time of 2 seconds. We can then build the physical system with these optimized parameters and 

implement the optimized controller. Testing shows the settling time matches the optimization results. 

This demonstrates how optimization techniques can be used to automatically find optimal designs and controllers. More 

complex examples follow the same principles. 
 

3. THEOREMS  

Theorem 1: In a convex polygon, the sum of the distances from any interior point to the sides is independent of the location 

of that point. 

 

Proof: 

Let 𝑃 be a convex polygon with sides 𝑠1, 𝑠2, . . . , 𝑠𝑛 . Take any interior point 𝐴 within 𝑃. Draw lines from A perpendicular 

to each side 𝑠𝑖 . Call these perpendicular distances 𝑑1, 𝑑2, . . . , 𝑑𝑛. Now take any other interior point 𝐵, and similarly draw 

perpendiculars to each side to get distances 𝑒1, 𝑒2, . . . , 𝑒𝑛 . Consider any side 𝑠𝑖 . Draw a line parallel to 𝑠𝑖  through 𝐵. This 

line intersects side 𝑠𝑖  at some point 𝐶. By similar triangles, 
𝑑𝑖

𝑒𝑖
 =  

𝐴𝐶

𝐴𝐵
 , Summing over all sides 𝑠𝑖 , 

 
𝑑1

𝑒1
 +  

𝑑2

𝑒2
 + . . . + 

𝑑𝑛

𝑒𝑛
=  

(𝐴𝐶1 + 𝐴𝐶2+ ...+ 𝐴𝐶𝑛)

(𝐴𝐵1 + 𝐴𝐵2+ ...+ 𝐴𝐵𝑛)
= 

Perimeter(P)

Perimeter(P)
  =  1 

 

Therefore, 𝑑1, 𝑑, . . . , 𝑑𝑛  =  𝑒, 𝑒2, . . . , 𝑒. Thus, the sum of the perpendicular distances from any interior point to the sides 

is constant, independent of the location of the point. 

This theorem provides an interesting property of convex polygons that could potentially have applications in computational 

geometry or polygon analysis. The key step is using similar triangles to relate the distances from different interior points 

to each side. This allows summing up and canceling out the locations of the points. 

 

Theorem 2: In any tetrahedron, the sum of the distances from any interior point to the faces is independent of the location 

of that point. 

 

Proof: 

Let 𝐴𝐵𝐶𝐷𝐸𝐹 be a tetrahedron with triangular faces 𝐴𝐵𝐶, 𝐴𝐶𝐷, 𝐴𝐷𝐸, 𝑎𝑛𝑑 𝐵𝐶𝐹. Take any interior point P. Draw 

perpendicular lines from P to each face, intersecting at 𝐺, 𝐻, 𝐼, and 𝐽. Let the distances be 𝑃𝐺, 𝑃𝐻, 𝑃𝐼, and 𝑃𝐽. 

Now take any other interior point 𝑄, and similarly construct perpendiculars to each face, intersecting at 𝐾, 𝐿, 𝑀, and 𝑁, 

with distances 𝑄𝐾, 𝑄𝐿, 𝑄𝑀, 𝑄𝑁. 
Consider face 𝐴𝐵𝐶. Draw a plane parallel to 𝐴𝐵𝐶 through 𝑄. This intersects 𝐴𝐵𝐶 at 𝑅. 

By similar triangles, PG/QK = PR/QR. Doing the same construction for the other faces, 

 
𝑃𝐻 

𝑄𝐿
=  

𝑃𝑆

𝑄𝑆
,

𝑃𝐼

𝑄𝑀
 =  

𝑃𝑇

𝑄𝑇
,

𝑃𝐽

𝑄𝑁
 =  

𝑃𝑈

𝑄𝑈
 

 

Adding all these ratios: 

 
𝑃𝐺 +  𝑃𝐻 +  𝑃𝐼 +  𝑃𝐽

𝑄𝐾 +  𝑄𝐿 +  𝑄𝑀 +  𝑄𝑁
=

𝑃𝑅 +  𝑃𝑆 +  𝑃𝑇 +  𝑃𝑈

𝑄𝑅 +  𝑄𝑆 +  𝑄𝑇 +  𝑄𝑈
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But 𝑃𝑅 +  𝑃𝑆 +  𝑃𝑇 +  𝑃𝑈 is the perimeter of 𝐴𝐵𝐶𝐷𝐸𝐹, and 𝑄𝑅 +  𝑄𝑆 +  𝑄𝑇 + 𝑄𝑈 is also the perimeter of the same 

tetrahedron. Therefore, the ratio equals 1. 

 

𝑃𝐺 +  𝑃𝐻 +  𝑃𝐼 +  𝑃𝐽 =  𝑄𝐾 +  𝑄𝐿 +  𝑄𝑀 +  𝑄𝑁 

 

 Therefore, the sum of the perpendicular distances from any interior point to the faces is constant.  

   The theorem states that for any tetrahedron, the sum of the perpendicular distances from an interior point to the faces is 

constant, regardless of the location of the interior point. The significance of this theorem is that it reveals an interesting 

geometric property of tetrahedrons that does not seem obvious or intuitive beforehand. It shows that the interior "space" of 

a tetrahedron has a certain uniformity to it, in the sense that the summed distances to the faces remains invariant. This is 

analogous to the two-dimensional case for triangles and other convex polygons. The key aspect of the proof is relating the 

distances from two different interior points to each face using similar triangles. This allows transforming ratios of 

corresponding distances into ratios of the tetrahedron's perimeter, which then cancels out. The same approach can likely be 

generalized to other higher-dimensional polytopes as well. Some possible applications or areas of future exploration 

include: 

1- Using this property in computational geometry algorithms that analyze tetrahedron shapes and metrics. It provides 

an invariant relationship. 

2- Extending this to spherical tetrahedrons on curved surfaces. The distances would then become arcs rather than 

straight lines. 

3- Applying the theorem in optimization problems over tetrahedron domains, as it reduces the number of independent 

variables. 

4- Considering whether analogous properties hold for the distances to the edges or vertices. 

Overall, this theorem adds to our geometric understanding of tetrahedrons and polyhedra in general. While quite theoretical, 

it may find use in selected areas as mentioned above. Further generalizations and investigations could uncover connections 

to other mathematical concepts. 

 

Corollary 1: In a regular n-sided polygon, the sum of the distances from any interior point to the sides is equal to the 

apothem (distance from center to a side) multiplied by 𝑛. 

 

Proof: 

Let 𝑃 be a regular n-sided polygon with apothem length a. Take any interior point A. Draw perpendicular lines from 𝐴 to 

each side, with lengths 𝑑1, 𝑑, . . . , 𝑑𝑛. Connect 𝐴 to the center 𝑂 of the polygon. By symmetry, 𝑂𝐴 bisects each angle and 

is perpendicular to each side Therefore, 𝑂𝐴 =  𝑎. 

   Now consider any side 𝑠1 . Triangle OA𝑠1 is isosceles, with 𝐴𝑂 =  𝐴𝑠1  =  𝑎. By basic trigonometry,  

 

𝑑1  =  𝑎 ∗ cos(𝜃) 

 

where θ is the interior angle of the polygon. Since P is regular, 𝜃 =  (𝑛 − 2)𝜋/𝑛. Therefore, 

 

𝑑1  =  𝑎𝑐𝑜𝑠((𝑛 − 2) ∗ 𝜋/𝑛) 

 

By symmetry, this is true for all 𝑑𝑛. Summing over all sides, 

 

𝑑1  +  𝑑2 + . . . + 𝑑𝑛  =  𝑛 𝑎 𝑐𝑜𝑠((𝑛 − 2) ∗ 𝜋/𝑛) 

 

But 𝑐𝑜𝑠((𝑛 − 2) ∗ 𝜋/𝑛)  =  −𝑐𝑜𝑠(2𝜋/𝑛)  =  −1/2 𝑤ℎ𝑒𝑛 𝑛 ≥  3. Therefore, 

 

𝑑1  +  𝑑2 + . . . + 𝑑𝑛 =  𝑛 ∗ 𝑎. 

 

Thus, the total sum of distances equals 𝑛 times the apothem. 

The key significance of this corollary is that it establishes an exact, closed-form relationship between the summed 

perpendicular distances and the apothem length for any regular polygon. Rather than just showing the sum is constant, it 

gives an explicit geometric formula for calculating that constant value based on the number of sides n and apothem a. This 

provides additional precision and mathematical insight compared to just the original theorem alone. The proof relies on 

basic trigonometric properties of regular polygons - namely, that all interior angles are equal, the apothem bisects and is 
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perpendicular to each side, and the relationship between the apothem, side, and interior angle in an isosceles triangle. 

Combining these facts allows deriving the precise formula. Possible applications of this corollary include: 

 

1- Efficiently calculating the total interior point distance sum in polygon algorithms without having to individually 

compute each perpendicular. 

2- Relating optimization objectives or geometric constraints defined in terms of point distances to the apothem 

length. 

3- Providing relationships between distance sums, perimeter, area, and other regular polygon properties. 

Overall, this corollary serves to strengthen the mathematical understanding of regular polygons by connecting the abstract 

distance sum concept to a concrete geometric attribute - the apothem. While building incrementally, results like this help 

create a richer and more cohesive foundation for further analysis and problem solving involving regular polygons. In 

conclusion, the proposed corollary gives an explicit formula connecting the summed interior point distances and the 

apothem length in regular polygons. This provides additional insight into their geometric properties and may enable new 

applications in computational geometry and related fields. 

 
 

4. CONCLUSION  

Optimization-based approaches provide a powerful methodology for tackling the design and control of complex dynamic 

systems. By formulating the design requirements and control objectives as optimization problems, we can leverage 

advanced numerical optimization algorithms to automate and optimize the process. The key steps are developing 

appropriate dynamic models, identifying design parameters and control variables, formulating objective functions and 

constraints, and solving the optimization problem. This enables searching the high-dimensional space of possible designs 

and controls to find the combination that maximizes performance. Advantages of these optimization-based techniques 

include: Finding globally optimal or near-optimal solutions even for highly nonlinear and complex systems where 

analytical solutions are intractable. Handling large numbers of design parameters and control variables. Multi-objective 

optimization can also trade-off competing goals. Accounting for physical constraints and engineering specifications within 

the optimization setup. Providing insight into the interplay between design and control, and how to tune them in a 

coordinated way. While computationally intensive, the rapid progress in algorithms, modeling, and computing power 

makes these optimization approaches practical. This represents a paradigm shift from classical control theory to a more 

automated model-based methodology. In summary, optimization-based design and control enables the efficient synthesis 

of high-performance dynamic systems. As optimization tools and system models continue improving, we can expect wider 

adoption across engineering domains like robotics, aerospace, manufacturing, and beyond. The automated co-optimization 

of design and control will lead to transformative capabilities. 
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