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A B S T R A C T  

 
Fractional Integro-differential equations involving conformable Differintegrals have promising 

applications but lack solution methods. This work develops a variational iteration approach for such 

equations. Conformable fractional derivatives and integrals that generalize integer-order equivalents 

are defined. Existence and uniqueness results are established for a class of nonlinear fractional integro-

differential equations. These exist under less restrictive smoothness assumptions than integer-order 

cases. The variational iteration method (VIM) is then applied, providing an analytical approximate 

technique for integro-differential problems of fractional order. Convergence analysis demonstrates the 

efficiency and accuracy of the VIM solutions. Several test cases validate the VIM, matching analytical 

solutions available for simpler fractional differential sub-cases. The proposed technique advances 

available methods for this emerging class of fractional integro-differential equations. Significantly, it 

enables application of such models by allowing accurate solution of associated mathematical system 

representations. Extensions to include more singular equation classes, comparisons with other methods, 

and real-world applications are suggested as future work. 

The abstract summarizes the key points: significance of problem, fractional models used, 

existence/uniqueness proofs, VIM approach and analysis, test case validations, implications for 

applications 

 

 
1. INTRODUCTION 

   Fractional calculus has become a growing field of mathematical analysis, with differential and integral operators 

generalized to non-integer orders. This allows modeling of complex dynamics and heterogeneity in ways not captured by 

classical integer-order models [1]. Applications are numerous, including viscoelasticity [2], electrochemistry [3], and 

nonlinear oscillations [4]. Fractional derivatives enable memory and hereditary properties of various processes to be 

mathematically described. Recent years have seen fractional modeling expanded to include differential equations with 

integral terms as well. These fractional integro-differential equations (FIDEs) provide additional flexibility to characterize 

cumulative and distributed effects over time/space [5]. However, analytical solutions of such FIDEs tend to be intractable, 

with few numerical methods developed so far [6]. A particular class of fractional derivatives that has shown promise for 

overcoming limitations seen with other definitions is conformable fractional calculus [7]. This preserves many key 

properties from classical integer-order differentiation. Conformable FIDEs further widen the set of systems that can be 

modeled. But again, solution methods are lacking. This paper develops an analytical approach based on the variational 

iteration method (VIM) [8] to solve conformable FIDEs. Existence, uniqueness, and convergence of solutions are analyzed. 

The VIM provides an efficient technique for FIDEs not readily solvable by other means. Comparisons show good accuracy 

relative to cases with known solutions. This work expands the set of mathematical tools available for conformable fractional 

systems. 
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2. METHODOLOGY  

This work leverages the variation l iteration method (VIM) to solve conformable fractional integro-differential equations 

of the form:  
 

C𝐷𝛼𝑥(𝑡)  =  𝑓(𝑡, 𝑥(𝑡))  + ∫ 𝑘(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠
𝑡

𝑎
   

Where the C𝐷𝛼  operator represents the conformable fractional derivative of order 𝛼 (0 <  𝛼 ≤  1), 𝑓 is a function 

describing the differential part, and the integral term captures hereditary and memory properties. 

First, definitions and properties for conformable fractional differentiation and integration are provided, generalizing 

integer-order equivalents. Existence and uniqueness of solutions for the fractional integro-differential equation are then 

analyzed based on these differintegral operators and certain continuity assumptions on 𝑓 and 𝑘. Next, the VIM is formulated 

to handle the conformable fractional integro-differential equation. This requires determining an appropriate linear operator 

and iterative methodology. Convergence of the approximation sequence is investigated. To validate performance, the VIM 

is applied on test cases with known solutions. Different forms of f and k are utilized, including linear, quadratic, 

trigonometric, and power law types. Numerical experiments demonstrate efficiency and accuracy. Results are also 

compared against simpler fractional differential-only special cases of the model to highlight integro-differential equation 

generalization capabilities. Sensitivity on iteration and order is explored as well. The methodology thus systematically 

introduces conformable differintegrals, proves solution properties, derives a VIM approach, and validates performance on 

benchmark tests - providing a comprehensive framework for solving the class of fractional integro-differential equations. 
 

3. MATHEMATICAL PROBLEM  

We are interested in solving a class of fractional order integro-differential equations with conformable differintegrals of 

the form: 

𝐶𝐶𝐷𝛼𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡)) + ∫  
𝑡

𝑡0

𝑘(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠, 𝑡 ≥ 𝑡0, 0 < 𝛼 ≤ 1 

 

Where: 

• 𝐶𝐶𝐷𝛼  is the conformable fractional derivative of order $\alpha$ 

• 𝑥(𝑡)  is the unknown function to be determined 

• 𝑓(𝑡, 𝑥(𝑡))  represents a given fractional order differential operator 

• ∫  
𝑡

𝑡0
𝑘(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠 is a given fractional order integral operator 

• t0 is the initial value point 

• 𝛼 is the fractional order satisfying 0 < α ≤ 1 

Along with initial/boundary conditions: 

 

𝑥(𝑡0) =  𝑥0  

 

To find the unknown function 𝑥(𝑡), which satisfies the fractional integro-differential equation and given conditions. 

The mathematical challenges include: 

▪ Dealing with the fractional order operators and their non-local properties 

▪ Handling the coupling between the differential and integral terms 

▪ Obtaining analytic or approximate solutions when exact solutions are intractable 

▪ Ensuring solutions meet existence, uniqueness, stability, and convergence criteria 

▪ The approach we take is using the variational iteration method to derive iterative analytical approximate solutions, 

and analyzing such solutions in terms of the desired solution properties. 

 

 

 

4.  SOLUTION APPROACH  

1. Introduce conformable fractional differentiation and integration operators, establishing definitions and key 

properties that generalize integer-order counterparts 
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2. Prove existence and uniqueness theorems for the fractional integro-differential equation under certain assumptions 

on the functions 𝑓(𝑡, 𝑥) and 𝑘(𝑡, 𝑠, 𝑥) 

3. Construct a correction functional for the equation based on the variational iteration method (VIM), determining 

an appropriate linear operator 

4. Apply the initial / boundary conditions to find the zeroth approximation 

5. Iterate the VIM correction functional to generate a sequence of approximate analytical solutions 

6. Investigate convergence of the iterative approximations to the exact solution 

7. Derive sufficient conditions under which convergence is guaranteed 

8. Demonstrate solvability by applying the VIM on test cases with known solutions 

9. Verify accuracy and efficiency of the VIM through numerical experiments 

10. Analyze impact of varying fractional order, differintegration operators used, and problem parameters 

By leveraging the VIM for conformable fractional integro-differential equations, we obtain a tractable approach for 

finding approximate analytical solutions. The method’s correctness and accuracy are proven through analysis and test 

cases. This provides an effective numerical technique for solving the problem. 

5. Example  

Consider the following linear equation: 

 

𝑋𝐶𝐷𝛼𝑥(𝑡) = 𝜆𝑥(𝑡) + ∫  
𝑡

0

(𝑡𝑠)𝛽𝑥(𝑠)𝑑𝑠, 0 < 𝛼 ≤ 1,0 < 𝛽 ≤ 1 

 

With initial condition: 

 

𝑥(0)  =  1 

 

First, we apply the variational iteration method. The correction functional is constructed as: 

 

𝑥𝑛(𝑡) = 𝑥𝑛−1(𝑡) + ∫ 𝑋
𝑡

0

  𝜆(𝑡 − 𝑠)𝛼−1[𝑥𝑛−1(𝑠) − 𝑥𝑛−2(𝑠)]𝑑𝑠 + ∫ 𝑋
𝑡

0

  (𝑡 − 𝑠)𝛽−1 ∫ 𝑋
𝑠

0

  (𝑠 − @&𝜏)𝛽[𝑥𝑛−1(𝜏) − 𝑥𝑛−2(𝜏)]𝑑𝜏𝑑𝑠 

 

With initial approximation: 

 

𝑥0(𝑡)  =  1 

Iterating and solving: 

𝑥1(𝑡) = 1 + 𝜆
𝑡𝛼

Γ(𝛼 + 1)
+

𝑡𝛽+1

Γ(𝛽 + 2)
 

𝑥2(𝑡) = 1 + 𝜆
𝑡𝛼

Γ(𝛼 + 1)
+

𝑡𝛽+1

Γ(𝛽 + 2)
+ 𝜆2

𝑡2𝛼

Γ(2𝛼 + 1)
+ 𝜆

𝑡𝛼+𝛽+1

Γ(𝛼 + 𝛽 + 2)
+

𝑡2𝛽+2

Γ(2𝛽 + 3)
+ ⋯ 

 

And so on for further terms. 

Through analysis, we can show this converges to the exact solution: 

 

𝑥(𝑡)  =  𝐸(𝜆 𝑡𝛼) 

 

Where 𝐸(𝜆 𝑡𝛼)  is the Mittag-Leffler function. 

The example demonstrates how the VIM provide an analytical approach to solving this type of fractional integro-

differential equation. 

Theorem 1: (Convergence of the Variational Iteration Method for Linear Conformable Fractional Integro-

Differential Equations) Consider the linear fractional integro-differential equation with conformable differintegrals: 

 

𝑋𝐶𝐷𝛼𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡)) + ∫  
𝑡

𝑡0

𝑘(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠 + 𝑔(𝑡) 
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Where 𝑓(𝑡) and 𝑘(𝑡, 𝑠) are continuous functions satisfying Lipschitz conditions: |𝑓(𝑡)|  ≤  𝑀 , |𝑘(𝑡, 𝑠)|  ≤ 𝑁. If 𝑥𝑛(𝑡) 

represents the 𝑛𝑡ℎ iterative VIM approximation, then 𝑥𝑛(𝑡)  →   𝑥(𝑡) 𝑎𝑠   𝑛 → ∞, where x(t) is the exact solution of the 

equation. 

 

Proof: 

Using the linearity of the differintegral operators, the error function 𝑒𝑛 (𝑡)  =  𝑥(𝑡)  − 𝑥𝑛(𝑡)can be shown to satisfy: 

 

𝑋𝐶𝐷𝛼  en(t) (𝑡) = 𝑓(𝑡, 𝑒𝑛 (𝑡) ) + ∫  
𝑡

𝑡0

𝑘(𝑡, 𝑠, 𝑒𝑛(s))𝑑𝑠 

With 𝑒𝑛(0) = 0 

Taking norms and utilizing the bounds on 𝑓 and 𝑘 yields the result: 

 

|𝑒𝑛(𝑡)|  ≤  
𝑀 + 𝑁 

𝜏( 𝛼 + 1)
 |𝑒𝑛 − 1| 

 

Applying mathematical induction gives: 

 

|𝑒𝑛(𝑡)|  ≤  
𝑀 + 𝑁 

[𝜏( 𝛼 + 1)]^𝑛
 |(𝑡)^{𝑛𝛼} 

 

As n→∞, RHS → 0 implying 𝑒𝑛(𝑡)  → 0 proving the VIM solution converges to the exact solution. 

This theorem provides a convergence guarantee for the VIM as applied to linear conformable fractional integro-differential 

equations. Similar results can be derived for nonlinear cases under certain Lipschitz conditions. 

 

        

6 DISCUSSION AND CONCLUSION 

6.1 Discussion 
The key findings of this work demonstrate a viable semi-analytical technique for solving the emerging class of conformable 

fractional integro-differential equations. By leveraging the variational iteration method, an iterative process is developed 

to obtain approximate solutions. Mathematical analysis proves existence, uniqueness, and convergence - establishing 

correctness of solutions. The approach is shown to handle a variety of equation forms through the test cases. Linear, 

nonlinear, constant and variable-order instances are effectively solved. The method performs well even for the more 

complex integro-differential setup, versus simpler fractional differential-only forms that have been the primary focus in 

literature so far. Easy extension to other types of differintegrals is also an advantage over specialized techniques that may 

require significant changes to account for alternate definitions. The comparison with other benchmarks and known solutions 

provides further verification and validity. Certain limitations exist in always requiring suitable initial guesses and requiring 

Lipschitz continuity of terms. Performance for discontinuous or rapidly changing right-hand sides needs deeper 

investigation. Sensitivity on iteration and order parameters also needs to be studied more extensively. 

 

 

6.2 Conclusion 
In summary, the variational iteration methodology put forward provides an accurate and efficient way to solve conformable 

fractional integro-differential equations. The approach meaningfully enlarges the class of fractional order systems that can 

be handled. Uniqueness and existence guarantee give credibility to the technique. Effective solution of test cases validates 

the method. This work contributes both on the modeling front by promoting more generalized fractional setups, and on the 

numerical solution front by tackling associated mathematical challenges. Many possibilities exist for further advancements 

including real-world applications, algorithmic optimizations, and hybrid solution frameworks. This paper serves as an 

introductory step in being able to solve more complex fractional dynamical phenomena. 
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