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A B S T R A C T 

In this research paper a new modification of Gauss-Seidel method has been presented for solving the 

system of linear algebraic equations. The systems of linear algebraic equations have an important role 

in the field of science and engineering. This modification has been developed by using the procedure 

of Gauss-Seidel method and the concept of substitution techniques. Developed modification of Gauss-

Seidel method is a fast convergent as compared to Gauss Jacobi’s method, Gauss-Seidel method and 

successive over-relaxation (SOR) method. It is applicable to both diagonally dominant and positive 

definite symmetric systems of linear algebraic equations. Its solution has been compared with the Gauss 

Jacobi’s method, Gauss-Seidel method and Successive Over-Relaxation method by taking different 

systems of linear algebraic equations and found that, it was reducing to the number of iterations and 

errors in each problem. 

 

1. INTRODUCTION 

Consider the general form of the system of linear algebraic equations as 

𝐴𝑋 = 𝑏   

where 𝐴 = [𝑎𝑖,𝑗] be a non-singular square matrix,  𝑋 = [𝑥𝑖] 𝑎𝑛𝑑 𝑏 = [𝑏𝑖],   𝑖, 𝑗 = 1, 2, 3, … . , 𝑛 [1-2]. Further, this system 

of linear algebraic equations has categorized in two ways; homogeneous and non-homogeneous. If 𝑏 = 0 in eq. (1), then it 

is called a homogeneous system of linear equations otherwise non-homogeneous system of linear equations. The concept 

of system of linear equations was introduced by the famous mathematician Rene Descartes in the Europe in 1637 [3-5]. 

The system of linear algebraic equations has an important role for solving different physical problems of engineering and 

science. It is widely used in mechanical systems, electrical circuits, transportation problems operational research, physics, 

engineering, statistics and social sciences [6-9]. The physical problems in the above fieldshave been solved by using direct 

and indirect methods [7]. Among the direct methods, the Cramer’s rule, Gauss Elimination method, Gauss Jordan method, 

and LU Decomposition method are well-known direct methods for solving the system of linear algebraic equations [4-5], 

[10-11]; whereas, the Gauss Jacobi’s method, Gauss Seidel method and successive over relaxation method are best indirect 

methods for solving a large system of linear algebraic equations [3],[12-14]. Actually, the indirect methods are iterative 

methods which provide approximate solutions; these methods are powerful tools for solving a large system through the 

computer programming. Large systems of linear equations can’t be easily solved by using direct methods because they 

required more time and a lot of efforts [15], that is why, indirect methods mean iterative methods are given more preference 

for solving large systems of linear equations with the help of computer programming in a short time. There are not enough 
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numerical methods for solving every system of linear algebraic equations because the developed methods have some 

restrictions or specification for using and cannot be apply for every system of linear equations. The system of linear 

equations has different types such as diagonally dominant, strictly diagonally dominant, ill-condition, well-conditioned, 

consistent, inconsistent etc. [16]. The system of linear equations which have solution either unique or infinitely many are 

known as consistent whereas the system which has no solution are known as inconsistent system of linear equations [3]. 

The Gauss Jacobi’s method and Gauss Seidel method are only applicable for solving diagonally dominant system of linear 

equations; it means every iterative method is used for solving a specific type of system of linear equations. That is why, 

different researchers and scholars have developed various numerical methods for solving system of linear equations and 

they are also trying to develop new efficient and fast convergent methods. Previous developed iterative methods and their 

working rules are discussed here. 

 

1.1. Gauss Jacobi’s iterative method 

Gauss Jacobi’s method is an old iterative method which is used for solving the diagonally dominant system of linear 

algebraic equations [3], [12]. The working rule for Gauss Jacobi’s method is explained here by taking a 3 × 3 system of 

linear algebraic equations satisfying the conditions of diagonally dominant. 

𝑎11𝑥 + 𝑎12𝑦 + 𝑎13𝑧 = 𝑏1
𝑎21𝑥 + 𝑎22𝑦 + 𝑎23𝑧 = 𝑏2
𝑎31𝑥 + 𝑎32𝑦 + 𝑎33𝑧 = 𝑏3

} 

Now, rearrange the system for 𝑥, 𝑦 𝑎𝑛𝑑 𝑧. 

 

𝑥 =
1

𝑎11
(𝑏1 − 𝑎12𝑦 − 𝑎13𝑧)

𝑦 =
1

𝑎22
(𝑏2 − 𝑎21𝑥 − 𝑎23𝑧)

𝑧 =
1

𝑎33
(𝑏3 − 𝑎31𝑥 − 𝑎32𝑦)}

  
 

  
 

 

 

The Gauss Jacobi’s method is an iterative method so; write the above formula in an iterative form as 

 

𝑥𝑛+1 =
1

𝑎11
(𝑏1 − 𝑎12𝑦

𝑛 − 𝑎13𝑧
𝑛)

𝑦𝑛+1 =
1

𝑎22
(𝑏2 − 𝑎21𝑥

𝑛 − 𝑎23𝑧
𝑛)

𝑧𝑛+1 =
1

𝑎33
(𝑏3 − 𝑎31𝑥

𝑛 − 𝑎32𝑦
𝑛)
}
  
 

  
 

 

This is an iterative formula Gauss Jacobi’s method. Here 𝑛 = 0, 1, 2, 3, …. 
 

For solving the given system of linear algebraic equations, take initial guesses as (𝑥0, 𝑦0, 𝑧0) = (𝑘, 𝑘, 𝑘)(where k is a 

constant) for getting first approximate solution and again, use the solution set of first iteration as initial guesses for the 

second approximate solution and so on. 

 

1.2. Gauss-Seidel iterative method 
Gauss Seidel method is the modification of Gauss Jacobi’s method [3], [12]. It uses the updated previous calculated value 

for the second value in the every iteration. This method also works for the diagonally dominant system of linear algebraic 

equations. The procedure of Gauss Seidel method is also explained here by taking a 3 × 3 system of linear algebraic 

equations given by eq. (2) which is 
𝑎11𝑥 + 𝑎12𝑦 + 𝑎13𝑧 = 𝑏1
𝑎21𝑥 + 𝑎22𝑦 + 𝑎23𝑧 = 𝑏2
𝑎31𝑥 + 𝑎32𝑦 + 𝑎33𝑧 = 𝑏3

} 

Now, rearrange the system of linear for 𝑥, 𝑦 𝑎𝑛𝑑 𝑧. 

 

 

(2) 

(3) 
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𝑥 =
1

𝑎11
(𝑏1 − 𝑎12𝑦 − 𝑎13𝑧)

𝑦 =
1

𝑎22
(𝑏2 − 𝑎21𝑥 − 𝑎23𝑧)

𝑧 =
1

𝑎33
(𝑏3 − 𝑎31𝑥 − 𝑎32𝑦)}

  
 

  
 

 

 

 

 

Gauss Seidel method uses initial guesses and updated calculated value and its iterative formula is defined as 

 

𝑥𝑛+1 =
1

𝑎11
(𝑏1 − 𝑎12𝑦

𝑛 − 𝑎13𝑧
𝑛)

𝑦𝑛+1 =
1

𝑎22
(𝑏2 − 𝑎21𝑥

𝑛+1 − 𝑎23𝑧
𝑛)

𝑧𝑛+1 =
1

𝑎33
(𝑏3 − 𝑎31𝑥

𝑛+1 − 𝑎32𝑦
𝑛+1)

}
  
 

  
 

                                                                                            

 

This is an iterative formula for the Gauss Seidel method. The iterative formula is used for finding the solution of given 

system of linear equation by assuming an initial guesses as (𝑥0, 𝑦0, 𝑧0) = (𝑘, 𝑘, 𝑘) where k is a constant and updated 

calculated value for the solution in the first approximation. Similarly, assume the solution of first approximation as initial 

guesses and proceed for the solution in the second approximation as above and so on. 

 

1.3. Successive Over-Relaxation method (SOR method) 
Successive over-relaxation method is an iterative method and a variant of Gauss Seidel method [12-13]. This method 

accelerates the Gauss Seidel method by using relaxation factor 𝜔. The iterative formula for SOR method is defined as 

𝑥𝑖
𝑝+1 = (1 − 𝜔)𝑥𝑖

𝑝 +
𝜔

𝑎𝑖𝑖
(𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑥𝑗

𝑝+1
𝑗<𝑖 − ∑ 𝑎𝑖𝑗𝑥𝑗

𝑝
𝑗>𝑖 ),   𝑖 = 1,2,3, … . , 𝑛 (5) 

In this method if 𝜔 = 1, then it simplifies the Gauss Seidel method and if 0 < 𝜔 < 1 then it is called Successive under-

relaxation method and this method is convergent if 𝜔 ∈ (0, 2) [17]. 

 

2. RESEARCH METHODOLOGY 
The algorithm of new developed method has been generated by using the concept of substitution method and the procedure 

of Gauss-Seidel method. For the derivation, consider a 2 × 2 system of non-homogeneous linear equations in the form 
𝑎1𝑥 + 𝑏1𝑦 = 𝑐1
𝑎2𝑥 + 𝑏2𝑦 = 𝑐2

} 

where𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, 𝑐2 are constants and x and y are variables. From 2nd equation of eq. (6), the value of y is obtained 

and then it is substituted in the first equation of eq. (6) and rearranged for x in the form 

𝑥 =
𝑏2

𝑎1𝑏2 − 𝑏1𝑎2
[𝑐1 −

𝑏1𝑐2
𝑏2

] 

Again, from the first equation of eq. (6), the value of x is obtained and then substituted in the second equation of eq. (6) 

and rearranged for y in the form 

𝑦 =
𝑎1

𝑎1𝑏2 − 𝑏1𝑎2
[𝑐2 −

𝑐1𝑎2
𝑎1

]. 

Here eq. (6) and eq. (8) represent the exact solution of a given 2 × 2system of linear equations. Similarly, consider a 3 × 3 

system of non-homogeneous linear algebraic equations in the form 
𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 = 𝑑1
𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 = 𝑑2
𝑎3𝑥 + 𝑏3𝑦 + 𝑐3𝑧 = 𝑑3

}. 

From third equation of eq. (9), obtain the value of z. 

𝑧 =
𝑑3

𝑐3
−

𝑎3

𝑐3
𝑥 −

𝑏3

𝑐3
𝑦. 

From second equation of eq. (9), obtain the value of y. 

(4) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
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𝑦 =
𝑑2
𝑏2
−
𝑎2
𝑏2
𝑥 −

𝑐2
𝑏2
𝑧 

From first equation of eq. (9), obtain the value of x. 

𝑥 =
𝑑1
𝑎1
−
𝑏1
𝑎1
𝑦 −

𝑐1
𝑎1
𝑧 

Now, substitute eq. (10) and eq. (11) in the first equation of eq. (9). After substituting and rearranging it provides 

𝑥 =
𝑏2𝑐3

(𝑎1𝑏2𝑐3 − 𝑏1𝑎2𝑐3 − 𝑐1𝑏2𝑎3)
[𝑑1 −

𝑏1𝑑2
𝑏2

−
𝑐1𝑑3
𝑐3

+
𝑐1𝑏3
𝑐3

𝑦 +
𝑏1𝑐2
𝑏2

𝑧] 

Similarly, substitute eq. (10) and eq. (12) in the second equation of eq. (9) and rearranging. After rearranging it becomes 

𝑦 =
𝑎1𝑐3

(𝑎1𝑏2𝑐3−𝑏1𝑎2𝑐3−𝑐2𝑏3𝑎1)
[𝑑2 −

𝑑1𝑎2

𝑎1
−

𝑐2𝑑3

𝑐3
+

𝑐2𝑎3

𝑐3
𝑥 +

𝑐1𝑎2

𝑎1
𝑧]. 

Now, substitute eq. (11) and eq. (12) in the third equation of eq. (9) and rearranging it. After rearranging, it becomes 

𝑧 =
𝑎1𝑏2

(𝑎1𝑏2𝑐3−𝑏2𝑎3𝑐1−𝑐2𝑏3𝑎1)
[𝑑3 −

𝑑1𝑎3

𝑎1
−

𝑏3𝑑2

𝑏2
+

𝑏3𝑎2

𝑏2
𝑥 +

𝑏1𝑎3

𝑎1
𝑦]. 

Finally, eq. (13), eq. (14) and eq. (15) can be written in an iterative formula as 

𝑥𝑖+1 =
𝑏2𝑐3

(𝑎1𝑏2𝑐3 − 𝑏1𝑎2𝑐3 − 𝑐1𝑏2𝑎3)
[𝑑1 −

𝑏1𝑑2
𝑏2

−
𝑐1𝑑3
𝑐3

+
𝑐1𝑏3
𝑐3

𝑦𝑖 +
𝑏1𝑐2
𝑏2

𝑧𝑖]

𝑦𝑖+1 =
𝑎1𝑐3

(𝑎1𝑏2𝑐3 − 𝑏1𝑎2𝑐3 − 𝑐2𝑏3𝑎1)
[𝑑2 −

𝑑1𝑎2
𝑎1

−
𝑐2𝑑3
𝑐3

+
𝑐2𝑎3
𝑐3

𝑥𝑖+1 +
𝑐1𝑎2
𝑎1

𝑧𝑖]

𝑧𝑖+1 =
𝑎1𝑏2

(𝑎1𝑏2𝑐3 − 𝑏2𝑎3𝑐1 − 𝑐2𝑏3𝑎1)
[𝑑3 −

𝑑1𝑎3
𝑎1

−
𝑏3𝑑2
𝑏2

+
𝑏3𝑎2
𝑏2

𝑥𝑖+1 +
𝑏1𝑎3
𝑎1

𝑦𝑖+1]
}
  
 

  
 

 

where𝑖 = 0, 1, 2, 3, …. 
Eq. (16) is a developed an iterative formula for finding the solution of eq. (9). Using same techniques, it can be expanded 

for a𝑛 × 𝑛 system of non-homogeneous linear algebraic equations. 

Initially, developed iterative formula requires an initial guess i.e.  (𝑥0, 𝑦0, 𝑧0) = (𝑘, 𝑘, 𝑘)where k is any constant. 

Now, for the first iteration, put 𝑖 = 0 in eq. (16) and use(𝑥0, 𝑦0, 𝑧0) = (𝑘, 𝑘, 𝑘). Then 

𝑥1 =
𝑏2𝑐3

(𝑎1𝑏2𝑐3 − 𝑏1𝑎2𝑐3 − 𝑐1𝑏2𝑎3)
[𝑑1 −

𝑏1𝑑2
𝑏2

−
𝑐1𝑑3
𝑐3

+
𝑐1𝑏3
𝑐3

(𝒌) +
𝑏1𝑐2
𝑏2

(𝒌)] = 𝑚1𝑦
1

=
𝑎1𝑐3

(𝑎1𝑏2𝑐3 − 𝑏1𝑎2𝑐3 − 𝑐2𝑏3𝑎1)
[𝑑2 −

𝑑1𝑎2
𝑎1

−
𝑐2𝑑3
𝑐3

+
𝑐2𝑎3
𝑐3

(𝒎𝟏) +
𝑐1𝑎2
𝑎1

(𝒌)] = 𝑙1 

𝑧1 =
𝑎1𝑏2

(𝑎1𝑏2𝑐3 − 𝑏2𝑎3𝑐1 − 𝑐2𝑏3𝑎1)
[𝑑3 −

𝑑1𝑎3
𝑎1

−
𝑏3𝑑2
𝑏2

+
𝑏3𝑎2
𝑏2

(𝒎𝟏) +
𝑏1𝑎3
𝑎1

(𝒍𝟏)] = 𝑞1 

Similarly, for the second iteration, put 𝑖 = 1 in eq. (16) and use initial guesses as (𝑥1, 𝑦1, 𝑧1) = (𝑚1, 𝑙1, 𝑞1) then 

𝑥2 =
𝑏2𝑐3

(𝑎1𝑏2𝑐3 − 𝑏1𝑎2𝑐3 − 𝑐1𝑏2𝑎3)
[𝑑1 −

𝑏1𝑑2
𝑏2

−
𝑐1𝑑3
𝑐3

+
𝑐1𝑏3
𝑐3

(𝒍𝟏) +
𝑏1𝑐2
𝑏2

(𝒒𝟏)] = 𝑚2 

𝑦2 =
𝑎1𝑐3

(𝑎1𝑏2𝑐3 − 𝑏1𝑎2𝑐3 − 𝑐2𝑏3𝑎1)
[𝑑2 −

𝑑1𝑎2
𝑎1

−
𝑐2𝑑3
𝑐3

+
𝑐2𝑎3
𝑐3

(𝒎𝟐) +
𝑐1𝑎2
𝑎1

(𝒒𝟏)] = 𝑙2 

 

𝑧2 =
𝑎1𝑏2

(𝑎1𝑏2𝑐3 − 𝑏2𝑎3𝑐1 − 𝑐2𝑏3𝑎1)
[𝑑3 −

𝑑1𝑎3
𝑎1

−
𝑏3𝑑2
𝑏2

+
𝑏3𝑎2
𝑏2

(𝒎𝟐) +
𝑏1𝑎3
𝑎1

(𝒍𝟐)] = 𝑞2 

and continue same procedure up to required accuracy. 

 

3. CONVERGENCE CRITERIA 

Developed modified algorithm is valid for a non-homogeneous diagonally-dominant system of linear algebraic equations 

and for a positive definite, symmetric coefficient matrix.. It is fast convergent method as compared toGauss Jacobi’s 

method, Gauss-Seidel method and SOR method. 

Definition: A system of non-homogeneous linear equations is said to be in diagonally dominant [12], [18] if it satisfies the 

condition 
|𝑎11| ≥ |𝑎12| + |𝑎13| + ⋯+ |𝑎1𝑛|
|𝑎22| ≥ |𝑎21| + |𝑎23| + ⋯+ |𝑎2𝑛|
|𝑎33| ≥ |𝑎31| + |𝑎32| + ⋯+ |𝑎3𝑛|

⋮                  ⋮                    ⋮
|𝑎𝑛𝑛| ≥ |𝑎𝑛1| + |𝑎𝑛2| + ⋯+ |𝑎𝑛 𝑛−1|}

 
 

 
 

 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 
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where 𝑎𝑖𝑗 ,i, j = 1, 2, 3… n, are coefficients of variables used in the system of linear equations. 

 

4. RESULTS AND DISCUSSION 
In this section, results of proposed method are compared with the Gauss Jacobi’s method, Gauss Seidel method and 

Successive over-relaxation method by using Dev C++ programing. 

Example1: Solve the system of linear equations [6], [8], [12]: 

 

10𝑥1 − 2𝑥2 − 𝑥3 − 𝑥4 = 3 

−2𝑥1 + 10𝑥2 − 𝑥3 − 𝑥4 = 15 

−𝑥1 − 𝑥2 + 10𝑥3 − 2𝑥4 = 27 

−𝑥1 − 𝑥2 − 2𝑥3 + 10𝑥4 = −9 

Solution:  

 

  

TABLE I (a).   Solution of Example 1 

Iterative Methods Approximate Solution Exact solution No of 

iterations 

Absolute 

Errors 

Required 

Accuracy% 

Gauss Jacobi’s 

method 

𝑥1 = 1; 

𝑥2 = 2; 

𝑥3 = 3; 

𝑥4 = 0 

𝑥1 = 1; 𝑥2 = 2; 𝑥3 =

3; 𝑥4 = 0 

22 0,0,0,0 0.0000000001 

Gauss Seidel 

method 

𝑥1 = 1; 

𝑥2 = 2; 

𝑥3 = 3; 

𝑥4 = 0 

𝑥1 = 1; 𝑥2 = 2; 𝑥3 =

3; 𝑥4 = 0 

12 0, 0, 0, 0, 0.0000000001 

Proposed method 𝑥1 = 1; 

𝑥2 = 2; 

       𝑥3 = 3𝑥4    

= 2.88353𝑒−020 

𝑥1 = 1; 𝑥2 = 2; 𝑥3 =

3; 𝑥4 = 0 

6 0,0, 0,0 0.0000000001 

In the table 1(a), the numerical solutions of system of linear algebraic equations using Gauss Jacobi’s method, Gauss Seidel 

method and proposed method have been presented. The Gauss Jacobi’s method, Gauss Seidel method and proposed method 

show the almost same solution as exact solution within 22, 12, 6 number of iterations respectively. In the above table 1(a); 

the solutions are obtained at 0.0000000001 percentage accuracy with the initial guess as zeros (means all values of x are 

taken as zero). From the above table; it is clear that the proposed method performed almost same solution as exact solution 

within less number of iterations as compared to Gauss Seidel method and Gauss Jacobi’s method. The absolute errors of 

last iteration of each method are mentioned in the table and these results have been obtained by using Dev C++ software. 

TABLE I (b).   SOLUTION OF EXAMPLE 1 

Relaxation 

factor 𝝎 

Approximate Solution of SOR 

METHOD 

Exact solution No of 

iterations 

Absolute Errors Required 

Accuracy% 

𝝎 = 𝟏.𝟎𝟓 𝑥1 = 1; 

𝑥2 = 2; 

𝑥3 = 3; 

𝑥4 = 7.21904𝑒
−015 

𝑥1 = 1; 𝑥2 = 2; 𝑥3 =

3; 𝑥4 = 0 

12 Error 𝑥1 = 0  

Error 𝑥2 = 0 

Error 𝑥3 = 0 

Error𝑥4 = 1.516𝑒−011 

0.0000000001 

𝝎 = 𝟏.𝟏𝟓 𝑥1 = 1; 

𝑥2 = 2; 

𝑥3 = 3; 

𝑥4 = 1.09646𝑒
−013 

𝑥1 = 1; 𝑥2 = 2; 𝑥3 =

3; 𝑥4 = 0 

17 Error 𝑥1 = 0  

Error 𝑥2 = 0 

Error 𝑥3 = 0 

Error𝑥4 = 8.40623𝑒−011 

0.0000000001 
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𝝎 = 𝟏.𝟐𝟓 𝑥1 = 1; 

𝑥2 = 2; 

𝑥3 = 3 

𝑥4 = 1.03417𝑒
−013 

𝑥1 = 1; 𝑥2 = 2; 𝑥3 =

3; 𝑥4 = 0 

22 Error 𝑥1 = 0  

Error 𝑥2 = 0 

Error 𝑥3 = 0 

Error𝑥4 = 5.17086𝑒−011 

0.0000000001 

𝝎 = 𝟏.𝟓 𝑥1 = 1; 

𝑥2 = 2; 

𝑥3 = 3 

𝑥4 = 3.27366𝑒
−013 

𝑥1 = 1; 𝑥2 = 2; 𝑥3 =

3; 𝑥4 = 0 

44 Error 𝑥1 = 0  

Error 𝑥2 = 0 

Error 𝑥3 = 0 

Error𝑥4 = 9.82997𝑒−011 

0.0000000001 

𝝎 = 𝟏.𝟕𝟓 𝑥1 = 1; 

𝑥2 = 2; 

𝑥3 = 3 

𝑥4 = −4.07241𝑒
−013 

𝑥1 = 1; 𝑥2 = 2; 𝑥3 =

3; 𝑥4 = 0 

110 Error 𝑥1 = 0  

Error 𝑥2 = 0 

Error 𝑥3 = 0 

Error𝑥4 = 9.50229𝑒−011 

0.0000000001 

Table 1(b) represents the numerical analysis of the SOR method of example 1. In this table, the numerical solutions of SOR 

method are obtained by choosing different values of relaxation factor in the iterative formula of SOR method and found 

that SOR method taking same number of iterations as taken by Gauss Seidel method; which is shown in the table 1(a), 

whereas; it takes more iterations as compared to proposed method for obtaining solution. The solutions of SOR method 

calculated at 𝜔 = 1.05, 𝜔 = 1.15, 𝜔 = 1.25, 𝜔 =  1.5 𝑎𝑛𝑑𝜔 = 1.75 with the initial guesses as zeros (means all variables 

initially considered as zeros) and required accuracy percentage as 0.0000000001 represent in the table 1(b) have been 

compared with the solution of proposed method represent in the table 1(a) and found that the proposed method shows less 

number of iterations and more accuracy than the all SOR solutions represent in the table 1(b). The second and fifth columns 

of table 1(b) show the solutions of SOR method and absolute errors respectively obtained in the number of iterations written 

in the fourth column of table 1(b). 

Example 2: Solve the system of linear equations[9], [19]: 

4𝑥1 − 𝑥2 − 𝑥4 = 0 

−𝑥1 + 4𝑥2 − 𝑥3 − 𝑥5 = 5 

−𝑥2 + 4𝑥3 − 𝑥6 = 0 

−𝑥1 + 4𝑥4 − 𝑥5 = 6 

−𝑥2 − 𝑥4 + 4𝑥5 − 𝑥6 = −2 

−𝑥3 − 𝑥5 + 4𝑥6 = 6 

Solution: 

TABLE 2 (a).   SOLUTION OF EXAMPLE 2 

Iterative Methods Approximate Solution Exact solution No of iterations Absolute Errors Required Accuracy% 

Gauss Jacobi’s method 𝑥1 = 1 

𝑥2 = 2 

𝑥3 = 1 

𝑥4 = 2 

𝑥5 = 1 

𝑥6 = 2 

𝑥1 = 1 

𝑥2 = 2 

𝑥3 = 1 

𝑥4 = 2 

𝑥5 = 1 

𝑥6 = 2 

32 Error 𝑥1 = 1.19209𝑒
−005 

Error 𝑥2 = 0 

Error 𝑥3= 1.19209𝑒−005 

Error 𝑥4= 0 

Error 𝑥5= 2.38419𝑒−005 

Error 𝑥6= 0 

0.00001 

Gauss Seidel method 𝑥1 = 1 

𝑥2 = 2 

𝑥3 = 1 

𝑥4 = 2 

𝑥5 = 1 

𝑥6 = 2 

𝑥1 = 1 

𝑥2 = 2 

𝑥3 = 1 

𝑥4 = 2 

𝑥5 = 1 

𝑥6 = 2 

18 Error 𝑥1 = 5.96046𝑒
−006 

Error 𝑥2 = 1.19209𝑒
−005 

Error 𝑥3= 5.96046𝑒−006 

Error 𝑥4= 1.19209𝑒−005 

Error 𝑥5= 1.19209𝑒−005 

Error 𝑥6= 0 

0.00001 

Proposed method 𝑥1 = 1 

𝑥2 = 2 

𝑥3 = 1 

𝑥4 = 2 

𝑥5 = 1 

𝑥6 = 2 

𝑥1 = 1 

𝑥2 = 2 

𝑥3 = 1 

𝑥4 = 2 

𝑥5 = 1 

𝑥6 = 2 

8 Error 𝑥1 = 5.96046𝑒
−006 

Error 𝑥2 = 1.19209𝑒
−005 

Error 𝑥3= 0 

Error 𝑥4= 0 

Error 𝑥5= 0 

Error 𝑥6= 0 

0.00001 

The numerical solutions of Gauss Jacobi’s method, Gauss Seidel method and proposed method have been presented in the 

table 2(a). All these three solutions sets are obtained at 0.00001 percentage accuracy with the initial guesses as zeros (means 
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all values of x are taken as zero initially). The Gauss Jacobi’s method, Gauss Seidel method and proposed method showthe 

same solution sets as exact solution set within the 32, 18 and 8 numbers of iterations respectively. The proposed method 

reduces to the number of iterations and produce quickly solutions as compared to Gauss Jacobi’s method and Gauss Seidel 

method. In this table, the errors column shows the absolute errors of the solution set in the last iteration of corresponding 

methods. These solution sets have been obtained by using Dev C++ software. 

The numerical solution of SOR method at different values of relaxation factor, exact solution, and numbers of iterations 

carried out by SOR method, corresponding absolute errors of last iteration and required accuracy percentage have been 

presented in the Table 2(b). From the table 2(b) and table 2(c); it is observed that the SOR method takes more number of 

iterations for getting solution as the relaxation factor 𝜔 approaches to 2 and the SOR method uses more number of iterations 

as the relaxation factor 𝜔 approaches to 1 from the relaxation factor 𝜔 = 1.13. It provides required solution with least 

number of iterations using the value of relaxation factor 𝜔 = 1.13 and 1.12. These all solution sets present in table 2(b) 

and calculated for table 2(c) at different value of 𝜔 take more iteration as compared to the proposed method which is present 

in the table 2(a).  

 

TABLE 2 (b).   Solution of Example 2 

Relaxation 

factor 𝝎 

Approximate Solution 

of SOR method 

Exact 

solution 

No of 

iterations 

Absolute Errors Required 

Accuracy% 

𝝎 = 𝟏. 𝟏𝟎 𝑥1 = 1 

𝑥2 = 2 

𝑥3 = 1 

𝑥4 = 2 

𝑥5 = 1 

𝑥6 = 2 

𝑥1 = 1 

𝑥2 = 2 

𝑥3 = 1 

𝑥4 = 2 

𝑥5 = 1 

𝑥6 = 2 

12 Error 𝑥1 = 1.19209𝑒
−005 

Error 𝑥2 = 1.19209𝑒
−005 

Error 𝑥3 = 5.96046𝑒
−006 

Error 𝑥4 = 1.19209𝑒
−005 

Error 𝑥5= 5.96046𝑒−006 

Error 𝑥6= 0 

0.00001 

𝝎 = 𝟏. 𝟏𝟓 𝑥1 = 1 

𝑥2 = 2 

𝑥3 = 1 

𝑥4 = 2 

𝑥5 = 1 

𝑥6 = 2 

𝑥1 = 1 

𝑥2 = 2 

𝑥3 = 1 

𝑥4 = 2 

𝑥5 = 1 

𝑥6 = 2 

10 Error 𝑥1 = 6.55651𝑒
−005 

Error 𝑥2 = 4.76837𝑒
−005 

Error 𝑥3 = 1.19209𝑒
−005 

Error 𝑥4 = 0 

Error 𝑥5= 1.19209𝑒−005 

Error 𝑥6= 0 

0.00001 

𝝎 = 𝟏. 𝟐𝟓 𝑥1 = 1 

𝑥2 = 2 

𝑥3 = 1 

𝑥4 = 2 

𝑥5 = 1 

𝑥6 = 2 

𝑥1 = 1 

𝑥2 = 2 

𝑥3 = 1 

𝑥4 = 2 

𝑥5 = 1 

𝑥6 = 2 

13 Error 𝑥1 = 5.96046𝑒
−005 

Error 𝑥2 = 4.76837𝑒
−005 

Error 𝑥3 = 2.98023𝑒
−005 

Error 𝑥4= 0 

Error 𝑥5 = 1.19209𝑒
−005 

Error 𝑥6= 0 

0.00001 

𝝎 = 𝟏. 𝟓 𝑥1 = 1 

𝑥2 = 2 

𝑥3 = 1 

𝑥4 = 2 

𝑥5 = 1 

𝑥6 = 2 

𝑥1 = 1 

𝑥2 = 2 

𝑥3 = 1 

𝑥4 = 2 

𝑥5 = 1 

𝑥6 = 2 

26 Error 𝑥1 = 0 

Error 𝑥2 = 1.19209𝑒
−005 

Error 𝑥3 = 1.19209𝑒
−005 

Error 𝑥4= 0 

Error 𝑥5 = 5.96046𝑒
−006 

Error 𝑥6 = 0 

0.00001 

𝝎 = 𝟏. 𝟕𝟓 𝑥1 = 1 

𝑥2 = 2 

𝑥3 = 1 

𝑥4 = 2 

𝑥5 = 1 

𝑥6 = 2 

𝑥1 = 1 

𝑥2 = 2 

𝑥3 = 1 

𝑥4 = 2 

𝑥5 = 1 

𝑥6 = 2 

62 Error 𝑥1 = 0 

Error 𝑥2 = 1.19209𝑒
−005 

Error 𝑥3 = 5.96046𝑒
−006 

Error 𝑥4= 0 

Error 𝑥5 = 1.19209𝑒
−005 

Error 𝑥6 = 0 

0.00001 

TABLE 2 (c).   Solution of Example 2 Using Sor Method 

Value of 
Relaxation 

factor 𝝎 

1.05 1.10 1.11 1.12 1.13 1.35 1.14 1.15 1.25 1.5 1.75 
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No. of 
iterations 

15 12 11 9 9 10 10 10 13 26 62 

 

Example3: Solve the system of linear equations [20]: 

 

 

10𝑥1 − 8𝑥2 = −6 

−8𝑥1 + 10𝑥2 − 𝑥3 = 9 

−𝑥2 + 10𝑥3 = 28 

 

Solution: 

TABLE 3 (a).   Solution of Example 3 

Iterative 

Methods 

Approximate Solution Exact solution No of iterations Absolute Errors Required Accuracy% 

Gauss Jacobi’s 

method 

𝑥1 = 0.999995 

𝑥2 = 2 

𝑥3 = 3 

𝑥1 = 1 

𝑥2 = 2 

𝑥3 = 3 

59 Error 𝑥1 = 0.000101328 

Error 𝑥2 = 0.000345707 

Error 𝑥3= 0 

0.0000000001 

Gauss Seidel 

method 

𝑥1 = 0.999995 

𝑥2 = 2 

𝑥3 = 3 

𝑥1 = 1 

𝑥2 = 2 

𝑥3 = 3 

31 Error 𝑥1 = 0.0002563 

Error 𝑥2 = 0.000214577 

Error 𝑥3= 0 

0.0000000001 

Proposed 

method 

𝑥1 = 1 

𝑥2 = 2 

𝑥3 = 3 

𝑥1 = 1 

𝑥2 = 2 

𝑥3 = 3 

6 Error 𝑥1 = 5.96046𝑒
−006 

Error 𝑥2 = 0 

Error 𝑥3= 0 

 

0.0000000001 

The numerical solutions, no. of iterations and errors are obtained by using Gauss Jacobi’s method; Gauss Seidel method 

and proposed method have been presented in the table 3(a). The Gauss Jacobi’s method and Gauss Seidel method almost 

shows the same solution set as exact solution within the 59 and 31 numbers of iterations respectively whereas, the proposed 

method shows same solution set as exact solution within only 6 numbers of iterations. In this problem all solution sets are 

obtained with 0.0000000001 percentage accuracy and the initial guesses used for each method are zeros (it means all value 

of x are zero initially). Fifth column of the table 3(a) shows the absolute errors of each method obtained in the last iteration. 

Overall, it is observed from the table 3(a); the proposed method shows less number of iterations and performed very quickly 

solutions as compared to Gauss Jacobi’s method and Gauss Seidel methods. 

TABLE 3 (b).   Solution of Example 2  

Relaxation 

factor 𝝎 

Approximate Solution of 

SOR method 

Exact solution No of iterations Absolute Errors Required Accuracy% 

𝝎 = 𝟏. 𝟏𝟎 𝑥1 = 0.999997 

𝑥2 = 2 

𝑥3 = 3 

𝑥1 = 1 

𝑥2 = 2 

𝑥3 = 3 

25 Error 𝑥1 = 0.000214577 

Error 𝑥2 = 0.000166893 

Error 𝑥3= 0 

0.0000000001 

𝝎 = 𝟏. 𝟏𝟓 𝑥1 = 0.999998 

𝑥2 = 2 

𝑥3 = 3 

𝑥1 = 1 

𝑥2 = 2 

𝑥3 = 3 

22 Error 𝑥1 = 0.000196695 

Error 𝑥2 = 0.000143051 

Error 𝑥3= 0 

0.0000000001 

𝝎 = 𝟏. 𝟐𝟓 𝑥1 = 0.999999 

𝑥2 = 2 

𝑥3 = 3 

𝑥1 = 1 

𝑥2 = 2 

𝑥3 = 3 

15 Error 𝑥1 = 0.000149012 

Error 𝑥2 = 8.34465𝑒
−005 

Error 𝑥3= 0 

0.0000000001 

𝝎 = 𝟏.𝟓 𝑥1 = 1 

𝑥2 = 2 

𝑥3 = 3 

𝑥1 = 1 

𝑥2 = 2 

𝑥3 = 3 

26 Error 𝑥1 = 5.96046𝑒
−006 

Error 𝑥2 = 0 

Error 𝑥3= 0 

0.0000000001 

 

TABLE 3 (c).   Solution of Example #3 Using Sor Method 
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Value of 
Relaxation 

factor 𝝎 

1.05 1.10 1.15 1.20 1.23 1.24  1.25 1.26 1.27 1.30 1.5 

No. of 
iterations 

29 25 22 20 17 16  15 14 15 16 26 

Table 3(b) and table 3(c) represent the complete analysis of SOR method. All solution sets of examples 3; obtained by SOR 

method with corresponding absolute errors, number of iterations and relaxation factors have been presented in the table 

3(b). These all solution sets are very close to exact solution of example 3 but, the appropriate solution set is obtained by 

choosing a suitable value of relaxation factor that is 𝜔 = 1.25 as shown in the table 3(b); which also minimizes the error 

and takes a smaller number of iterations. So, at 𝜔 = 1.25 the SOR method produce a good solution of example 3. For more 

accurate solution the analysis has carried out by taking different value of relaxation factor in the SOR method as shown in 

the table 3(c) and found that 𝜔 = 1.26is abest appropriate relaxation factor for finding the best solution using SOR method. 

Finally, the best obtained solution set has been compared with the solution set obtained by proposed method and observe 

that the proposed method uses only 6 numbers of iterations for same solution set with minimum absolute errors whereas 

the SOR method uses minimum 14 numbers of iterations for the same solution. Hence, from the table 3(a), table 3(b) and 

table 3(c); it is clear that the proposed method is a best method for solving system of linear algebraic solutions. In the table 

3(b) and table 3(c), the initial guesses and required accuracy percentage are same as table 3(a).  

Example4: Solve the system of linear equations [20]: 

4𝑥1 − 𝑥2 = 1 

−𝑥1 + 4𝑥2 − 𝑥3 = 2 

−𝑥2 + 4𝑥3 − 𝑥4 = 2 

−𝑥3 + 4𝑥4 − 𝑥5 = 2 

−2𝑥4 + 4𝑥5 = 2 

Solution: The exact solution set is (𝑥1,  𝑥2, 𝑥3, 𝑥4,  𝑥5) = (0.464088, 0.856354, 0.961326, 0.98895, 0.994475) 

TABLE 4 (a).   Solution of Example 4  

Iterative 

Methods 

Approximate Solution No of 

iterations 

Absolute Errors Required 

Accuracy% 

Gauss 

Jacobi’s 

method 

𝑥1 = 0.464088 

𝑥2 = 0.856354 

𝑥3 = 0.961326 

𝑥4 = 0.98895 

𝑥5 = 0.994475 

24 Error 𝑥1 = 1.05669𝑒
−038 

Error 𝑥2 = 0 

Error 𝑥3= 0 

Error 𝑥4= 0 

Error 𝑥5= 0 

0.0000000001 

Gauss Seidel 

method 

𝑥1 = 0.464088 

𝑥2 = 0.856354 

𝑥3 = 0.961326 

𝑥4 = 0.98895 

𝑥5 = 0.994475 

13 Error 𝑥1 = 9.1894𝑒
−039 

Error 𝑥2 = 5.96046𝑒
−006 

Error 𝑥3 = 5.96046𝑒
−006 

Error 𝑥4= 0 

Error 𝑥5= 0 

0.0000000001 

Proposed 

method 

𝑥1 = 0.464088 

𝑥2 = 0.856354 

𝑥3 = 0.961326 

𝑥4 = 0.98895 

𝑥5 = 0.994475 

5 Error 𝑥1 = 0.000110269 

Error 𝑥2 = 0 

Error 𝑥3 = 2.38419𝑒
−005 

Error 𝑥4= 0 

Error 𝑥5= 0 

0.0000000001 

Methods’ name, approximate solutions, no. of iterations, absolute errors and required accuracy percentage used in each 

method have been presented in the table 4(a). For this problem; the Gauss Jacobi’s method, Gauss Seidel method and 

proposed method use 24, 13 and 5 numbers of iterations for obtaining solution sets with 0.0000000001 percentage accuracy. 

These solution sets almost are same as the exact solution set. In this table, the fifth column shows the absolute errors 

obtained in the last iteration of each method and these all results have been obtained by using Dev C++ software. The initial 

guesses have been used for this problem are zeros (means all variables considered as zero initially). 

TABLE 4 (b).   Solution of Example 4  
Relaxation 

factor 𝝎 

Approximate Solution of SOR 

method 

No of 

iterations 

Absolute Errors Required 

Accuracy% 
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𝝎 = 𝟏. 𝟎𝟓 𝑥1 = 0.464088 

𝑥2 = 0.856354, 𝑥3 = 0.961326 

𝑥4 = 0.98895, 𝑥5 = 0.994475 

10 Error 𝑥1 = 1.19209𝑒
−005 

Error 𝑥2 = 5.96046𝑒
−006, Error 𝑥3 = 0 

Error 𝑥4 = 0, Error 𝑥5 = 0 

0.0000000001 

𝝎 = 𝟏. 𝟏𝟎 𝑥1 = 0.464088 

𝑥2 = 0.856354,𝑥3 = 0.961326 

𝑥4 = 0.98895,𝑥5 = 0.994475 

9 Error 𝑥1 = 8.9407𝑒
−006, Error 𝑥2 = 0 

Error 𝑥3 = 5.96046𝑒
−006 

Error 𝑥4 = 5.96046𝑒
−006, Error 𝑥5 = 0 

0.0000000001 

𝝎 = 𝟏. 𝟏𝟓 𝑥1 = 0.464088 

𝑥2 = 0.856354,𝑥3 = 0.961326 

𝑥4 = 0.98895,𝑥5 = 0.994475 

10 Error 𝑥1 = 1.49012𝑒
−005 

Error 𝑥2 = 2.38419𝑒
−005, Error 𝑥3 = 5.96046𝑒

−006 

Error 𝑥4 = 5.96046𝑒
−006, Error 𝑥5= 0 

0.0000000001 

𝝎 = 𝟏. 𝟐𝟓 𝑥1 = 0.464088, 𝑥2 = 0.856354 

𝑥3 = 0.961326 

𝑥4 = 0.98895, 𝑥5 = 0.994475 

12 Error 𝑥1 = 2.38419𝑒
−005 

Error 𝑥2 = 9.53674𝑒
−005, Error 𝑥3 = 2.38419𝑒

−005 

Error 𝑥4 = 2.98023𝑒
−005, Error 𝑥5= 0 

0.0000000001 

𝝎 = 𝟏. 𝟓 𝑥1 = 0.464088 

𝑥2 = 0.856354, 𝑥3 = 0.961326 

𝑥4 = 0.98895, 𝑥5 = 0.994475 

23 Error 𝑥1 = 2.68221𝑒
−005 

Error 𝑥2 = 1.19209𝑒
−005, Error 𝑥3 = 4.76837𝑒

−005 

Error 𝑥4 = 1.19209𝑒
−005, Error 𝑥5= 0 

0.0000000001 

𝝎 = 𝟏. 𝟕𝟓 𝑥1 = 0.464088 

𝑥2 = 0.856354, 𝑥3 = 0.961326 

𝑥4 = 0.98895, 𝑥5 = 0.994475 

59 Error 𝑥1 = 1.49012𝑒
−005, Error 𝑥2 = 5.96046𝑒

−006 

Error 𝑥3 = 5.96046𝑒
−006Error 𝑥4 = 5.96046𝑒

−006 

Error 𝑥5= 0 

0.0000000001 

 

TABLE 4 (c).   SOLUTION OF EXAMPLE #3 USING SOR METHOD 

Value of 

Relaxation 

factor 𝝎 

1.05 1.06 1.07 1.08 1.09 1.10 1.13 1.15 1.25 1.5 1.75 

No. of 

iterations 

10 9 8 8 8 9 10 10 12 23 59 

Table 4(b) and table 4(c) show the complete numerical analysis of SOR method. In table 4(b); the values of relaxation 

factor have been chosen randomly as 𝜔 = 1.05, 𝜔 = 1.10, 𝜔 = 1.15,  𝜔 = 1.25, 𝜔 = 1.5 and 𝜔 = 1.75 and found that 

the SOR method takes 10, 9, 10, 12, 23 and 59 numbers of iterations respectively for getting the solution set. In table 4(b); 

all solution sets have been calculated by assuming initial guesses as zeros (it means all variable initially taken as zeros) and 

required accuracy percentage 0.0000000001. The fourth column of table 4(b) represents the absolute errors calculated in 

the last iteration by SOR method. From table 4(b), it is noticed that the SOR method provides an accurate solution set at 

𝜔 = 1.10 but, for getting more accurate solution set, it is further analyzed for the different value of relaxation factor near 

𝜔 = 1.10  and found that the SOR method performed more accurate solution set at 𝜔 = 1.07 with minimum number of 

iterations and absolute errors. Finally, the more accurate solution set obtained by SOR method has been compared with the 

solution set of proposed method given in the table 4(a) that the proposed method performed more accurate solution set with 

less numbers of iterations and absolute errors.  

From these four examples; it is clearly observed that the proposed method is fast convergent as compared to Gauss Jacobi’s 

method, Gauss Seidel method and Successive Over-Relaxation (SOR) method. 
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5. CONCLUSION 

In this research paper a new modification of Gauss Seidel method has been presented for solving non-homogeneous linear 

system of algebraic equations. This modification has been proposed by using the procedure of Gauss Seidel method and 

substitution techniques. Initially, each value of unknown or variable has obtained from the corresponding number of 

equation by arranging it (it means rearrange equation no. 1 for 𝑥1 and rearrange equation no. 2 for 𝑥2 and so on), then these 

values have been substituted in each equation and rearrange them for variables as Gauss Seidel method. The propose method 

is used for solving diagonally dominant and positive definite symmetric systems of linear algebraic equations and this 

method produced very quickly results as compared to Gauss Jacobi’s method, Gauss Seidel method and SOR method. The 

propose method shows the same solution as Gauss Seidel method within the almost half number of iterations of the Gauss 

Seidel method and same solution as Gauss Jacobi’s method within the almost ¼ number of iterations of the Gauss Jacobi’s 

method. This proposed method is best for solving a large number of systems of linear algebraic equations with less number 

of iterations and such numerical methods have a great importance in solving system of linear equations appearing in the 

different field of science and engineering. The validity of solution set of proposed method has been tested by comparing 

the results with Gauss Jacobi’s method, Gauss Seidel method and SOR method and it is also verified by using MATLAB 

software. For this work; a number of problems have been tested and found that the proposed method is a fast convergent 

method as compared to Gauss Jacobi’s method, Gauss Seidel method and Successive over-Relaxation method. 

. 
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