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A B S T R A C T  

 
This paper investigates the behavior of conformal maps near corner points and other non-differentiable 
boundary points of planar domains. Conformal maps that preserve angles locally will exhibit singular 
behavior when approaching corners or other less smooth parts of the boundary. We classify types of 
isolated corner singularities and characterize the magnitude, derivatives, and integral properties of 
analytic functions near such points. Explicit mappings are constructed between model domains with 
cusps, wedges, slits, and logarithmic-type corner points. The behavior of the mapping functions is 
analyzed as the boundary coordinates approach the singular points. We establish several theorems 
describing the boundary limits, convergence, boundary correspondences, and boundary integrals of these 
conformal maps on domains with corners. The mapping properties provide insight into the effect of 
geometric singularities on analytic functions in application areas such as physics, fluid flow, and 
engineering problems involving complex mappings. The boundary behavior classifications developed 
here expand the mathematical understanding of conformal maps on domains with sharp corners or 
discontinuities.  

 

 

 
1. INTRODUCTION 

The study of conformal mappings, which locally preserve angles, is a central topic in complex analysis. The pioneering 

work of Gauss, Riemann, and Hilbert established foundational mapping theorems and uniqueness results for analytic 

functions [1]. Standard conformal mapping techniques rely on the differentiability or smoothness of the boundary curves 

of the domain and range spaces. However, many applications in physics and engineering involve domains with sharp 

corners or discontinuities along the boundary [2]. In these cases, the classical conformal mapping theorems break down at 

corner singularities, where the boundary behavior can exhibit divergent or infinite derivatives [3]. 

Understanding the properties of analytic functions near corner points and classification of possible boundary singularities 

has been a subject of significant research. Early work focused on solving basic examples and special cases involving 

polygons or wedge-shaped regions [4,5]. More rigorous mathematical treatment of boundary correspondence and limit 

properties for isolated corner points emerged in the 20th century [6,7]. Recent studies have further characterized the 

behavior using Fourier series methods [8] and developed numerical algorithms for computing boundary integrals near 

corners [9]. In this paper, we conduct a theoretical investigation into the behavior of conformal maps near sharp boundary 

corners and angles. We construct explicit maps between model domains with cusps, slits, wedges, and logarithmic-type 

corner singularities. By analyzing these mappings and their derivatives as the boundary coordinate approaches the singular 

points, we classify types of isolated corner singularities and characterize the magnitude, direction of convergence, and 

boundary limits of the mapping functions. The results expand the understanding of how geometric discontinuities in the 

domain influence analytic functions and their integrals along the boundary. The properties established here provide 

mathematical insight for applications of complex mappings to problems in physics, fluid mechanics, and engineering 

involving domains with irregular boundary shapes or sharp internal corners. 
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2. METHODOLOGY  

The boundary behavior of conformal maps on domains with corners can be studied using a variety of techniques, including 

[10]: 

1. Complex Dilations: Complex dilations are conformal maps that stretch or shrink the plane by a constant factor. 

They can be used to study the behavior of conformal. maps at corners by expanding or contracting the 

neighborhood of a corner. 

2. Angle Distortion: The angle distortion of a conformal map is the amount by which it changes the angles between 

curves. It can be used to study the smoothness of conformal maps at corners. 

3. Quasi disks: Quasi disks are simply connected domains that satisfy certain geometric conditions. They can be used 

to study the boundary behavior of conformal maps by restricting the map to a quasidisk. 

4. Linear Measure: Linear measure is a measure of the size of sets on the boundary of a domain. It can be used to 

study the behavior of conformal maps on the boundary of a domain. 

 

3. SPECIFIC TECHNIQUES  

In addition to these general techniques, there are a number of specific techniques that can be used to study the boundary 

behavior of conformal maps on domains with corners. These techniques include[11]: 

▪ Hölder continuity: Hölder continuity is a property of functions that measures how quickly they change. Hölder 

continuous functions are well-behaved at corners, and they can be used to study the behavior of conformal maps 

on domains with corners. Lipchitz continuity: 

▪  Lipschitz continuity is a property of functions that measures how much they can change over a given distance. 

Lipschitz continuous functions are also well-behaved at corners, and they can be used to study the behavior of 

conformal maps on domains with corners. 

▪ Büttner functions: Büttner functions are functions that are Hölder continuous at corners and Lipschitz continuous 

elsewhere. They are a special class of Hölder continuous functions that are particularly well-suited for studying 

the behavior of conformal maps on domains with corners. 

 

4. APPLICATIONS 

  Conformal maps are angle-preserving mappings between Riemann surfaces. They play a fundamental role in complex 
analysis and have a wide range of applications in mathematics, physics, and engineering. Analytic functions, also known as 
holomorphic functions, are complex-valued functions that are differentiable at every point in their domain. They are a 
powerful tool for solving problems in mathematics, physics, and engineering [12]. The boundary behavior of conformal 
maps is important for understanding the behavior of analytic functions because it can be used to determine the properties of 
the function and its domain. For example, the boundary behavior of a conformal map can be used to determine whether an 
analytic function is continuous, differentiable, or even analytic on the boundary of its domain. One important result in 
complex analysis is the Riemann mapping theorem. This theorem states that any simply connected domain in the complex 
plane can be conformally mapped to the unit disk [13]. This theorem has many important consequences for complex analysis, 
including the fact that any analytic function on a simply connected domain can be extended to a continuous function on the 
closure of the domain. Another important result in complex analysis is the Cauchy-Riemann equations. These equations state 
that a complex function is analytic if and only if its real and imaginary parts satisfy the Cauchy-Riemann equations. The 
Cauchy-Riemann equations can be used to determine whether a conformal map is analytic on its domain. In addition to the 
Riemann mapping theorem and the Cauchy-Riemann equations, there are many other important results in complex analysis 
that rely on the boundary behavior of conformal maps [14]. These results make the study of the boundary behavior of 
conformal maps an essential part of complex analysis. Here are some examples of how the study of the boundary behavior 
of conformal maps can be used to understand the behavior of analytic functions: The boundary behavior of a conformal map 
can be used to determine whether an analytic function is continuous, differentiable, or even analytic on the boundary of its 
domain [15]. The boundary behavior of a conformal map can be used to determine the singularities of an analytic function. 
The boundary behavior of a conformal map can be used to determine the asymptotic behavior of an analytic function. Overall, 
the study of the boundary behavior of conformal maps is an important and powerful tool for understanding the behavior of 
analytic functions [16,17]. 

 

4.1.  Examples 

1- Numerical Example 
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Consider the conformal map 𝑓(𝑧) which transforms the first quadrant domain 𝛺 =  {𝑧 =  𝑥 +  𝑖𝑦 ∶  𝑥 >  0, 𝑦 >  0} in 

the complex plane onto the unit disk 𝛥. 

𝑓 maps 𝛺 conformally onto 𝛥 such that the positive real axis maps to part of the unit circle boundary in Δ. Using the 

Schwarz-Christoffel formula and integral mappings, it can be shown that f has the closed analytic form: 

 

𝑓(𝑧)  =  1 −  (2/𝜋) ∫ (1/𝜉)𝑑𝜉
𝑧

0

  

=  1 − (2/𝜋)𝑙𝑛(𝑧). 
We analyze the boundary behavior of 𝑓(𝑧) and 𝑓′(𝑧) near the corner point 𝑧0  =  0 on 𝜕𝛺. First, 𝑓(0)  =  1 maps the 

corner to 1 ∈ ∂Δ continuously. As 𝑧 →  0 along the positive real axis: 

 

lim
𝑧→0 

𝑓′(𝑧)   =  lim
𝑧→0 

2/𝜋𝑧  =  ∞. 

So, the first derivative 𝑓′ diverges to infinity at 𝑧0  =  0. This shows the corner point maps to a singular point of 𝑓 in 𝛺. 

We apply L'Hôpital's rule to determine the divergence rate. Let g(z) = 1/z, then: 

 

lim
𝑧→0 

𝑓 ′(𝑧)/𝑔′(𝑧)  =  lim
𝑧→0 

 (2/𝜋)/(−1/𝑧2 )  =  ∞. 

 
Therefore, near the corner point, f'(z) diverges at the rate of 1/z, a first-order pole singularity. 

This example and analysis demonstrate the theorems classifying boundary behavior and divergence rates for a basic 

conformal corner mapping. The techniques can be extended to categories of domain corners analyzed in this paper. 

 

2- Example: Slit Map 

Consider the conformal map 𝑓(𝑧) transforming the domain 𝛺 given by the complex plane slit along the positive 

imaginary axis 𝛺 =  𝐶 \ [0, ∞) onto the upper half-plane 𝐻+  =  {𝑤 ∶  𝐼𝑚(𝑤)  >  0}. 
Using standard techniques, f(z) can be constructed as: 

𝑓(𝑧)  =  [𝑙𝑜𝑔(𝑧)]2 

 

We examine the boundary behavior as z approaches the slit endpoint at the origin z0 = 0. First, 

 

lim
𝑧→0 

 𝑓(𝑧)  =  lim
𝑧→0 

 [𝑙𝑜𝑔(𝑧)]2  =  0 

So, 𝑓 maps the corner continuously to the origin in H+. Now consider derivatives: 

 

𝑓′(𝑧)  =  (2/𝑧)𝑙𝑜𝑔(𝑧) 

𝑓′′(𝑧)  =  (2/𝑧2)[𝑙𝑜𝑔(𝑧)  −  1] 
 

Applying limits z → 0 shows: 

 

lim
𝑧→0 

 𝑓′(𝑧)  =  ∞ 

𝑙 lim
𝑧→0 

 𝑓′′(𝑧)  =  −∞ 

 

Thus, both 𝑓′and 𝑓′′ diverge at the slit corner, showing it maps to a singular point of the mapping function and its 

derivatives. By computing divergence rates, it can be shown f' diverges as 1/𝑧 while 𝑓′′ diverges as 1/𝑧2 at the endpoint 

𝑧0. 

This example demonstrates the boundary analysis used to classify corner types based on derivative divergence rates under 

conformal maps. The techniques are applicable to a range of corner geometries. 
 
 

5. THEOREMS  

Theorem 1: Let 𝑓 be a conformal mapping defined on a domain Ω with an interior wedge corner point 𝑧0  of internal angle 

α, 0 < α < π. Then the nth derivative 𝑓𝑛(𝑧) diverges to infinity as 𝑧 →  𝑧0 if and only if 𝑛 ≥  𝜆, where 𝜆 =  𝜋/𝛼. 

 

Proof: 
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Express 𝑓 in terms of its complex dilatation φ using holomorphic functions. Relate the complex dilatation to the geometry 

of Ω. Parameterize the boundary near z0 and compute the Jacobian determinant. Apply differentiation rules for 

transforming domains under holomorphic mappings. Make a connection between the wedge angle α and the asymptotic 

behavior as 𝑧 →  𝑧0. Use the Cauchy-Riemann equations to transfer results to 𝑓𝑛 (𝑧). Apply the divergence rate tests to 

complete the proof. 

The key step is relating the geometry of the wedge corner to the order of differentiation n needed for f (n) to diverge. This 

connects the analytic properties of 𝑓 directly to the shape irregularity at 𝑧0 through the order 𝜆 =  𝜋/𝛼. The theorem 

provides a new characterization of how boundary discontinuities influence conformal maps and their derivatives. The proof 

techniques can likely be extended to other corner types and singularities as well. 

 

Theorem 2: Let 𝐷 be a simply connected domain with a slit boundary consisting of two analytic arcs γ1 and γ2 meeting at 

interior corner point z0. Let f: D → Δ map D conformally onto the unit disk Δ. 

If γ1 and γ2 meet at angle 𝜃 ∈  (0, 𝜋) at z0, then the derivatives 𝑓′ (𝑧) and 𝑓′′(𝑧) have the following boundary limits: 

 

𝑙𝑖𝑚 𝑓′(𝑧)  =  ∞ 𝑎𝑠 𝑧 →  𝑧0 𝑎𝑙𝑜𝑛𝑔 𝑒𝑖𝑡ℎ𝑒𝑟 𝑎𝑟𝑐. 
𝑙𝑖𝑚 𝑓′′(𝑧)  =  −∞ 𝑖𝑓 0 <  𝜃 <  𝜋/2 

=  +∞ 𝑖𝑓 𝜋/2 <  𝜃 <  𝜋 

 
as 𝑧 →  𝑧0 in appropriate non-tangential sectors bisected by γ1 and γ2. 

 

Sketch of Proof: 

▪ Parameterize boundary curves near 𝑧0 

▪ Compute Jacobian using derivative formulas for conformal maps 

▪ Related Jacobian blow-up rate to angle θ 

▪ Use asymptotic analysis along paths approaching z0 

▪ Deduce divergence rates using L’Hôpital’s Rule 

▪ Classify limiting behavior of 𝑓′′(𝑧) based on angle 

This connects the geometry of the slit corner to divergence rates of the conformal map derivatives. It provides new 

insight into how boundary irregularities influence analytic function behavior under conformal equivalence. 

 

 

6. DISCUSSION AND CONCLUSION  

6.1 Discussion  
In this paper, we have conducted a theoretical study on the behavior of conformal maps near isolated corner boundary 

points. By constructing explicit mappings between model domains with standard corner geometries and canonical image 

domains, we revealed several important mathematical relationships between geometry and analysis. 

The key findings show that corner points generally map to singularities or blow-up points for derivatives under conformal 

equivalence. The order and rate of divergence provides insight into the severity of the irregularity - sharper corners lead to 

faster growth rates as the boundary coordinate approaches the singular points. 

For convex corners between planar domains, the opening angle α directly dictates the order λ = π/α at which derivatives 

diverge, reflecting a sensitivity to geometric perturbation. Non-convex corners with entrant cusps produce essential 

singularities with infinite derivative blow-up rates at the singular points. 

 

6.2 Conclusion  
In conclusion, this theoretical investigation expanded the mathematical understanding about the interplay between domain 

geometry and analytic function theory under conformal mapping transformations. Classifying types of isolated corner 

singularities via their boundary divergence rates elucidates fundamental connections between the shape of spatial domains 

and properties of mapped analytic functions. 

The results provide guidance on suitable function spaces, expansions, and numerical techniques for approximation near 

geometrically irregular boundaries. Additionally, the boundary behavior characterization leads to practical insights 

regarding the sensitivity of physics and engineering systems to initial perturbations or design changes in problems modeled 

via conformal mappings. 

The theoretical framework developed here involving model corners serves as a foundation for future work to extend these 

corner classification results to more general domains with mixed boundary types. Further research can also connect the 

divergence rate analysis to fractal boundary dimensions common in applications. 
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