

 DOI[:https://doi.org/10.58496/BJM/2024/005;](https://doi.org/10.58496/BJM/2024/005) ISSN:3006-113X Babylonian Journal of Mathematics Vol. **2024, pp**. 44–47 <https://mesopotamian.press/journals/index.php/mathematics>

In this article, we establish and proof some theorem on commutativity of alternative ring with 2, $3 -$

Research Article Some Results on Commutativity for Alternative Rings With 2, 3-Torsion Free

Abubakar Salisu $1,*,$ $1,*,$ $1,*,$ Mustapha Mannir Gafai 2 , $\mathbf{\mathbf{\Psi}}$, Shu'aibu Salisu $3,$

1 Department of Transport, Planning and Management, Federal polytechnic Daura Katsina State. Nigeria.

2 Department of Mathematics and Statistics Umaru Musa Yar'adua University Katsina. Nigeria.

3 Department of computer science federal polytechnic Daura Katsina state. Nigeria.

A R T I C L E IN F O

A B S T R A C T

Article History Received 24 Dec 2023 Accepted 03 Mar 2024 Published 25 Mar 2024

torsion free satisfy the followi-*ng properties (Identities): $(p_1) [x^2y^2 + y^2x^2, x] = 0$ $(p_2) [x(xy)^2 + (xy)^2x, x] = 0$ $(p_3) [x(x^2y^2), x] = 0$ (p_4) $[x(xy), x] = 0$ for every x, y in R.

Keywords

Alternative ring

m-torsion free

assosymetric ring

commutator

Centre

prime rings

1. INTRODUCTION

In this paper (article), we first study some result on commutativity of alternative rings with 2, 3-torsion free with some properties (constrain) that commute with (x). R represents an alternative ring, The Centre $Z(R) = [x \in R/xy = yx]$, The commutator $[x, y] = xy - yx$, the anti commutator, $x^{\circ} y = xy + yx$, also $A(R)$ the assosymetric ring, $N(R)$ the set of nilpotent element.

An alternative ring R is a ring in which $(xx)y = x(xy)$, $y(xx) = (yx)x$ for all x, y in R, these equations are known as left and right alternative laws respectively. An assosymetric ring A(R) is one in which $(x, y, z) = (p(x), p(y), p(z))$, where p is any permutation of $x, y, z \in R$. An associator (x, y, z) we mean by $(x, y, z) = (xy)z - x(yz)$ for all $x, y, z \in R$. A ring R is called a prime if whenever A and B are ideals of R such that $AB = \{0\}$ then either $A = \{0\}$ or $B = \{0\}$. If in a ring R, the identity $(x, y, x) = 0$ i.e. $(xy)x = x(yx)$ for all x, y in R holds then R is called flexible. A ring R is said to be mtorsion free if $mx = 0$ implies $x = 0, m$ is any positive number for all $x \in R.A$ non-associative rings R is an additive abelian group in which multiplication is defined, which is distributive over addition on left as well as on right $[(x + y)z]$ $xz + yz$, $z(x + y) = zx + zy$, $\forall x, y, z \in R$.

Abuja bal and Khan [1] proved the commutativity of associative ring satisfies the identity $(xy)^2 = xy^2x$. Gupta [2] established that a division ring R is commutative if and only if $[xy, yx] = 0$.

In addition, Madana and Reddy [3] have established the commutativity of non-associative ring satisfying the identities $(xy)^2 = x^2y^2$ and $(xy)^2 \in Z(R)\forall x, y \in R$. Further, Madana Mohana Reddy and Shobha lath. [4] Established the commutativity of non-associative primitive rings satisfying the identities:

 $x(x^2 + y^2) + (x^2 + y^2)x \in Z(R)$ and $x(xy)^2 - (xy)^2x \in Z(R)$, Modification by these Scrutiny (observation) it is exist natural to look commutativity of alternative rings satisfies: (p_1) (p_2) , (p_3) & (p_4) .

In the present paper we consider the following theorems.

2. THE MAIN THEOREMS

Now, we begin with the proof of our theorems.

Theorem 1: Let R be 2-torsion free alternative rings with unity satisfy the following constrain (p_1) for every x, y in R , *then is commutative.*

Proof $[x^2y^2 + y^2x^2, x]$ $x(x^2y^2 + y^2x^2) - (x^2y^2 + y^2x^2)x = 0$ $x(x^2y^2 + y^2x^2) = (x^2y^2 + y^2x^2)$ $\big) x \tag{1}$ Put $x = (x + 1)$ in 1 above \Rightarrow $(x + 1)[(x + 1)^2y^2 + y^2(x + 1)^2] = [(x + 1)^2y^2 + y^2(x + 1)^2](x + 1)$ $=$ $(x + 1)[(x² + 2x + 1)y² + y²(x² + 2x + 1)] = [(x² + 2x + 1)y² + y²(x² + 2x + 1)](x + 1)$ $= \left[(x^2y^2 + 2xy^2 + y^2) + (y^2x^2 + 2y^2x + y^2) \right] = \left[(x^2y^2 + 2xy^2 + y^2) + (y^2x^2 + 2y^2x + y^2) \right](x+1)$ => (2 2)+ (2 2)+ ² + (2 2)+ (2 ²)+ ² + 2 ² + 2 ² + ² + 2 ² +2 ² + ² = (2 2) + $(2xy^2)x + y^2x + (y^2x^2)x + (2y^2x)x + y^2x + (x^2y^2) + 2xy^2 + y^2 + (y^2x^2) + 2y^2x + y^2$ \Rightarrow $x(x^2y^2 + y^2x^2) + x(2xy^2 + 2y^2x) + 2xy^2 + x^2y^2 + 2xy^2 + y^2x^2 + 2y^2x + 2y^2$ $=(x^2y^2+y^2x^2)x + (2xy^2+2y^2x)x + 2y^2x + x^2y^2 + 2xy^2 + y^2x^2 + 2y^2x + y^2$ Using 1 above and collecting like terms we get \Rightarrow $x(2xy^2 + 2y^2x) + xy^2 + xy^2 = (2xy^2 + 2y^2x)x + y^2x + y^2x$ (2) Apply 2-torsion free in 2 we had $xy^2 + xy^2 = y^2x + y$ $2xy^2 = 2y^2x$ $xy^2 = y$ 2χ (3) Insert $y = y + 1$ in 3 above $x(y + 1)^2 = (y + 1)^2 x$ \Rightarrow $x(y^2 + 2y + 1) = (y^2 + 2y + 1)x$ $xy^2 + 2xy + y = y^2x + 2yx + y$ Using 3 above and collecting like terms we obtain. $2xy = 2yx$ $2(xy - yx) = 0$ $xy = yx$ Which is commutative. *Theorem 2: Let be 2, 3-torsion free alternative rings with unity 1, satisfy the following property* (p_2) for every x, y in R, then R is commutative. *Proof:* From our hypothesis i.e $[x(xy)^2 + (xy^2)x, x]$ Then we had $x[x(xy)^{2} + (xy)^{2}x] = [x(xy)^{2} + (xy)^{2}x]x$ $x[x(x^2y^2) + (x^2y^2)x] = [x(x^2y^2) + (x^2y^2)$ $\lbrack x \rbrack x$ (4) Put $x = (x + 1)$ in 4 above $\Rightarrow (x+1)[(x+1)(x+1)^2y^2) + (x+1)^2y^2)(x+1)] = [(x+1)(x+1)^2y^2) + (x+1)^2y^2)(x+1)](x+1)$ $\begin{aligned} = \left[(x+1)(x^2y^2 + 2xy^2 + y^2) + (x^2y^2 + 2xy^2 + y^2)(x+1) \right] = \left[(x+1)(x^2y^2 + 2xy^2 + y^2) + (x^2y^2 + y^2) \right] \end{aligned}$ $(2xy^2 + y^2)(x + 1)](x + 1)$ $\Rightarrow (x + 1)[x(x^2y^2) + x(2xy^2) + xy^2 + x^2y^2 + 2xy^2 + y^2 + (x^2y^2)x + (2xy^2)x + y^2x + x^2y^2 + 2xy^2 + y^2] =$ $[x(x^{2}y^{2}) + x(2xy^{2}) + xy^{2} + x^{2}y^{2} + 2xy^{2} + y^{2} + (x^{2}y^{2})x + (2xy^{2})x + y^{2}x + x^{2}y^{2} + 2xy^{2} + y^{2}] (x + 1)$ $= x(x(x^2y^2)) + x(x(2xy^2)) + x^2y^2 + x(x^2y^2) + 2x^2y^2 + xy^2 + x(x^2y^2)x + (2x^2y^2)x + x(y^2x) + x(x^2y^2) + y^2y^2$ $2x^2y^2 + xy^2 + x(x^2y^2) + x(2xy^2) + xy^2 + x^2y^2 + 2xy^2 + y^2 + (x^2y^2)x + (2xy^2)x + y^2x + x^2y^2 + 2xy^2 + y^2 =$ $[x(x^2y^2)x + x(2xy^2)x + (xy^2)x + (x^2y^2)x + (2xy^2)x + y^2x + ((x^2y^2)x)x + ((2xy^2)x)x + y^2x^2 + (x^2y^2)x + y^2x^2 + (x^2y^2)x +$ $(2xy^2)x + y^2x + x(x^2y^2) + x(2xy^2) + xy^2 + x^2y^2 + 2xy^2 + y^2 + (x^2y^2)x + (2xy^2)x + y^2x + x^2y^2 + 2xy^2 + y^2y + 2xy^2 + y^2z + y^2z + y^2z + y^2z$ y^2]. $= x[x(x^2y^2) + (x^2y^2)x] + x[x(2xy^2) + (2xy^2)x] + 2x(x^2y^2) + 3(x^2y^2) + 3x(2xy^2) + 3xy^2 + x(y^2x) + 2xy^2 +$ $2xy^{2} + 2y^{2} + (x^{2}y^{2})x + (2xy^{2})x + y^{2}x = [x(x^{2}y^{2}) + (x^{2}y^{2})x]x + [x(2xy^{2}) + (2xy^{2})x]x + 3(x^{2}y^{2})x +$ $(3xy^2)x + (3xy^2)x + 3y^2x + (y^2x)x + 2(x^2y^2) + x(x^2y^2) + 3xy^2 + xy^2 + 2y^2$ Collecting terms, Using 4 and applied 2, 3 -torsion free we get: $y^2x = xy^2$ (5) put $y = (y + 1)$ in 5 above $(y + 1)^2 x = x(y + 1)^2$ $(y^2 + 2y + 1)x = x(y^2 + 2y + 1)$

 $y^2x + 2yx + x = xy^2 + 2xy + x$ Collect like term and used 5 we arrived at: $2yx = 2xy$ <=> $2yx - 2xy = 0$ $2(yx + xy) = 0$ Equate both sides we had $yx + xy = 0$ $yx = xy \le y \le \lfloor x, y \rfloor$ is commutative hence the proof of theorem 2. *Theorem* **3:** Let R be 2-torsion free alternative rings with unity satisfy the following constrain (p_3) for every x, y in R, *then is commutative. Proof:* $[x(x^2y^2), x] = 0$ The hypothesis can be re-write as $x[x(x^2y^2) - (x^2y^2)x]x = 0$ $x[x(x^2y^2)] = [(x^2y^2)]$ $\lbrack x \rbrack x$ (6) Insert $x = (x + 1)$ in 6 above. $(x + 1)[(x + 1)(x + 1)^2 y^2] = [(x + 1)^2 y^2 (x + 1)](x + 1).$ $\left[\frac{z}{(x+1)}[(x+1)(x^2+2x+1)y^2] - \frac{(x^2+2x+1)y^2(x+1)}{(x+1)}\right]$ $\left[\frac{z}{(x+1)}[(x+1)(x^2y^2+2xy^2+y^2)]\right] = \frac{[(x^2y^2+2xy^2+y^2)(x+1)](x+1)}{[(x+1)(x^2+y^2)]}$ $\left[(x^2y^2)x + (2xy^2) + x(2xy^2) + xy^2 + x^2y^2 + 2xy^2 + y^2 \right] = \left[(x^2y^2)x + (2xy^2)x + y^2x + x^2y^2 + 2xy^2 + y^2 \right]$ y^2](x + 1). $= x[x(x^2y^2)] + x(2x^2y^2) + x^2y^2 + x(x^2y^2) + 2x^2y^2 + xy^2 + x(x^2y^2) + x(2xy^2) + xy^2 + x^2y^2 + 2xy^2 + y^2] =$ $[(x^2y^2)x]x + [(2x^2y^2)]x + (xy^2)x + (x^2y^2)x + (2xy^2)x + y^2x + (x^2y^2)x + (2xy^2)x + xy^2 + x^2y^2 + 2xy^2 + y^2$ We collect like terms, Using 6 and apply 2-torsion free we get. $xy^2 = y$ 2χ (7) put $y = (y + 1)$ in 7 above $x(y + 1)^2 = (y + 1)^2 x$ $x(y^2 + 2y + 1) = (y^2 + 2y + 1)x$ $(xy^{2} + 2xy + x) = (y^{2}x + 2yx + x)$ Apply 7 and collect like terms $2xy = 2yx \quad \leq \geq 2(xy - yx) = 0$ $xy = yx$ is commutative hence the proof of theorem 3. **Theorem 4:** Let R be 2-torsion free alternative rings with unity satisfy the following constrain p_4 for every x, y in R, *then is commutative. Proof. From our hypothesis* $[x(xy), x]$ $[x(x(y)] - [x(xy)]x = 0]$ $x[x(xy)] = [x(xy)]x$ (8) Insert $x = (x + 1)$ in above 8 $(x + 1)[(x + 1)(xy + y)] = [(x + 1)(xy + y)](x + 1)$ $(x + 1)[x(xy) + xy + xy + y] = [x(xy) + xy + xy + y](x + 1)$ $= x[x(xy)] + x(xy) + x(xy) + xy + x(xy) + xy + xy + y] = [x(xy)]x + (xy)x + (xy)x + y + x(xy) + xy + y$ $xy + y$] $=>|x(xy)| + 2x(xy) + xy + x(xy) + xy + xy + y| = |x(xy)|x + 2(xy)x + y + x(xy) + xy + y|$ Using 8 and apply 2-torsion free we get. $xy + x(xy) + xy = yx + x(xy) + xy$ (9) By Colleting like terms in 9 we had $xy = vx$ or [x, y]. Hence the proved Hence the completion of the proved, as we can seen from the above both the properties (constrains): $(p_1, p_2, p_3 \& p_4)$ Are

commutative and satisfy the Identities either $(xx)y = x(xy)$ or $y(xx) = (yx)x$. So R is an Alternative rings as we stated it above, Hence an alternative rings with Identity together with commutativity yields $(x, x, y) = 0$ (y, x, x) in complition.

Funding

The acknowledgments section of the paper does not mention any financial support from institutions or sponsors.

Conflicts of of interest

The author's paper declares that there are no relationships or affiliations that could create conflicts of interest.

Acknowledgment

The author acknowledges the institution for the intellectual resources and academic guidance that significantly enriched this research.

References

- [1] H. A. S. Abu Jabal and M. A. Khan, "Some Elementary Commutativity Theorem for Associative Rings," Kyungpook Math. J., vol. 1, pp. 49-51, 1993.
- [2] R. N. Gupta, "Nilpotent matrices with invertible transpose," Proc. Amer. Math. Soc., vol. 24, pp. 572-575, 1970.
- [3] Y. Madana Mohana Reddy, G. Shobhatha, and D. V. Ramin Reddy, "Some Commutativity Theorem for Non-Associative Rings," Math Archive, vol. 5, pp. 379-382, 2017.
- [4] Y. Madana Mohana Reddy and S. Latha, "On Commutativity for Certain Non-Associative Primitive Rings with $[x((xy)^2 - (xy^2)x) \in Z(R)]$," Math Archive, vol. 7, pp. 292-294, 2020.
- [5] Y. Madana Mohana Reddy, "Some Results on Commutativity of Some 2-Torsion Free Non-Associative Rings with Unity Satisfying: $(\alpha \beta)^2$ - $\alpha \beta \in Z(R)$ for all $\alpha \beta$ in R," Math Archive, vol. 44, no. 10, pp. 416-418, 2023.