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A B S T R A C T  
 

In this article, we establish and proof some theorem on commutativity of alternative ring with 2, 3 –
torsion free satisfy the followi-*ng properties (Identities):    

 (𝑝1) [𝑥2𝑦2 + 𝑦2𝑥2, 𝑥] = 0 

 (𝑝2) [𝑥(𝑥𝑦)2 + (𝑥𝑦)2𝑥, 𝑥] = 0 

 (𝑝3) [𝑥(𝑥2𝑦2), 𝑥] = 0 

  (𝑝4) [𝑥(𝑥𝑦), 𝑥] = 0                    𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥, 𝑦 𝑖𝑛 𝑅. 

1. INTRODUCTION 

In this paper (article), we first study some result on commutativity of alternative rings with 2, 3-torsion free with some 

properties (constrain) that commute with (𝑥). 𝑅 represents an alternative ring, The Centre 𝑍(𝑅) = [𝑥 ∈ 𝑅/𝑥𝑦 = 𝑦𝑥],The 

commutator [𝑥, 𝑦] = 𝑥𝑦 − 𝑦𝑥, the anti commutator, 𝑥 ° 𝑦 = 𝑥𝑦 + 𝑦𝑥, also 𝐴(𝑅) the assosymetric ring, 𝑁(𝑅) the set of 

nilpotent element.  

An alternative ring R is a ring in which  (𝑥𝑥)𝑦 = 𝑥(𝑥𝑦), 𝑦(𝑥𝑥) = (𝑦𝑥)𝑥 for all x, y in 𝑅, these equations are known  as left 

and right alternative laws respectively. An assosymetric ring A(R) is one in which (𝑥, 𝑦, 𝑧) = (𝑝(𝑥), 𝑝(𝑦), 𝑝(𝑧)), where p 

is any permutation of 𝑥, 𝑦, 𝑧 ∈  𝑅. An associator (𝑥, 𝑦, 𝑧) we mean by (𝑥, 𝑦, 𝑧) = (𝑥𝑦)𝑧 − 𝑥(𝑦𝑧)for all  𝑥, 𝑦, 𝑧 ∈ R. A ring 

𝑅 is called a prime if whenever A and B are ideals of 𝑅 such that 𝐴𝐵 = {0} then either 𝐴 = {0 }  𝑜𝑟 𝐵 = {0}. If in a ring 𝑅, 
the identity (𝑥, 𝑦, 𝑥) = 0 i.e. (𝑥𝑦)𝑥 = 𝑥 (𝑦𝑥) for all 𝑥, 𝑦 𝑖𝑛 𝑅 holds then 𝑅 is called flexible. A ring 𝑅 is said to be m-

torsion free if 𝑚𝑥 = 0  implies 𝑥 = 0, 𝑚 is any positive number for all 𝑥 ∈ 𝑅.A non-associative rings R is an additive 

abelian group in which multiplication is defined, which is distributive over addition on left as well as on right [(𝑥 + 𝑦)𝑧 =
𝑥𝑧 + 𝑦𝑧, 𝑧(𝑥 + 𝑦) = 𝑧𝑥 + 𝑧𝑦, ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑅]. 
Abuja bal and Khan [1] proved the commutativity of associative ring satisfies the identity (𝑥𝑦)2 = 𝑥𝑦2𝑥.Gupta [2] 

established that a division ring 𝑅 is commutative if and only if [𝑥𝑦, 𝑦𝑥] = 0. 

In addition, Madana and Reddy [3] have established the commutativity of non-associative ring satisfying the identities 

(𝑥𝑦)2 = 𝑥2𝑦2 and (𝑥𝑦)2 ∈ 𝑍(𝑅)∀𝑥, 𝑦 ∈ 𝑅.Further, Madana Mohana Reddy and Shobha lath. [4]Established the 

commutativity of  non-associative primitive rings satisfying the identities: 

𝑥(𝑥2 + 𝑦2)+(𝑥2 + 𝑦2)𝑥 ∈ 𝑍(𝑅)and 𝑥(𝑥𝑦)2 − (𝑥𝑦)2𝑥 ∈ 𝑍(𝑅), Modification  by these Scrutiny(observation) it is exist 

natural to look commutativity of alternative rings satisfies: (𝑝1) ,(𝑝2), ( p3 )& ( p4). 

In the present paper we consider the following theorems. 
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2. THE MAIN THEOREMS  
Now, we begin with the proof of our theorems. 

 

Theorem 1: Let 𝑅 be 2-torsion free alternative rings with unity satisfy the following constrain ( p1)    𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥, 𝑦 𝑖𝑛 𝑅, 
then 𝑅 is commutative. 

Proof 
[𝑥2𝑦2 + 𝑦2𝑥2, 𝑥] 
𝑥(𝑥2𝑦2 + 𝑦2𝑥2) − (𝑥2𝑦2 + 𝑦2𝑥2)𝑥 = 0 

𝑥(𝑥2𝑦2 + 𝑦2𝑥2) = (𝑥2𝑦2 + 𝑦2𝑥2)𝑥                                                                                 ( 1) 

Put 𝑥 = (𝑥 + 1)𝑖𝑛 1 𝑎𝑏𝑜𝑣𝑒 

=> (𝑥 + 1)[(𝑥 + 1)2𝑦2 + 𝑦2(𝑥 + 1)2] = [(𝑥 + 1)2𝑦2 + 𝑦2(𝑥 + 1)2](𝑥 + 1) 

=> (𝑥 + 1)[(𝑥2 + 2𝑥 + 1)𝑦2 + 𝑦2(𝑥2 + 2𝑥 + 1)] = [(𝑥2 + 2𝑥 + 1)𝑦2 + 𝑦2(𝑥2 + 2𝑥 + 1)](𝑥 + 1) 

=> (𝑥 + 1)[(𝑥2𝑦2 + 2𝑥𝑦2 + 𝑦2) + (𝑦2𝑥2 + 2𝑦2𝑥 + 𝑦2)] = [(𝑥2𝑦2 + 2𝑥𝑦2 + 𝑦2) + (𝑦2𝑥2 + 2𝑦2𝑥 + 𝑦2)](𝑥 + 1). 
=> 𝑥(𝑥2𝑦2) + 𝑥(2𝑥𝑦2) + 𝑥𝑦2 + 𝑥(𝑦2𝑥2) + 𝑥(2𝑦2𝑥) + 𝑥𝑦2 + 𝑦2𝑥2 + 2𝑥𝑦2 + 𝑦2 + 𝑦2𝑥2 + 2𝑦2𝑥 + 𝑦2 = (𝑥2𝑦2)𝑥 +
(2𝑥𝑦2)𝑥 + 𝑦2𝑥 + (𝑦2𝑥2)𝑥 + (2𝑦2𝑥)𝑥 + 𝑦2𝑥 + (𝑥2𝑦2) + 2𝑥𝑦2 + 𝑦2 + (𝑦2𝑥2) + 2𝑦2𝑥 + 𝑦2. 
=> 𝑥(𝑥2𝑦2 + 𝑦2𝑥2) + 𝑥(2𝑥𝑦2 + 2𝑦2𝑥) + 2𝑥𝑦2 + 𝑥2𝑦2 + 2𝑥𝑦2 + 𝑦2𝑥2 + 2𝑦2𝑥 + 2𝑦2

= (𝑥2𝑦2 + 𝑦2𝑥2))𝑥 + (2𝑥𝑦2 + 2𝑦2𝑥)𝑥 + 2𝑦2𝑥 + 𝑥2𝑦2 + 2𝑥𝑦2 + 𝑦2𝑥2 + 2𝑦2𝑥 + 𝑦2 

Using 1 above and collecting like terms we get 

=>  𝑥(2𝑥𝑦2 + 2𝑦2𝑥) + 𝑥𝑦2 + 𝑥𝑦2 = (2𝑥𝑦2 + 2𝑦2𝑥)𝑥 + 𝑦2𝑥 + 𝑦2𝑥                               (2)                                   

Apply 2-torsion free in 2 we had 

𝑥𝑦2 + 𝑥𝑦2 = 𝑦2𝑥 + 𝑦2𝑥            ↔                  2𝑥𝑦2 = 2𝑦2𝑥      

𝑥𝑦2 = 𝑦2𝑥                                                                                                                                (3)    

Insert 𝑦 = 𝑦 + 1 𝑖𝑛  3 𝑎𝑏𝑜𝑣𝑒 

𝑥(𝑦 + 1)2 = (𝑦 + 1)2𝑥 

=> 𝑥(𝑦2 + 2𝑦 + 1) = (𝑦2 + 2𝑦 + 1)𝑥 

𝑥𝑦2 + 2𝑥𝑦 + 𝑦 = 𝑦2𝑥 + 2𝑦𝑥 + 𝑦      Using 3 above and collecting like terms we obtain. 

2𝑥𝑦 = 2𝑦𝑥 

2(𝑥𝑦 − 𝑦𝑥) = 0 

𝑥𝑦 = 𝑦𝑥    Which is commutative. 

Theorem 2: Let 𝑅 be 2, 3-torsion free alternative rings with unity 1, satisfy the following property 

( p2)    𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥, 𝑦 𝑖𝑛 𝑅, then 𝑅 is commutative. 

Proof: 

From our hypothesis i.e 

[𝑥(𝑥𝑦)2 + (𝑥𝑦2)𝑥, 𝑥] Then we had 

𝑥[𝑥(𝑥𝑦)2 + (𝑥𝑦)2𝑥] = [𝑥(𝑥𝑦)2 + (𝑥𝑦)2𝑥] 𝑥                                   

𝑥[𝑥(𝑥2𝑦2) + (𝑥2𝑦2)𝑥] = [𝑥(𝑥2𝑦2) + (𝑥2𝑦2)𝑥]𝑥                                                                     (4) 

Put       𝑥 = (𝑥 + 1)         𝑖𝑛 4 𝑎𝑏𝑜𝑣𝑒 

=>(𝑥 + 1)[(𝑥 + 1)(𝑥 + 1)2𝑦2) + (𝑥 + 1)2𝑦2)(𝑥 + 1)] = [(𝑥 + 1)(𝑥 + 1)2𝑦2) + (𝑥 + 1)2𝑦2)(𝑥 + 1)](𝑥 + 1) 

=>(𝑥 + 1)[(𝑥 + 1)(𝑥2𝑦2 + 2𝑥𝑦2 + 𝑦2) + (𝑥2𝑦2 + 2𝑥𝑦2 + 𝑦2)(𝑥 + 1)] = [(𝑥 + 1)(𝑥2𝑦2 + 2𝑥𝑦2 + 𝑦2) + (𝑥2𝑦2 +
2𝑥𝑦2 + 𝑦2)(𝑥 + 1)](𝑥 + 1) 

=>(𝑥 + 1)[𝑥(𝑥2𝑦2) + 𝑥(2𝑥𝑦2) + 𝑥𝑦2 + 𝑥2𝑦2 + 2𝑥𝑦2 + 𝑦2 + (𝑥2𝑦2)𝑥 + (2𝑥𝑦2)𝑥 + 𝑦2𝑥 + 𝑥2𝑦2 + 2𝑥𝑦2 + 𝑦2] =
[𝑥(𝑥2𝑦2) + 𝑥(2𝑥𝑦2) + 𝑥𝑦2 + 𝑥2𝑦2 + 2𝑥𝑦2 + 𝑦2 + (𝑥2𝑦2)𝑥 + (2𝑥𝑦2)𝑥 + 𝑦2𝑥 + 𝑥2𝑦2 + 2𝑥𝑦2 + 𝑦2] (𝑥 + 1). 
=> 𝑥(𝑥(𝑥2𝑦2)) + 𝑥(𝑥(2𝑥𝑦2)) + 𝑥2𝑦2 + 𝑥(𝑥2𝑦2) + 2𝑥2𝑦2 + 𝑥𝑦2 + 𝑥(𝑥2𝑦2)𝑥 + (2𝑥2𝑦2)𝑥 + 𝑥(𝑦2𝑥) + 𝑥(𝑥2𝑦2) +
2𝑥2𝑦2 + 𝑥𝑦2 + 𝑥(𝑥2𝑦2) + 𝑥(2𝑥𝑦2) + 𝑥𝑦2 + 𝑥2𝑦2 + 2𝑥𝑦2 + 𝑦2 + (𝑥2𝑦2)𝑥 + (2𝑥𝑦2)𝑥 + 𝑦2𝑥 + 𝑥2𝑦2 + 2𝑥𝑦2 + 𝑦2 =
[𝑥(𝑥2𝑦2)𝑥 + 𝑥(2𝑥𝑦2)𝑥 + (𝑥𝑦2)𝑥 + (𝑥2𝑦2)𝑥 + (2𝑥𝑦2)𝑥 + 𝑦2𝑥 + ((𝑥2𝑦2)𝑥)𝑥 + ((2𝑥𝑦2)𝑥)𝑥 + 𝑦2𝑥2 + (𝑥2𝑦2)𝑥 +
(2𝑥𝑦2)𝑥 + 𝑦2𝑥 + 𝑥(𝑥2𝑦2) + 𝑥(2𝑥𝑦2) + 𝑥𝑦2 + 𝑥2𝑦2 + 2𝑥𝑦2 + 𝑦2 + (𝑥2𝑦2)𝑥 + (2𝑥𝑦2)𝑥 + 𝑦2𝑥 + 𝑥2𝑦2 + 2𝑥𝑦2 +
𝑦2]. 
=> 𝑥[𝑥(𝑥2𝑦2) + (𝑥2𝑦2)𝑥] + 𝑥[𝑥(2𝑥𝑦2) + (2𝑥𝑦2)𝑥] + 2𝑥(𝑥2𝑦2) + 3(𝑥2𝑦2) + 3𝑥(2𝑥𝑦2) + 3𝑥𝑦2 + 𝑥(𝑦2𝑥) + 2𝑥𝑦2 +
2𝑥𝑦2 + 2𝑦2 + (𝑥2𝑦2)𝑥 + (2𝑥𝑦2)𝑥 + 𝑦2𝑥 = [𝑥(𝑥2𝑦2) + (𝑥2𝑦2)𝑥]𝑥 + [𝑥(2𝑥𝑦2) + (2𝑥𝑦2)𝑥]𝑥 + 3(𝑥2𝑦2)𝑥 +
(3𝑥𝑦2)𝑥 + (3𝑥𝑦2)𝑥 + 3𝑦2𝑥 + (𝑦2𝑥)𝑥 +2(𝑥2𝑦2) + 𝑥(𝑥2𝑦2) + 3𝑥𝑦2 + 𝑥𝑦2 + 2𝑦2. 
Collecting terms, Using 4 and applied 2, 3 -torsion free we get: 

𝑦2𝑥 = 𝑥𝑦2                                                                                                                               (5) 

𝑝𝑢𝑡 𝑦 = (𝑦 + 1) in 5 above 

(𝑦 + 1)2𝑥 = 𝑥(𝑦 + 1)2 

(𝑦2 + 2𝑦 + 1)𝑥 = 𝑥(𝑦2 + 2𝑦 + 1) 
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𝑦2𝑥 + 2𝑦𝑥 + 𝑥 = 𝑥𝑦2 + 2𝑥𝑦 + 𝑥 
Collect like term and used 5 we arrived at: 

2𝑦𝑥 = 2𝑥𝑦      <=>   2𝑦𝑥 − 2𝑥𝑦 = 0 

2(𝑦𝑥 + 𝑥𝑦) = 0 
Equate both sides we had 

𝑦𝑥 + 𝑥𝑦 = 0 

𝑦𝑥 = 𝑥𝑦 <=> [𝑥, 𝑦] is commutative hence the proof of theorem 2. 

Theorem 3: Let 𝑅 be 2-torsion free alternative rings with unity satisfy the following constrain (𝑝3)   𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥, 𝑦 𝑖𝑛 𝑅, 
then 𝑅 is commutative. 

Proof: 

[𝑥(𝑥2𝑦2), 𝑥] = 0 The hypothesis can be re-write as 

𝑥[𝑥(𝑥2𝑦2) − (𝑥2𝑦2)𝑥]𝑥 = 0 

𝑥[𝑥(𝑥2𝑦2)] = [(𝑥2𝑦2)𝑥]𝑥                                                                                                        (6) 

 Insert  𝑥 = (𝑥 + 1) 𝑖𝑛  6 𝑎𝑏𝑜𝑣𝑒.    
(𝑥 + 1)[(𝑥 + 1)( 𝑥 + 1)2 𝑦2] = [( 𝑥 + 1)2 𝑦2(𝑥 + 1)](𝑥 + 1). 
=>(𝑥 + 1)[(𝑥 + 1)(𝑥2 + 2𝑥 + 1)𝑦2] = [(𝑥2 + 2𝑥 + 1)𝑦2(𝑥 + 1)](𝑥 + 1). 
=>(𝑥 + 1)[(𝑥 + 1)(𝑥2𝑦2 + 2𝑥𝑦2 + 𝑦2)] = [(𝑥2𝑦2 + 2𝑥𝑦2 + 𝑦2)(𝑥 + 1)](𝑥 + 1). 

=>(𝑥 + 1)[𝑥(𝑥2𝑦2) + 𝑥(2𝑥𝑦2) + 𝑥𝑦2 + 𝑥2𝑦2 + 2𝑥𝑦2 + 𝑦2] =  [(𝑥2𝑦2)𝑥 + (2𝑥𝑦2)𝑥 + 𝑦2𝑥 + 𝑥2𝑦2 + 2𝑥𝑦2 +
𝑦2](𝑥 + 1). 

=>𝑥[𝑥(𝑥2𝑦2)] + 𝑥(2𝑥2𝑦2) + 𝑥2𝑦2 + 𝑥(𝑥2𝑦2) + 2𝑥2𝑦2 + 𝑥𝑦2 + 𝑥(𝑥2𝑦2) + 𝑥(2𝑥𝑦2) + 𝑥𝑦2 + 𝑥2𝑦2 + 2𝑥𝑦2 + 𝑦2] =
[(𝑥2𝑦2)𝑥]𝑥 + [(2𝑥2𝑦2)]𝑥 + (𝑥𝑦2)𝑥 + (𝑥2𝑦2)𝑥 + (2𝑥𝑦2)𝑥 + 𝑦2𝑥 + (𝑥2𝑦2)𝑥 + (2𝑥𝑦2)𝑥 + 𝑥𝑦2 + 𝑥2𝑦2 + 2𝑥𝑦2 + 𝑦2. 
We collect like terms, Using 6 and apply 2-torsion free we get. 

      𝑥𝑦2 = 𝑦2𝑥                                                                                                                            (7) 

 𝑝𝑢𝑡 𝑦 = (𝑦 + 1) 𝑖𝑛 7 𝑎𝑏𝑜𝑣𝑒 

𝑥(𝑦 + 1)2 = (𝑦 + 1)2𝑥 

𝑥(𝑦2 + 2𝑦 + 1) = (𝑦2 + 2𝑦 + 1)𝑥 

(𝑥𝑦2 + 2𝑥𝑦 + 𝑥) = (𝑦2𝑥 + 2𝑦𝑥 + 𝑥) 
Apply 7 and collect like terms  

2𝑥𝑦 = 2𝑦𝑥     <=>    2(𝑥𝑦 − 𝑦𝑥) = 0 

𝑥𝑦 = 𝑦𝑥   𝑖𝑠 𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣𝑒 ℎ𝑒𝑛𝑐𝑒 𝑡ℎ𝑒 𝑝𝑟𝑜𝑜𝑓 𝑜𝑓 𝑡ℎ𝑒𝑜𝑟𝑒𝑚 3. 
Theorem 4: Let 𝑅 be 2-torsion free alternative rings with unity satisfy the following constrain 𝑝4  𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥, 𝑦 𝑖𝑛 𝑅, 
then 𝑅 is commutative. 

Proof. 

From our hypothesis  

[𝑥(𝑥𝑦), 𝑥] 
𝑥[𝑥(𝑥𝑦)] − [𝑥(𝑥𝑦)]𝑥 = 0 

𝑥[𝑥(𝑥𝑦)] = [𝑥(𝑥𝑦)]𝑥                                                                                                                  (8) 

Insert 𝑥 = (𝑥 + 1)  𝑖𝑛 𝑎𝑏𝑜𝑣𝑒 8 

(𝑥 + 1)[(𝑥 + 1)(𝑥𝑦 + 𝑦)] = [(𝑥 + 1)(𝑥𝑦 + 𝑦)](𝑥 + 1) 

(𝑥 + 1)[𝑥(𝑥𝑦) + 𝑥𝑦 + 𝑥𝑦 + 𝑦] = [𝑥(𝑥𝑦) + 𝑥𝑦 + 𝑥𝑦 + 𝑦](𝑥 + 1) 

=>𝑥[𝑥(𝑥𝑦)] + 𝑥(𝑥𝑦) + 𝑥(𝑥𝑦) + 𝑥𝑦 + 𝑥(𝑥𝑦) + 𝑥𝑦 + 𝑥𝑦 + 𝑦] = [𝑥(𝑥𝑦)]𝑥 + (𝑥𝑦)𝑥 + (𝑥𝑦)𝑥 + 𝑦𝑥 + 𝑥(𝑥𝑦) + 𝑥𝑦 +
𝑥𝑦 + 𝑦] 
=>𝑥[𝑥(𝑥𝑦)]  + 2𝑥(𝑥𝑦) + 𝑥𝑦 + 𝑥(𝑥𝑦) + 𝑥𝑦 + 𝑥𝑦 + 𝑦] = [𝑥(𝑥𝑦)]𝑥 + 2(𝑥𝑦)𝑥 + 𝑦𝑥 + 𝑥(𝑥𝑦) + 𝑥𝑦 + 𝑥𝑦 + 𝑦] 
 Using 8 and apply 2-torsion free we get. 

𝑥𝑦 + 𝑥(𝑥𝑦) + 𝑥𝑦 =  𝑦𝑥 + 𝑥(𝑥𝑦) + 𝑥𝑦                                                                                            (9) 

By Colleting like terms in 9 we had 

𝑥𝑦 = 𝑦𝑥  𝑜𝑟 [𝑥, 𝑦]. Hence the proved 

  Hence the completion of the proved, as we can seen from the above both the properties (constrains): (𝑝1 , 𝑝2, 𝑝3 & 𝑝4) Are 

commutative and satisfy the Identities either (𝑥𝑥)𝑦 = 𝑥(𝑥𝑦)  𝑜𝑟 𝑦(𝑥𝑥) = (𝑦𝑥)𝑥. So 𝑅 is an Alternative rings as we stated 

it above, Hence an alternative rings with Identity together with commutativity yields (𝑥, 𝑥, 𝑦) = 0 =
(𝑦, 𝑥, 𝑥) 𝑖𝑛 𝑐𝑜𝑚𝑝𝑙𝑖𝑡𝑖𝑜𝑛. 
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