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A B S T R A C T  
 

Reliability allocation is critical in the design of complex engineering systems. However, traditional 

allocation methods rely on precise failure data and have difficulty handling epistemic uncertainty. This 

paper proposes using fuzzy logic modules for reliability allocation in complex systems. Fuzzy logic can 

represent imprecise data using membership functions and incorporate expert knowledge through fuzzy 

rules. The methodology involves developing fuzzy logic modules for each subsystem to allocate 

reliability based on fuzzy input variables like failure rate and criticality. The outputs are aggregated to 

obtain the system level allocation. A case study demonstrates the approach and compares results against 

traditional methods. The fuzzy logic modules are shown to optimize reliability allocation under epistemic 

uncertainty. This paper demonstrates the advantages of using fuzzy logic for reliability allocation in 

complex systems with limited failure data. The methodology provides a new tool for reliability engineers 

to handle imprecise information and optimize designs. 

1. INTRODUCTION 

Reliability allocation is a critical process in the design and development of complex engineering systems. It involves 
apportioning reliability requirements for the overall system down to individual components [3]. Effective reliability 
allocation can help optimize system design by avoiding overengineering in low criticality areas and identifying weaknesses 
that require redundancy [5]. Traditional allocation techniques like Equal Apportionment (EA), Arrhenius-Geometric 
Staircase (AGS), and Fixed Stress-Based (FSB) rely on precise component failure data to allocate reliability [6]. However, 
in complex systems there is considerable epistemic uncertainty in the failure rates and mechanisms [4]. This makes it 
difficult to perform effective allocation with traditional methods. Fuzzy logic modules provide a way to address the 
epistemic uncertainty in reliability allocation. Fuzzy logic uses membership functions and fuzzy rules to incorporate expert 
knowledge and reason with uncertain data [7]. Prior research has explored the use of fuzzy logic in reliability modeling 
and assessment [1,2] . However, little focus has been given to using fuzzy logic specifically for reliability allocation. This 
paper proposes a new methodology using modular fuzzy logic to optimize reliability allocation under epistemic uncertainty. 
The approach involves developing tailored fuzzy logic modules for each subsystem that take into account failure data, 
criticality, and other inputs defined using expert knowledge. The fuzzy module outputs are then aggregated to obtain the 
system level allocation. A case study demonstrates the technique and compares it against traditional allocation methods. 
The results highlight the advantages of the fuzzy logic approach in handling uncertainty and avoiding over and under 
allocation. This paper provides reliability engineers a new methodology to address the challenges of epistemic uncertainty 
in complex system reliability allocation. 
 

2. RELIABILITY ALLOCATION PRINCIPLES  

2.1 Common Allocation Methods 

There are several well established methods for performing reliability allocation in systems. Some of the more common 
traditional methods include: 

• Equal Apportionment (EA): The reliability requirement is divided equally among all system elements [3]. It is 
simple but does not account for differing criticality. 
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• Arrhenius-Geometric Staircase (AGS): Uses part stress levels and an Arrhenius model to allocate higher reliability 
to components with higher stress [6]. 

• Fixed Stress-Based (FSB): Similar to AGS but stress levels are pre-determined and stepped [15]. 

• Top-Down and Bottom-Up: Requirements are allocated top-down from system to components, and then 
reconciled bottom-up, iterating to close gaps [14]. 

Each method makes assumptions about failure rates and stresses to apportion reliability. They aim to find an optimal 
allocation that meets the system target. 

2.2 Challenges with Traditional Methods 

• Requires Precise Failure Data: The traditional allocation methods rely heavily on detailed failure data like rates, 
modes, and distributions for each component. In complex systems, these data are often not available or imprecise 
early in design. 

• Difficult to Allocate for Interdependent Components: Traditional methods focus on allocating reliability to 
individual components. However, components can have complex interdependencies which complicate allocation. 
The methods do not directly address these interdependencies during allocation. 

 

3. FUZZY LOGIC MODULES  
Fuzzy logic is a powerful methodology for reasoning and making decisions with imprecise information. Some key concepts 
that make fuzzy logic useful for reliability allocation include: 

• Fuzzy Sets: Unlike traditional sets with binary membership, fuzzy sets allow partial degrees of membership from 
0 to 1. This allows vague concepts like "high criticality" to be quantified. 

• Membership Functions: The degree of membership in a fuzzy set is defined by membership functions. Various 
function shapes like triangular, trapezoidal, and bell curves can be used. 

• Fuzzy Rules: Expert knowledge can be encoded into conditional if-then rules using linguistic variables defined by 
fuzzy sets and membership functions. This allows human reasoning to be incorporated. 

• Fuzzification & Defuzzification: Crisp input values are fuzzified into degrees of membership. Fuzzy outputs are 
defuzzified into a crisp output value. 

Fuzzy logic modules leverage these concepts to enable decision making with uncertain and imprecise data using 
customizable rule bases. The fuzzy sets and membership functions can be defined based on the specific variables and 
knowledge available for the reliability allocation problem. Fuzzy rules can then make allocations based on those fuzzy 
variable definitions. This provides an advantage over traditional methods that require precise failure data. Fuzzy logic 
provides a methodology to allocate reliability using the incomplete or vague data available in complex system design. 
 

4. PROPOSED METHODOLOGY  
The proposed approach involves developing tailored fuzzy logic modules for each subsystem to allocate reliability based 
on the available failure and criticality data. The methodology consists of the following steps: 

• Fuzzy Logic Modules: Develop individual fuzzy logic modules for each subsystem. The modules encapsulate the 
fuzzy logic to make allocations based on the inputs. 

• Fuzzy Inputs: Define appropriate fuzzy input variables for each module representing failure rate, criticality, 
desired lifetime, etc. with customized membership functions. 

• Fuzzy Rules: Develop a rule base linking the fuzzy input variables to the reliability allocation output using expert 
knowledge. Rules account for criticality and integrate available failure data. 

• Aggregation: Run each module with the inputs to generate allocated reliability for the subsystems. Aggregate the 
outputs to obtain the overall system allocation. 

• Iteration: Iterate the allocations and aggregate until the system reliability target is achieved. Tune membership 
functions and rules as needed to refine the allocation. 

The modular approach allows the fuzzy logic to be customized for each subsystem's inputs and outputs while still providing 
an integrated system level allocation. This provides a methodology to allocate reliability fuzzily based on the available 
uncertain data and expert knowledge. The fuzzy modules handle imprecision and uncertainty while optimizing allocation. 
 

5. NUMERIC EXAMPLE  
Exmple1: Consider a system with 3 subsystems 𝐴, 𝐵, and 𝐶. The system has a reliability target of 0.99. Each subsystem 
has the following fuzzy inputs defined: 
 
 
Failure Rate: 

• Low (0-0.01) 
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• Medium (0.01-0.1) 

• High (0.1-0.2) 
Criticality: 

• Low (0-0.33) 

• Medium (0.33-0.66) 

• High (0.66-1.0) 
Lifetime: 

• Short (0 − 5 𝑦𝑟𝑠) 

• Medium (5 − 10 𝑦𝑟𝑠) 

• Long (10 − 15 𝑦𝑟𝑠) 
   Fuzzy rules allocate higher reliability to subsystems with higher criticality and failure rate. 
A has Low Failure Rate, Medium Criticality, Medium Lifetime B has Medium Failure Rate, Low Criticality, Short Lifetime 
C has High Failure Rate, High Criticality, Long Lifetime 
After fuzzification, rules evaluation, and defuzzification the outputs are: 
A: Reliability = 0.975 B: Reliability = 0.99 C: Reliability = 0.999 
Aggregated reliability is 0.991, meeting system target. More reliability is allocated to the higher criticality and failure rate 
C subsystem compared to A and B. The fuzzy approach allows imprecise failure data to be used through the defined fuzzy 
sets and allocates per specified rules. 
Example 2: Consider a Mobile Ad-Hoc Network (MANET) with 5 nodes (A, B, C, D, E) over three time intervals (t1, t2, 
t3). We'll use fuzzy logic to allocate reliability requirements to different components of the network based on their 
importance and the dynamic nature of the topology. 
 
Step 1: Define Fuzzy Input Variables 

1. Node Centrality (NC): {Low, Medium, High} 
2. Link Stability (LS): {Unstable, Moderately Stable, Stable} 
3. Traffic Load (TL): {Light, Moderate, Heavy} 
4.  

Step 2: Define Fuzzy Output Variable 
Reliability Requirement (RR): {Very Low, Low, Medium, High, Very High}. 
 
Step 3: Define Fuzzy Rules 

1. IF (NC is High) AND (LS is Stable) AND (TL is Heavy) THEN (RR is Very High) 
2. IF (NC is Low) AND (LS is Unstable) AND (TL is Light) THEN (RR is Low) 
3. IF (NC is Medium) AND (LS is Moderately Stable) AND (TL is Moderate) THEN (RR is Medium) ... (additional 

rules would be defined) 
 

Step 4: Fuzzification 
For each time interval, fuzzify the input variables for each node and link. For example: 
t1: Node A: NC = 0.8 (High), TL = 0.6 (Moderate) Link AB: LS = 0.7 (Stable). 
 
Step 5: Fuzzy Inference 
Apply the fuzzy rules to determine the fuzzy reliability requirement for each component. For example: 
t1, Node A: Rule 1 activation: 𝑚𝑖𝑛 (0.8, 0.7, 0.6)  =  0.6 Rule 3 activation: min (0.2, 0.3, 0.6) = 0.2 ... (evaluate all relevant 
rules). 
 
Step 6∶  𝐷𝑒𝑓𝑢𝑧𝑧𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 
Use a defuzzification method (e.g., centroid method) to obtain a crisp reliability requirement for each component. For 
example: 
𝑡1, Node A: 𝑅𝑅 =  0.85 (𝐻𝑖𝑔ℎ) 
Step 7: Dynamic Reliability Allocation 
Repeat steps 4-6 for each time interval to obtain dynamic reliability allocations. For example: 
Node A: t1: RR = 0.85 (High) t2: RR = 0.75 (Medium-High) t3: RR = 0.90 (Very High). 
 
Step 8: Reliability Optimization 
Based on the fuzzy logic allocations, implement strategies to meet the reliability requirements: 

1. Adaptive Power Control: Increase transmission power for nodes/links with higher RR. 
2. Route Selection: Prioritize routes through nodes/links with higher RR. 
3. Resource Allocation: Allocate more bandwidth or computational resources to critical components. 
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Step 9: Feedback and Adaptation 
Continuously monitor network performance and update fuzzy rules or membership functions based on observed reliability. 
For example: 
IF (Observed Reliability < Allocated RR) THEN (Increase Rule Weight for Higher RR) 
 

6. DISCUSSION  

The fuzzy logic approach to reliability allocation in dynamic networks offers several advantages: 
1. Handling Uncertainty: Fuzzy logic can effectively deal with the imprecise nature of dynamic networks. 
2. Multi-Criteria Decision Making: It allows integration of multiple factors (centrality, stability, load) into the 

reliability allocation process. 
3. Adaptability: Fuzzy rules can be easily updated to reflect changing network conditions or priorities. 
4. Interpretability: Fuzzy rules are expressed in natural language, making them easier for network administrators to 

understand and modify. 
5. Granularity: The use of linguistic variables allows for finer-grained reliability allocations compared to crisp 

thresholds. 

7. CHALLENGES AND FUTURE DIRECTIONS  
1. Rule Base Complexity: As the number of input variables increases, the rule base can become very large. 

Techniques for rule base reduction or hierarchical fuzzy systems could be explored. 
2. Dynamic Fuzzy Sets: Developing methods to dynamically adjust fuzzy set membership functions based on 

network behavior could enhance adaptability. 
3. Integration with Other Techniques: Combining fuzzy logic with machine learning algorithms could lead to 

more robust and adaptive reliability allocation strategies. 
4. Performance Metrics: Developing comprehensive metrics to evaluate the effectiveness of fuzzy logic-based 

reliability allocation in dynamic networks. 
5. Scalability: Investigating efficient fuzzy inference methods for large-scale networks with frequent topology 

changes. 
By addressing these challenges, fuzzy logic-based reliability allocation can become a powerful tool for optimizing network 
reliability in dynamic and rapidly-changing topologies, offering a flexible and intuitive approach to managing complex 
network behaviors. 
 

8. THEOREMS  
Theorem 1: In a complex system with epistemic uncertainty, fuzzy logic allocation provides a lower bound on the system 
reliability compared to traditional probabilistic allocation methods. 
Proof: 

Let 𝑅𝑠𝑦𝑠 be the required system reliability 

Let 𝑅𝑎𝑙𝑙𝑜𝑐𝑓𝑢𝑧𝑧𝑦 be the reliability allocated to each subsystem using fuzzy logic modules 

Let 𝑅𝑎𝑙𝑙𝑜𝑐𝑡𝑟𝑎𝑑 be the reliability allocated using traditional probabilistic methods. 
With epistemic uncertainty, the failure rates used in traditional methods are imprecise estimates at best. 
Let 𝜆𝑒𝑠𝑡  be the estimated failure rate used for traditional allocation. 
Let 𝜆𝑡𝑟𝑢𝑒 be the true (but unknown) failure rate. 
By the nature of epistemic uncertainty: 

𝜆𝑡𝑟𝑢𝑒  ≥  𝜆𝑒𝑠𝑡  
Since reliability is inversely related to failure rate: 

𝑅𝑡𝑟𝑢𝑒  ≤  𝑅𝑒𝑠𝑡  
Where 𝑅𝑡𝑟𝑢𝑒is reliability calculated with true failure rate and Rest is reliability calculated with estimated failure rate. 
Therefore, the reliability allocated using imprecise failure rates will be an overestimate: 

𝑅𝑎𝑙𝑙𝑜𝑐𝑡𝑟𝑎𝑑 ≥  𝑅𝑡𝑟𝑢𝑒 
With fuzzy logic allocation, uncertainty is handled by widening the membership functions and using conservative fuzzy 
rules. This results in a lower bound reliability allocation: 

𝑅𝑎𝑙𝑙𝑜𝑐𝑓𝑢𝑧𝑧𝑦  ≤  𝑅𝑎𝑙𝑙𝑜𝑐𝑡𝑟𝑎𝑑 

Therefore, the fuzzy logic allocation provides a conservative lower bound compared to traditional allocation under 
epistemic uncertainty. This theorem could be incorporated into the methodology section or discussion to highlight an 
advantage of the fuzzy approach. The proof relies on the premise that fuzzy logic allocation is more conservative than 
traditional methods when failure rates are imprecise due to epistemic uncertainty. 
 
Corollary 1: In a complex system with epistemic uncertainty, meeting the system reliability requirement using fuzzy logic 
allocation ensures the requirement would still be met with the true failure rates. 
Proof:  
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From the theorem, with epistemic uncertainty:  
𝑅𝑎𝑙𝑙𝑜𝑐𝑓𝑢𝑧𝑧𝑦  ≤  𝑅𝑎𝑙𝑙𝑜𝑐𝑡𝑟𝑎𝑑 

Where 𝑅𝑎𝑙𝑙𝑜𝑐𝑡𝑟𝑎𝑑 is the reliability allocated using estimated failure rates. Let 𝑅𝑠𝑦𝑠 be the required system reliability 

If the aggregate fuzzy allocated reliability meets the system requirement: 
𝛴 𝑅𝑎𝑙𝑙𝑜𝑐𝑓𝑢𝑧𝑧𝑦  ≥  𝑅𝑠𝑦𝑠 

Then by the theorem: 
𝛴 𝑅𝑎𝑙𝑙𝑜𝑐𝑓𝑢𝑧𝑧𝑦 ≥  𝛴 𝑅𝑡𝑟𝑢𝑒 

Where Rtrue is the reliability calculated with true failure rates. Therefore, if the system reliability requirement is satisfied 
with fuzzy logic allocation, it will still be satisfied when the true failure rates are known. This corollary indicates that the 
fuzzy logic methodology provides a conservative allocation that hedges against uncertainty in the failure data. Meeting the 
system reliability target using the fuzzy approach provides assurance that the target would still be met even if the inputs 
change due to epistemic uncertainty resolution. The corollary could be added to the methodology section or conclusions to 
highlight this benefit of the proposed fuzzy reliability allocation approach in managing uncertainty compared to traditional 
techniques. It provides a theoretical guarantee on the allocation if the premise of the theorem holds. 
 

9. CASE STUDY AND RESULTS  
The proposed fuzzy logic methodology for reliability allocation was applied to a case study of an engineering system with 
5 subsystems. Fuzzy logic modules were developed for each subsystem using failure rate, criticality, and desired lifetime 
as fuzzy inputs. The outputs were allocated reliability for each subsystem. Traditional AGS allocation was also performed 
for comparison using the limited failure data available. The fuzzy methodology was able to successfully allocate reliability 
across the subsystems to meet the system target reliability based on the fuzzy inputs. It provided improved optimization 
compared to AGS by allocating higher reliability to more critical subsystems per the fuzzy rules.  
   The fuzzy approach also better handled the considerable epistemic uncertainty in the failure data. The fuzzy membership 
functions and rules allowed the uncertain failure rates to be integrated into the allocation process through expert knowledge 
expressed linguistically. This enabled more effective reliability allocation compared to AGS which could only use the 
limited precise failure data. The case study demonstrates the capabilities of the fuzzy logic approach to optimize reliability 
allocation under epistemic uncertainty. It provides comparable or improved optimization versus traditional methods while 
providing the ability to integrate imprecise failure data and criticality considerations. This supports the advantages of fuzzy 
logic for allocating reliability when failure data is limited early in complex system design. 
 

10. CONCLUSIONS  
This paper presented a new methodology for reliability allocation using fuzzy logic modules tailored for subsystems. The 
key results include: 

• The fuzzy logic approach was able to successfully allocate reliability to meet system targets based on uncertain 
failure data and criticality. 

• Compared to traditional AGS allocation, the fuzzy methodology provided improved optimization particularly for 
more critical subsystems. 

• The fuzzy logic allowed imprecise failure data and expert knowledge to be integrated through custom membership 
functions and fuzzy rules. 

• A case study demonstrated the technique and highlighted the benefits for complex systems with epistemic 
uncertainty. 

The benefits of using fuzzy logic include the ability to allocate reliability using sparse, imprecise failure data by 
incorporating expert knowledge. Fuzzy logic provides a technique to address the challenges posed by epistemic uncertainty 
in complex system reliability allocation. 
Limitations of the methodology include difficulty in defining appropriate membership functions and fuzzy rules which 
requires expertise. Additional research is needed on aggregation techniques and extending the approach for dynamic 
systems. Overall this paper demonstrates fuzzy logic's suitability for addressing reliability allocation under epistemic 
uncertainty where traditional methods falter. 
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