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A B S T R A C T  
 

The current study examines the topic of continuous flow of nanofluids over two-directional boundary 

level employing Casson heat transmission across a linearly stretched sheet. Firstly, the partial differential 

equations are transformed into non-linear ordinary differential equations with the help of similarity 

parameters. These non-linear ordinary differential equations are solved with the given boundary 

conditions by applying the BVPh2.0 method on Mathematica software. The effects of magnetic impact, 

radiation parameter, porosity number, Brownian motion parameter, thermophoresis parameter, Casson 

fluid parameter, Schmidt number, Prandtl number, peclet number, bioconvection on Velocity, 

temperature and concentration profiles is observed. It is noted that the concentration and temperature 

profiles increase by expanding values of thermophoresis parameter also the temperature increase by 

increment in Brownian motion while a reverse result obtained on concentration profile. Also, the 

influence of Casson fluid, thermophoresis and Brownian motion on skin friction, Sherwood number and 

Nusselt number is noted and check the behavior of these numbers by increasing or decreasing values of 

thermophoresis parameter, Casson fluid parameter and Brownian motion. And, calculated that by 

increment in thermophoresis and Brownian motion, the Nusselt number decreases. The graphs of 

temperature profile, velocity profile and concentration profile are drawn and also other results are 

tabulated.

1. INTRODUCTION 

Nanofluids are frequently used as heat transmission fluids in heat transfer tools due to their enlarged thermal properties, 

such as temperature exchangers, industrialized cooling systems (similar to plane panel), and radiators. Casson liquefied 

notion for the movement of deformable liquors was prepared by Casson [1]. Casson fluid is strain liquefied that have 

immeasurable viscous at zero shear rates and zero viscidness at infinite shear rates, constructing stress through which no 

flow happens. Soups, jelly, sauce, and honey are a limited sample of Casson fluid. The Casson nanofluid terminated as 

non-linear disposed elastic sheet through Soret also Dufour belongings and the growing demands on behalf of non-

Newtonian nanofluid streams in industrial and manufacturing pitches. Buongiorno [2] idea of heat effectiveness of liquid 

runs in the existence of Brownian research and thermal features served as foundation aimed at the model engaged in this 

analysis. By taking into account vital flow characteristics of the exaggerated boundary sheet, the Casson fluid movement 

matter lengthways an inclined channel is displayed for pick up more about the heat and mass conversation phenomena. 

Numerous efforts have been made in recent years to study the nanofluid due to its exceptional thermodynamic 

characteristics. The industrial and nanotechnology industries have greatly benefited from recent advances in nanofluids 

and related mathematical modelling. Nanofluids can used to cool vehicle motors, biomedical applications, laundry washers, 

diode arrays of different welding frameworks, etc. Haddad et al. [3] elaborated on free convection in nanoliquids by taking 

into explanation the Rayleigh-Bernard issue as well as the effects of thermophoresis and Brownian motion. By employing 

the DTM Sheikholeslami and Ganji [4] quantitatively evaluated nanofluid heat exchange and flow between parallel plates 

while taking into account Brownian motion.  Hayat et al. [5] have presented the magnetohydrodynamic (MHD) flow 

towards a penetrable stretching geometry in the presence of nanoparticles under the effect of Brownian motion. Effects of 

Brownian motion and Thermophoresis were used by Babu and Sandeep [6] to describe 3D MHD slip flow over a narrow 

stretched sheet. Malvandi et al. [7] observed the migration of nanoparticles increase in heat transmission nearby the film 

layer of nanofluids via a vertical tube while taking the thermophoresis effect into consideration. The conclusion of thermal 
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radiation and heat transmission effects of nanopartical movement over a sheet under consideration of Brownian motion, 

was developed by Dogonchi and Ganji [8]. Ullah et al. [9] also took into account other fascinating studies on nanofluid 

flow together with the Reiner-Philippoff fluid model. The earliest dynamic hypothesis of Brownian motion was put out by 

Nelson [10]. 

Casson fluid is a plastic fluid with constitutive equations that generate shear stress. It is specific kind of non-Newtonian 

fluid that shows elastic solid-like behavior. To examine the Casson boundary layer approaching the stagnation point on a 

stretched surface, Mustafa et al. [11] employed the homotopy analysis technique. While, to identify various characteristics 

transfer of heat in Casson nanofluid, many authors [12-15] have employed both viscous dissipation conditions and Joule 

heating. According to Ojjela et al. [16] Casson fluid investigations amid parallel disc renewals showed the irreversibility 

distribution was diminished by the dissipation effect. An experiment of Casson nanoliquid past the landing surface was 

conducted by Rafique et al. [17]. They observed the Soret and Dufour effects on an inclined extending surface, along with 

the impacts of a Casson nanofluid boundary layer flow. Rafique et al. [18] used the Keller box solving approach in another 

study to evaluate how chemical reactions and magnetic forces affect Casson nanoliquid modelling. Analytical methods 

were employed by Abolbashari et al. [19] to investigate generational entropy of Casson nanofluid along an extrusion 

surface. Sreenivasulu et al. [20] investigated the Casson nanofluid characteristics by taking into account magnetic field and 

a stretched porous sheet. It shown that increasing the magnetic force improves mass transferal while decreasing heat 

transport. Non-linear radiation in bio-convective Casson nanofluid explored by Oyelakin et al. [21]. The idea of Pulsatile 

Casson fluid flow across a stenosis bifurcation route was offered by Shaw et al. [22]. Shahzad et al. [23] have discovered 

the swirling Darcy-Forchheimer of Casson hybrid nanofluid flow. They applied parallel plates to the channel flow and the 

degree to which porosity, the nature of viscous fluids, rotational coordinates, and magnetic interactions affected thermal 

properties was recorded. Mehmood et al. [24] explained the joint effects of mixed convection on oblique Casson fluid 

across a stretched sheet. The Casson fluid due to magnetic field and stretchable cylinder was presented by Taimoor et al. 

[25]. A study of Micropolar Casson with internal heating over a stretched sheet done by Mehmood et al. [26]. Their 

theoretical investigation looks at the impact of micro-rotation on mixed convective flow. 

In machining tasks including grinding, spinning, and crushing, nanoliquids are used. Investigators have sustained their 

efforts to make important influences to nanofluid with the interruption of varied nanoparticals, mainly in this period. The 

nanofluid flow over the turning cone was explored by Hussain et al. [27]. Prasannakumara [28] using the Canttaneo-Cristov 

thermal incline thought, the clarifications for ferromagnetic fluid movement on an elastic surface were evaluated. Shukla 

and Rana [29] analyzed the movement of nanoparticles on the sheet. Amjad et al. [30] calculated the Micropolar Casson 

movement of fluid at curved surface. They spoke about connections of Brownian and thermophoretic gesture with induced 

magnetic hydrodynamics. Lanjwani et al. [31] examined Casson nanofluid triple keys at the perpendicular nonlinear 

stretching sheet. Mahanthesh and Joseph [32] examined the characteristics of non-Newtonian fluids of 3rd grade using 

thermophoresis and Brownian motion influences. Mabood and Shateyi [33] have studied how time-dependent MHD flow 

impacted a permeable overextended sheet. 

MHD (magneto-hydrodynamics) Casson nanofluid is a kind of fluid that combines the properties of Casson fluid, a 

magnetic field, and the attendance of nanoparticles. MHD Casson nanofluid is a complex fluid system that has potential 

applications in several fields, counting energy transport, cooling, and biomedical manufacturing. Haq et al. [34] examined 

the effects of heat and MHD transmission on Casson nanofluid flow across a contracting sheet. Shah et al. [35] presented 

the generation of entropy across nonlinearly expanding surface. MHD Casson fluid along with production of entropy and 

hall influences over stretching sheet, studied by Abd El-Aziz and Afify [36]. Ali et al. [37] explored the generation of 

entropy in MHD mixed-convective Casson nanofluid across nonlinear stretchable sheet. Metri et al. [38] investigated the 

MHD Casson with convective boundary conditions along a velocity slip over nonlinear stretching sheet. Souayeh et al. [39] 

observed the MHD Casson and radiative heat transmission. The idea of MHD 3D Casson fluids across a permeable linearly 

stretched sheet was suggested by Nadeem et al. [40]. By using stretching sheet Wang et al. [41] discussed the activation 

energy on 3D Casson nanofluid motion. By applying a convective boundary condition Nadeem et al. [42] were able to 

better understand mass and heat transmission of a 3D MHD Casson nanofluid and structured the warm fluid along the 

bottom surface of wall. The 3D Casson fluid was examined by Mahanta et al. [43]. The similarity solution of a three-

dimensional Casson nanofluid across stretched surface was detected by Sulochana et al. [44]. The influence of slip and 

convective limit conditions on MHD stagnation point and thermal exchange caused by Casson nanofluid across a stretched 

sheet is examined by g. Ibrahim and Makinde, [45]. 3D presenting of MHD bio-convective Casson nanofluid with heat 

source and gyrotactic micro-organisms over exponential stretching sheet, described by Makkar et al. [46]. 
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2. PROBLEM FORMULATION  

Considered a viscid nanofluid passes over a flat stretching surface as shown in Fig. 1 and flow is incompressible, laminar, 

steady, two-dimensional boundary layer that corresponds to 𝑦 =  0 plane. The flow is limited by y greater than 0. 

Expanding the sheet while applying two same opposite pressures along the x-direction concurrently produces flow. If origin 

is fixed, the sheet will expand at rate of 𝑢𝑤(𝑥) = 𝑎𝑥, wherever x is the coordinate acquired by crossing linear extending 

plate and denotes a "constant."  

  

 
Fig .1. Flow Diagram. 

At stretching surface, temperature T and nanoparticles concentration C are thought to be constants, Tw and Cw . The ambient 

temperature T and nanoparticles concentration C represented by T∞  and C∞  if y tends to be infinite. The following 

formulas, which operate on the linear stretching sheet's flow and heat transmission appearances approximately inside 

boundary layer, are used in both cases.  
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
=  0, (1) 

𝑢
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𝜌
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𝑢
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 𝜕𝑇
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For boundary conditions: 

𝑢 =  𝑢𝑤(𝑥), 𝑣 =  −𝑣𝑤,        𝑇 =  𝑇𝑤 , 𝐶 = 𝐶𝑤, 𝑁 =  𝑁𝑤 , 𝑎𝑡 𝑦 = 0, 
(6) 

𝑢 =  𝑣 =  0, 𝑇 =  𝑇∞, 𝐶 =  𝐶∞,     𝑁 =  𝑁∞, 𝑎𝑠 𝑦 → ∞. 
(7) 

 

And the stream function is 𝛹 =  (𝑎𝜐)1/2𝑥𝑓(𝜂) and for values of u and v we have: 

𝑢 =  
𝜕𝛹

𝜕𝑦
 , 𝑣 =  − 

𝜕𝛹

𝜕𝑥
, (8) 

𝑢 =  𝑎𝑥𝑓΄(𝜂) , 𝑣 =  − (
𝑎µ

𝜌
 )

1
2

𝑓(𝜂). (9) 

And, here are some similarity transformations given below: 

𝜂 =  (
𝑎

𝜈
)1/2𝑦, (10) 

𝜃(𝜂) =  
𝑇 − 𝑇∞

𝑇𝑤 − 𝑇∞

 , 𝛷(𝜂) =  
𝐶 −  𝐶∞

𝐶𝑤 − 𝐶∞

, 𝜒(η) =
(N − N∞)

(Nw − N∞)
. (11) 

 

 

After solving the above equations by the help of similarity conversions, the equations takes the form: 

(1 +
1

𝛽
) 𝑓΄΄΄(𝜂)  − 𝑓΄2(𝜂)(𝐹𝑟 + 1) +  𝑓(𝜂)𝑓΄΄(𝜂)  − 𝐹ʹ(𝑀2 +  𝜆)  =  0, 

(12) 

(1 +  
4

3
𝑅𝑑) 𝜃ʹʹ(𝜂) + 𝑃𝑟𝑁𝑏𝜑ʹ(𝜂)𝜃ʹ(𝜂) + 𝑃𝑟𝑁𝑡𝜃ʹ2(𝜂) + 𝑃𝑟𝑄0𝜃(𝜂)  = 0, 

(13) 

𝛷΄΄(𝜂) + 𝑆𝑐𝑓(𝜂)𝛷΄(𝜂) +
𝑁𝑡

𝑁𝑏
𝜃΄΄(𝜂)  =  0, (14) 

𝜒΄΄(𝜂)  + 𝐿𝑏𝐹(𝜂)𝜒΄(𝜂) + 𝑃𝑒[{𝜒(𝜂) +  𝜔}𝜑΄΄(𝜂) +  𝜒΄(𝜂)𝜑΄(𝜂)] = 0. 
(15) 

Also, the boundary conditions becomes: 

𝑓΄(0) = 1, 𝑓(0) = 𝑓𝑤 , 𝜃(0) = 1, 𝛷(∞) =  0, 𝜒(0) = 1, at 𝜂 → 0, (16) 

𝑓΄(∞) = 0, 𝑓(∞) = 0, 𝜃(∞) = 0, 𝛷(∞) =  0, 𝜒(∞) = 0, at 𝜂 → ∞. (17) 

Here, 𝜃(𝜂) denotes the temperature, f denotes velocity,  𝛷(𝜂) denotes nanoparticle’s concentration and 𝜒(η) gyrotactic 

microorganisms. 

Where, 

𝑃𝑟 =  
𝜐

𝛼
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𝜐

𝐷𝐵
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𝐷𝑇

𝑇∞

(𝑇𝑤 − 𝑇∞)

𝜐
, 
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N∞

(Nw − N∞)
, 𝑅𝑑 =

4𝜎𝑠𝑏𝑇∞
3

𝑘𝑓𝑘𝐴𝐵𝑆

, 𝜆 =
υ

𝑎𝐾1

, 𝑀 = √
𝜎

𝜌𝑎
𝐵𝑜, 

 

𝐹𝑟 =
𝐶𝑏

√𝐾1

,      𝑃𝑟 =
υ

𝛼
, 𝐿𝑏 =

υ

𝐷𝑚

, 𝑃𝑒 =
b𝑊𝑐

𝐷𝑚

. 
 

Skin Friction (Cf), Nusselt number (Nux) and Sherwood number (Shx) are given as: 

Cf = − 
 τ w

ρu2
w

, Nux =
xqw

K(Tw − T∞)
 , Shx  =

 xqm

DB(− C∞)
. (18) 

Where,  𝜏 𝑤 is stress of wall, 𝑞𝑤 is heat flux at wall, 𝑞𝑚 is flux of mass are set by: 
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 𝜏 𝑤  =  𝜌𝜐 (
𝜕𝑢

 𝜕𝑦 
)

𝑦=0 

 , 𝑞𝑤 =  − 𝑘 (
𝜕𝑇

 𝜕𝑦
 )

𝑦=0

 , 𝑞𝑚  =  − 𝐷𝐵  (
𝜕𝜑

𝜕𝑦
)

𝑦=0

. (19) 

 

𝐶𝑓𝑅𝑒𝑥

1
2⁄

= 𝑓′′(0), 
   (20) 

𝑅𝑒𝑥

−1
2⁄

. 𝑁𝑢𝑥 = −𝜃′(0), 
   (21) 

𝑅𝑒𝑥

−1
2⁄

. 𝑆ℎ𝑥 = −𝜑′(0). 
   (22) 

Where 𝑅𝑒𝑥 is known as Reynolds number. It tells the kind of flow laminar or turbulent when the fluid flowing through 

the surface. 

3. METHODOLOGY  

There are many methods to deal non-linear ordinary differential equations but, in this paper, the adopted method is BVPh2.0 

on Mathematica software [47-50] to solve non-linear ODE’s (12-15) with boundary conditions (16 & 17). 

𝑓𝑜 = 1 − 𝑒−𝜂, 𝜃𝑜 = 𝑒−𝜂, 𝜑𝑜 = 𝑒−𝜂 , 𝜒𝑜 = 𝑒−𝜂      (23) 

𝜁𝑓̂ = 𝑓′′′ − 𝑓′, 𝜁𝜃̂ = 𝜃′′ − 𝜃, 𝜁𝜑̂ = 𝜑′′ − 𝜑, 𝜁𝜒̂ = 𝜒′′ − 𝜒.      (24) 

And subsequent hypothesis, 

𝜁𝑓̂ = [𝐿1𝑒−𝜂 + 𝐿2𝑒𝜂 + 𝐿3] = 0, 𝜁𝜃̂ = [𝐿4𝑒−𝜂 + 𝐿5𝑒𝜂] = 0, 𝜁𝜑̂ = [𝐿6𝑒−𝜂 + 𝐿7𝑒𝜂] = 0, 𝜁𝜒̂

= [𝐿8𝑒−𝜂 + 𝐿9𝑒𝜂] = 0    (25) 

4. RESULTS AND DISCUSSION  

The influences of different parameters on variant profiles are debated here. The result of Casson parameter on velocity 

profiles is noted that results reduction in velocity profile in fig (1). It is observed by growing the Casson fluid factor (𝛽) 

the fluid viscosity increase results decrease in velocity. Fluid acts like shear-thickening in response to an incremental 

change in, which reduces fluidity and thickness of the momentum layer. In figs. (2-4), the velocity decrease as increase in 

values of local inertia, magnetic and porosity parameter  

 
Fig. 1. Casson fluid parameter (𝛽) impact on velocity profiles for values 𝑃𝑟 = 1.0, 𝑆𝑐 = 0.2, 𝑁𝑏 = 0.1, 𝑁𝑡 = 0.2, 𝑀 = 0.2, 𝜔 = 0.2, 𝜆 = 0.1, 𝑃𝑒 =

0.3, 𝑅𝑑 = 0.2, 𝐹𝑟 = 0.5, 𝐿𝑏 = 0.2, 𝑄0 = 0.2. 
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Fig. 2. Local inertia (𝐹𝑟) effects on velocity profiles for values 𝑃𝑟 = 1.0, 𝑆𝑐 = 0.2, 𝑁𝑏 = 0.1, 𝑁𝑡 = 0.2, 𝑀 = 0.2, 𝜔 = 0.2, 𝜆 = 0.1, 𝑃𝑒 = 0.3, 𝑅𝑑 =

0.2, 𝛽 = 0.5, 𝐿𝑏 = 0.2, 𝑄0 = 0.2. 

 
Fig. 3. Magnetic parameter (𝑀) effects on velocity profiles for values 𝑃𝑟 = 1.0, 𝑆𝑐 = 0.2, 𝑁𝑏 = 0.1, 𝑁𝑡 = 0.2, 𝛽 = 0.2, 𝜔 = 0.2, 𝜆 = 0.1, 𝑃𝑒 = 0.3, 

𝑅𝑑 = 0.2, 𝐹𝑟 = 0.5, 𝐿𝑏 = 0.2, 𝑄0 = 0.2. 
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Fig. 4. Porosity parameter (𝜆) effects on velocity profiles for values 𝑃𝑟 = 1.0, 𝑆𝑐 = 0.2, 𝑁𝑏 = 0.1, 𝑁𝑡 = 0.2, 𝛽 = 0.2, 𝜔 = 0.2, 𝑀 = 0.1, 𝑃𝑒 = 0.3, 

𝑅𝑑 = 0.2, 𝐹𝑟 = 0.5, 𝐿𝑏 = 0.2, 𝑄0 = 0.2. 

 
Fig. 5. Radiation parameter (𝑅𝑑) effects on temperature profiles for values 𝑃𝑟 = 1.0, 𝑆𝑐 = 0.2, 𝑁𝑏 = 0.1, 𝑁𝑡 = 0.2, 𝛽 = 0.2, 𝜔 = 0.2, 𝑀 =

0.1, 𝑃𝑒 = 0.3, 𝜆 = 0.1, 𝐹𝑟 = 0.5, 𝐿𝑏 = 0.2, 𝑄0 = 0.2. 
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Fig. 6. Prandtl Number (𝑃𝑟) effects on temperature profiles for values 𝑅𝑑 = 0.2, 𝑆𝑐 = 0.2, 𝑁𝑏 = 0.1, 𝑁𝑡 = 0.2, 𝛽 = 0.2, 𝜔 = 0.2, 𝑀 = 0.1, 

𝑃𝑒 = 0.3, 𝜆 = 0.1, 𝐹𝑟 = 0.5, 𝐿𝑏 = 0.2, 𝑄0 = 0.2. 

 

 

 

 
Fig. 7. Brownian motion (𝑁𝑏) effects on temperature profiles for values 𝑅𝑑 = 0.2, 𝑆𝑐 = 0.2, 𝑃𝑟 = 1.0, 𝑁𝑡 = 0.2, 𝛽 = 0.2, 𝜔 = 0.2, 𝑀 =

0.1, 𝑃𝑒 = 0.3, 𝜆 = 0.1, 𝐹𝑟 = 0.5, 𝐿𝑏 = 0.2, 𝑄0 = 0.2. 
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Fig. 8. Thermophoresis parameter  (𝑁𝑡) effects on temperature profiles for values 𝑅𝑑 = 0.2, 𝑆𝑐 = 0.2, 𝑃𝑟 = 1.0, 𝑁𝑏 = 0.1, 𝛽 = 0.2, 𝜔 =

0.2, 𝑀 = 0.1, 𝑃𝑒 = 0.3, 𝜆 = 0.1, 𝐹𝑟 = 0.5, 𝐿𝑏 = 0.2, 𝑄0 = 0.2. 

 

 

 
Fig. 9. Heat parameter  (𝑄𝑜) effects on temperature profiles for values 𝑅𝑑 = 0.2, 𝑆𝑐 = 0.2, 𝑃𝑟 = 1.0, 𝑁𝑏 = 0.1, 𝛽 = 0.2, 𝜔 = 0.2, 𝑀 = 0.1, 

𝑃𝑒 = 0.3, 𝜆 = 0.1, 𝐹𝑟 = 0.5, 𝐿𝑏 = 0.2, 𝑁𝑡 = 0.2. 

 

The fig (5), shows temperature rises by growing radiation parameter. Effects of Pr on temperature for the chosen 

values is illustrated by fig (6). By increasing prandtl number the temperature profile increase. The graphs fig (7) & 

fig (8) denmostrate the impressions of Brownian motion Nb and thermophoresis Nt. Temperature is expected to 

take form like standard fluid. It is noticed by growing values of Nb & Nt have an impact on thickening the heat 

border layer fluid width. In fig (9), the heat parameter 𝑄0 increase results in increase in temperature profile. 
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Fig. 10. Schmidt Number (𝑆𝑐) effects on concentration profile for values 𝑅𝑑 = 0.2, 𝑄𝑜 = 0.2, 𝑃𝑟 = 1.0, 𝑁𝑏 = 0.1, 𝛽 = 0.2, 𝜔 = 0.2, 𝑀 =

0.1, 𝑃𝑒 = 0.3, 𝜆 = 0.1, 𝐹𝑟 = 0.5, 𝐿𝑏 = 0.2, 𝑁𝑡 = 0.2. 

 

 

 

 

 
Fig.11. Thermophresis parameter  (𝑁𝑡) effects on concentration profile for values 𝑅𝑑 = 0.2, 𝑄𝑜 = 0.2, 𝑃𝑟 = 1.0, 𝑆𝑐 = 0.2, 𝛽 = 0.2, 𝜔 =

0.2, 𝑀 = 0.1, 𝑃𝑒 = 0.3, 𝜆 = 0.1, 𝐹𝑟 = 0.5, 𝐿𝑏 = 0.2, 𝑁𝑏 = 0.1. 
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Fig. 12. Brownian motion (𝑁𝑏) effects on concentration profile for values 𝑅𝑑 = 0.2, 𝑄𝑜 = 0.2, 𝑃𝑟 = 1.0, 𝑆𝑐 = 0.2, 𝛽 = 0.2, 𝜔 = 0.2, 𝑀 =

0.1, 𝑃𝑒 = 0.3, 𝜆 = 0.1, 𝐹𝑟 = 0.5, 𝐿𝑏 = 0.2, 𝑁𝑡 = 0.2. 

 

 

Impact of Sc on concentration profile is observed in fig (10). As, Sc is the relation of thermal diffusion and kinematic 

viscosity which results the thining heat boundary layer of fluid wideness. So, the concentration fall by rising Schmidt 

number Sc. The effects of chosen values of parameter Nt & Nb observed on concentration profile in graph fig (11) and fig 

(12). The reverse phenomenon is shown by Brownian motion parameter on concentration of nanofluids. It is experienced 

that increase in nanoparticle volume portion both friction factor coefficients increase. So that’s why concentration profile 

decrease with growth in Nb parameter values. The growth in nanofluid concentration is noted by higher values of Nt 

parameter. 

 
Fig. 14. Bioconvection (𝜔) effects on microorganism profile for values 𝑅𝑑 = 0.2, 𝑄𝑜 = 0.2, 𝑃𝑟 = 1.0, 𝑆𝑐 = 0.2, 

𝛽 = 0.2, 𝐿𝑏 = 0.2, 𝑀 = 0.1, 𝑃𝑒 = 0.3, 𝜆 = 0.1, 𝐹𝑟 = 0.5, 𝑁𝑡 = 0.2, 𝑁𝑏 = 0.1. 
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Fig. 15. Peclet number (𝑃𝑒) effects on microorganism profile for values 𝑅𝑑 = 0.2, 𝑄𝑜 = 0.2, 𝑃𝑟 = 1.0, 𝑆𝑐 = 0.2, 𝛽 = 0.2, 𝐿𝑏 = 0.2, 

𝑀 = 0.1, 𝜔 = 0.2, 𝜆 = 0.1, 𝐹𝑟 = 0.5, 𝑁𝑡 = 0.2, 𝑁𝑏 = 0.1.   

Fig (13) denotes the impact of Lb on microorganism profile. As Lb rise the microorganism profile decrease. The result of 

bioconvection and peclet number on microorganism profile is shown by fig (14) & fig (15). The microorganism profile 

increase with enhancing bioconvection and peclet number. 

In present segment (Table 1), the impacts of Nt and Nb is noted on Nusselt number and Sherwood number. A judgment of 

current research values is done with previouse study of (Aminreza Noghrehabad, 2012) findings.  

 
TABLE I. ANALYSIS OF HEAT TRANSFER COEFFICIENT AND MASS TRANSFER RATE.  

 

  Aminreza Noghrehabad Current findings Aminreza Noghrehabad Current findings 

Nt Nb −𝜃′ −𝜃′ −𝜑′ −𝜑′ 

0.1 0.1 2.1293938 2.1293889 0.9523768 0.9523645 

0.2 0.1 2.2740215 2.2740115 0.6931743 0.6931236 

0.3 0.1 2.5286382 2.5286234 0.5200790 0.5200237 

0.4 0.1 2.7951701 2.7951598 0.4025808 0.4025648 

0.5 0.1 3.0351425 3.0351543 0.3210543 0.3210413 

0.1 0.2 2.3818706 2.3818678 0.5055814 0.5055345 

0.1 0.3 2.4100188 2.4100023 0.2521560 0.2521467 

0.1 0.4 2.3996502 2.3996419 0.1194059 0.1194013 

0.1 0.5 2.3835712 2.3835587 0.0542534 0.0542534 

0.2 0.3 - 2.5148519 - 0.1818823 

0.3 - - 2.6085720 - 0.1357689 

 

In Table 2 the impacts of Casson fluid Parameter, thermophoresis (Nt) and Brownian motion (Nb) is observed. By growing 

the Brownian motion, Nusselt number decreases as well as Sherwood number declines. Also, Nusselt number decrease 

with the enhancement of thermophoresis parameter. The Sherwood number increase along the increment in value of Nt.  
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TABLE II. ANALYSIS OF DIMENSIONLESS STRESS.  

 

Nt β =0.5, Nb =0.05 β =01, Nb =0.07 β =1.5, Nb =0.09 

 𝑓′′ −𝜃′ −𝜑′ 𝑓′′ −𝜃′ −𝜑′ 𝑓′′ −𝜃′ −𝜑′ 
0.03 -

0.666727675 

4.444010631 2.666406379 -

0.843080242 

4.423423324 1.895752853 -

0.938990309 

4.412358962 1.470786321 

0.05 -
0.666727675 

4.246714324 4.246714324 -
0.843080242 

4.226456080 3.018897200 -
0.938990309 

4.215570066 2.341983370 

0.07 -

0.666727675 

4.060156219 5.684218707 -

0.843080242 

4.040241412 4.040241412 -

0.938990309 

4.029541444 3.134087790 

0.09 -

0.666727675 

3.883787186 6.990816934 -

0.843080242 

3.864227680 4.968292732 -

0.938990309 

3.853720100 3.853720100 

 

 

5. CONCLUSION  

In this research study, the impressions of thermophoresis Brownian motion and Casson fluid are analyzed and impacts of 

variant parameters are noted on velocity, temperature and concentration profiles. The leading equations are solved by 

BVPh2.0 using Mathematica software. The observing results are concluded in this section by the help of numerical 

technique. 

 Due to rise in Brownian motion, the temperature profile increase; 

 There is a drop in concentration by the boost in Brownian motion but increase with thermophoresis parameter; 

 The temperature improve with enhancing thermophoresis parameter’s values; 

 It is conclude that Sherwood number increase with thermophoresis parameter while reverse phenomenon observed 

by Nb; 

 The skin friction enhances with rising in Brownian motion parameter; 

 By increment in thermophoresis, Brownian motion and Prandtl number, reduction in Nusselt number is observed; 

 The temperature decrease with growing values of Prandtl number. 

 

Availability of data and material: The data used to support this study are included in the Manuscript. 

Nomenclature 

Abbreviation Full Name 

β Casson fluid parameter 

α thermal diffusivity 

Nb Bronian motion parameter 

Nt thermophoresis parameter 

T fluid temperature at outer layer 

Tw temperature across sheet surface 

T∞ temperature far away from the sheet surface 

Cw Concentration of nanoparticles at sheet surface 

C∞ ambient nano particles concentration at boundary layer 

Pr Prandtl number 

Sc Schmidt number 
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Cf skin friction 

Nux Nusselt number 

Shx local Sherwood number 

DB Brownian diffusion 

DT thermophoresis diffusion 

uw velocity of stretching sheet 

k heat conductivity 

Rex local Reynolds number 

υ kinematic viscosity 

u x-component of velocity 

v y-component of velocity 

(aρ)p nanoparticles heat capacity 

(aρ)f fluid heat capacity 

μ Dynamic viscosity of fluid 

φ concentration of fluid particles 

θ dimensionless temperature 

Rd Radiation factor 

Fr Local inertia 

χ(η) Gyrotactic microorganisms 

λ Porosity factor 

σ Electric conductivity 

K1 Permeabiilty 

Cb Inertial coefficient 

Bo Magnetic effect 

M Magnetic parameter 

Wc Maximum cell speed 

Dm Coefficient of microorganisms 
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ρ Nanofluid density 

Pe Peclet number 

qr Radiative heat flux 

ω Bioconvection 
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