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1. INTRODUCTION

G is would be a commutative ring and the identity in this work. Lu[1] conducted research on the idea of a prim sub-modules
of modules in 1983 as a generalization of the idea of the prime ideal, while Ahmad Y. D. and Fatemeh S. introduced the
idea of the 2-Absorbing sub-module in [2] as a generalization of the idea of the prime sub-module. Abd Ali and Hanoon
[6] established the concepts of NEndo T-ABSO sub-modules and NEndo prime sub-module.
In this article, the notion of Endo quasi prime sub-module 1.is extended to NEndo quasi prime sub-module. Section 2
examines the NEndo quasi prime sub-modules and all of its significant features, conclusions, and results.

2. PRELIMINARIES

The several basic ideas are covered in this section, along with any requirements they could have on the area that follows.
Definition 1 : A sub-module S <V is called to min. (accordingly max.) sub-module of Vif S20,V K<V ,KES=
K=(0) [accordingly K£V,VS<V, Sc K= K=V][7]

Definition 2 : G module V is called to a cyclicif h € V suchthat V=<h>={rh:re G}.[7]

Definition 3 : If amodule V has finite generating set, It's said that finitely generated., say S, thatis V =(S).[9]
Definition 4 : A sub-module S of a L — module V is called to as a direct summand of V, for short S <® V if, there
exists a sub-module K of V suchthat S+ K=V andSNK=0.[8]

Definition 5: LetV as L-moduleand S c V. Aiscalledtoas a prime sub — module if r € L, h € V,with hs €
S impliiesthath €S orre (S: V). [1]
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Definition 6:Let V as L —module and S c V. P is called to as Endo Prime sub — module if f €

End(V), f(h)€S, h € V implies thatheSor f(V) €S.[3]

Definition 7: LetV as —module ,S c V. Siscalled as TABSO sub — module if whenever x,y € L, a € V, with
xya € S impliesthatax e Sorya € S orab e ( S:, V). [2]

Definition 8 : Let Vas L — module and S c V. Sis called to as Endo TABSO sub — moduleifVJ,H €

End(V), m € V with (J e H)(m)€A implies that J(m) €S or H(m) €S or (J o H)(V) €S. [5]

Definition 9: Let V be a L — module. The Jacobsonn radical of M is indicated by J(V), and defined as all max. sub-
modules of V intersecting, and indicated by sum of all small sub-module of V. If V has no max. sub-module, then we set
J(V) = V. [7]

Theorem 1:If f:V — V'isa L — homomorphism,then f (J(V)) < JWV),If f:V — V'isa L — epimorphism
and kerf <« V,then f (J (V)) = J(V'),and J(V) L< J(V),wher Lisaring, if V is projective module then (V)L =
JCV).[7]

Definition 10 : Let V as L — module and § c V, Siis called to as NEndo prime sub-module if vV f € EndV , xe V
such that f(x) € S implies that x e S+ J(V)or f(V) €S+ J([V).6]]

Definition 11: Let V as L — module and S c V, Sis called to as NEndo TABSO sub-module if Vv J,H € EndV ,x €
V such that (J o H)(x) € S implies that J(X)eS+J(V) or H(X)eS+J(V) or (JeH)(V)SS+I(V). [6]

Definition 12 : AL — module V is called to as a scalar module if for each Je End(V), 3 n € L such that J(x) =
nx, for xeV.9]

Corollary 1 Every finitely generated multiplication L-module V is scalar module[9] .
Definition 13: A L-modul P is called to as W — Projective module if each schematic diagram|[ 7 ] :

P
h ' f
,

w > S
g

goh=f

Figl. W-Projective module

Y
o

via homomorphism, with exact row being commutatively extended. h: P — W thatis goh = f.
Definition14 : A sub-module S of a L — module V' is called to as fully invariant if, f(S) € S forall f € End, (V). [4]
Definition 15: A L-module V is called (co-quasi — D) if Hom(V,S) =0 for all proper sub-module S of V.

Equivalently "A nonzero L — module V is( co-quasi-D) if for each nonzero f € EndV ,f is an epiomorphism[ 10] .

Corollary 2: Every finitely generated multiplication L-module V is Scalar module[ 8 ].

Definition 16: A proper sub-module S of a L-module V, is called quasi prime sub-module if whenever x,y € L, m € V

\Wwith xym € S implies that xm € S or ym € S. [8]

3. NEARLY ENDO QUASI PRIME SUB-MODULES
As generalizations of quasi prime submodules, we introduce the idea of NEndo Quasi Prime Sub-modules in this section

and examine some of their characteristics.
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Definition 17: A proper sub-module S of a L-module V is called Nearly Endo Quasi Prime sub-module ofV (by short
NE quasi prime) sub-module if (Lo g)(m) € S,where l,h € EndV,m €V ,implies that I[(m) € S+ J(V) or h(m) €
S+ ).

Example 1:  Consider Z;s as Z-module, S=(3) is NE quasi prime sub-module, since if [,g € End(Z;5), m € Zs,
I(x) =3x,g(x)=x Vx€ Zys and J(Z;s)=B)N(5)=(0), (og)@B) = 1(3) =9 €S, implies that I(3) =
33)=9€P+J(Z;s)=B) and gB3)=3 €S+J(Z;5) = (3).

3.1 Remarks and Examples

1. Every End prime is NE quasi prime sub-module.

Proof: LetS be End Prime sub — module of an L-moduleV and

L,g € End(V),m € Vsuchthat (Log)(m) €S =L(g(m)) €S ,butSis End Prime sub-module of V, then g(im) €
Sor L(V)cShenceg(m)e S+ J(V)or L(m) € S+ J(V),vm € V. Thus S is NE quasi prime sub — module.
However, in general, the opposite is not true, as in the case of: Take into considerationZ, as Z_module, (2) is a sub-
module of Z, (2) is NE quasi prime sub-module, since if I,g € End(Z¢), I(x) =x+1 and g(x) =3 ,Vx € Z,
where J(Z¢) = (2)N(3) =(0), (log)(1) =1(g(1)) =4 € (2) impliesthat 1(1) =2 € (2) +J(Zg), (L0 g)(Zy) S
2)+ J(Z)

(Uog)0) =4
|Geg)) =4
log)@) =4
(log)3) =4
(log)@) =4
Iog)(5) = 4

But it is not End prime sub-module of Z,, I(3) = 4 € S = (2), implies that
3¢ 2)+J(Z)=@2) and 1(Zg) € 2)+ J(Zg) = (2),where l(0) =1 ¢ (2) + J(Zs) = (2).

(log)(Zs) = Sothat (1 g)(Ze) < (2) + J(Zs)

2. LetP,Sbetwo sub — modules of an L. — module Vand P < S. If Sis NE quasi prime sub — module
of V,

then P is not necessary that NE quasi prime sub-module of V, for example: Take into consideration Z,, as Z-module,
Take S = (4),(12), Vf,g € End(Z,,),f(x) =x—2,9(x) =2x , Vx € Z,, Where](Z,,)=2)N(3) =
(6),S = (4) is NE quasi prime sub-module of V = Z,, since (f o g)(7) = f(g9(7)) =12 €S implies that g(7) =
14 € S+ J(Zy4) = (2),butP = (12) is not NE quasi prime sub-module of V = Z,, since

(fed(M = f(g(7))=12€P,then f(7) =5 &P +](Zy,) = (6),

g(7) =14 € P +](Zy,) = (6).

3. Every Endo quasi Prime sub-module of a L. — moduleV is NE quasi-prime sub-module.
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Proof: Let S be Endo quasi prime sub-module of a L-moduleV and f, ge End(V) , m € W suchthat (f o g)(m) € S,
but S is Endo quasi prime sub-module of V, then f(m) € Sor g(m) € Shence f(m) € S+ J(WV)or gim) € S+ J(V)
since S € S+ J(V).Thus S is NE quasi prime sub-module. But the converse of (3) incorrect in general, for example:
consider Z,, as Z-module,
S = (8) is NE quasi prime sub-module., since if f,g € End(Z,,), f(x) =x—2, glx)=x+1,Vx € Zy,
Where J(Z,,) = (2) N (3) = (6) suchthat(fog)(9)=f(g(9)=8€S= (8),theng(9) =10 €S+ J(Z,4) =
(2), but S is not End Quasi Prime sub-module of Z,, since f(9) =7¢ S and g(9) =10¢S.

4. LetP, S be two sub-modules of a L — module V, and P < S. If P is NE quasi prime sub-module of V,
then P is NE quasi prime sub-module of S with J(V) < J(S).

Proof: Let (fog)(m)€EP, VmES since S<V,so meV,f € End(WV), Since P is NE quasi prime sub-
module of V, then either f(m) P +J(V) or g(m) P+ J(VW), since J(V) < J(S), hence f(m) € P +J(S) or g(m) €
P + J(S). Thus P is NE quasi prime sub-module of S.

5. The intersection of two NE quasi prime sub-module not be NE quasi prime sub-module, for example:
consider Z;, as Z-moduletake P = (4),S = (3) is NE quasi prime sub-module of Z,, since V f, g €
End(Zy), f(x)=x—-3, gx)=x—2, Vx€ Z;, whereJ(Z;;,) =(2)n (3) = (6) such that
(feog)5)=f(g9(5) =0€ (4), then f(5)=2€ (4)+ J(Zzs) = (2), also (fog)(5) =
f(g(5)) =0€(3),then g(5) =3 € (B)+ J(Z12) =(3). But(4)n (3) = (0) isnot NE quasi
prime sub-module of Z;,, since (f » g)(5) = f(g(5)) =0 € (0),then f(5)=2¢& (0) +/(Z15) =
6), g5) =3¢ (0)+J(Z12) = (6).

6. Every NE quasi prime sub-module is NET-ABSO sub-module.
Proof: Let S be NE quasi prime sub-module of a L-moduleV andL,g € End(V),m € V such that (L o g)(m) € S, but
S is NE quasi prime sub-module of V, then L(m) € S+ J(V) org(m) € S+ J(V),vm € V.Thus S is NET-ABSO sub-
module. However, in general, the opposite is not true, as in the case of: Take into consideration Z,, as Z,oquie,S = (8)
is a sub — module of Z,,, is NET-ABSO sub-module, since if [,g € End(Z,,), l(x) =x+5 and g(x) =3 ,Vx €
Zoa, Where J(Z,,) =(2)NB)=(6), (Iog)(4) =1(g(4)) =1(3) =8 € P =(8) implies that 1(4) =9 ¢ (8) +
J(Zy) = (2)and g(4) =3 & (8) +J(Zps) = (2) 0r (Lo g)(Z24) € (8) + J(Z24) = (2),
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l(g(0)) =8, l(g(1) =8,
g@) =8, (g(3®)=8,
(g®) =8 1(g(5) =8,
l(9(6)) =8, (g(N) =8,
l(g8) =8 1(g(9)) =8,
I(g(10)) =8, I(g(11)) =8,
I(g(12)) =8, 1(g(13)) =8,
I(g(14)) =8, 1(g(15)) =8, ...
Sothat(l o 8)(Z,4) € (8) +J(Zp4) = (2).
But it is not NE quasi prime sub-module of Z,, , 1(g(4) =8 € S = (8) impliesthat [(4) =9 & (8) +J(Zy,) =

(2)and g(4) =3€(8) +J(Z2) =(2).

(log)(Z24) = 1§

Proposition 1: Let S be NE quasi prime submodule of an L-module V is Scalar module and J(V) € S if and only if
Sis quasi prime sub-module of V.

Proof: (=) Letabm € S for a,b €L, Vvm €V such that f(m) = am, g(m) = bm, then (f e g)(m) = abm € S,
but S is NE quasi prime sub-module of V, then either am = f(m) € S+J(V) or bm =g(m) € S+ J(V) , hence
f(m) =am e Sor bm = g(m) € Ssince J(V) € PS. Then S is quasi Prime sub-module of V.

(&) Let (feog)(m) €S where f,g € End(V), Vm € V,since V is Scalar — module, then thereexist ab e L

such that am = f(m), bm = g(m) foreach m eV ,so (f e g)(m) =abm < S ,butSis quasi Prime sub-module
of V, implies that either am = f(m) € S or bm = g(m) € S, Since J(V) €S hence f(m) € S+ J(V)or g(m) €
S+ J(V)Then S is NE quasi prime sub-module of V.

Remark 1: In general, the opposite of Proposition 3.5 is not true if the condition of the.Scalar-module is removed.The
example that follows demonstrates: Let Z-module Z @ Zand S = 3Z @(0), Itisevidentthat S is quasi Prime sub-
module since rt(u,w) € 3Z @®(0) then (rtu ,rtw) € 3Z &(0) i.e. rtu € 3Z and rtw = 0. Follows w = 0 and

ru € 3Z ortu € 3Z, so either r(u,w) € 3Z &(0) or t(u,w) € 3Z.60(0). Thus Sis quasi Prime. But we can such that
S is not E-quasi prime as follows:

Define H(u,w) = (w,u), Q(u,w) = ( w,0). Itisevidentthat H,Q € EndV, J(Z)=(0),s0(Q o H )(3,1) = Q(1,3) =
(3,0) €S, but H(3,1) =(1,3) ¢ S+ J(Z) and Q(3,1) = (1,0) ¢ S+ J(2).

Corollary 3:Let S be a sub-module of a finitely genereated multiplication L-module V. Then S is quasi prime sub-
module if and only S is NE quasi prime sub-module of V.

Proof:

(=) Letabm e Sfor a,b € L,vm €V suchthat f(m) =am, g(m) = bm, then (f o g)(m) = abm € S, but S is
NE quasi prime sub-module of V, then either am = f(m) € S+ J(V) or bm = g(m) € S+ J(V), hence f(m) =
am € Sor bm = g(m) € Ssince J(V) € S.ThenS is quasi Prime sub-module of V.

(<) Let (fog)(m) €S where f,g € End(V), vm € V, since V is scalar-module, then there exist a,b € L such that
am = f(m), bm = g(m) foreach m €V ,so (f cg)(m) = abm €S , but S quasi Prime sub-module of V, implies
that either am = f(m) € S or bm = g(m) € S,since J(V) € S, hence f(m) € S+ J(V)or g(m) € S+ J(V). Then

S is NE quasi prime sub-module of V.
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Proposition 2:Let ¢: V — V be a epimorphism, S is fully invariant Equasi prime sub-module of L-moduleV, such that
@(V) & S Then ¢~1(S) is NE quasi prime sub-module of V.

Proof: Itis evident that ¢ ~1(S) a proper sub-module of V, if not then ¢ ~1(S) = V, hence S= (V) = V this contradiction.
Letl,g € EndV,u € V such that (1o g)(u) € ¢~ 1(S),then ¢(l o g)(u) € S. since S is Equasi prime sub-module of V
then either p(1(w)) € Sor p(g(u)) €S, so l(m) € ¢~ 1(S) or g(u) € @~1(S), thatimplies I(m) € ¢~ 1(P) +

P (W) or g(u) € p71(S) + 97 (J(V)), hence 1(w) € p™1(S) + (V) or g(m) € p~(S) + (V).

Therefore ¢~1(S) is NE quasi prime sub-module of L-module V.

Proposition 3: Let V as L-module V and S c V, if S is NE quasi prime sub-module. Then

(S:L (u)) is prime ideal in L, J(V) € S.

Proof: Letr,t € (S:; (). Then abm € S.where Q H € EndV,Q(u) = ru,H(u) = tu Sothat (QoH)(u) =rtu €S,
but S is NE quasi prime sub-module of V, then Q(u) =ru € S+ J(V) orH(u) =tu € S+ J(V) = ru€Sortu €
Ssince J(V) €, hence r € (S:, (u)) ort € (Si, (w).

Proposition 4: Let S be a proper sub-module of duo L-moduleV with J(V) € S. Then S is a NE quasi prime sub-module
if and only if (S:pnay W) = (Signay H(w)) foreach u € V,H(w) & S,H € EndV.

Proof: (=) Let Q € (Signay HW)) ,H(W) & S, then Q(H(w)) € S. but S is NE quasi prime sub-module, and H(u) &
S,So that Q(w) € S +J(V), thenQ(u) € S+ J(V)since J(V) €S, thus Q € (Signay (W), that is (Sipnay H(w)) S
(Signay @) . Now let Q € (Sipnay (W), hence Q(u) € S, but V is duo module , so H(u) € (w). it follows that
Q(HwW)) < (Q(w)) € S, this implies Q € (S:gnay HW)).

(&) Let Q,H € EndV suchthat (H o Q)(m) € S and suppose that, H(m) & S.

S0 Q € (S:gnay HW). But (S:gnay HW)) = (S:gnay (w)) by hypothesis , so that Q € (S:znay (w)), hence Q(u) € S,
sothat Q(u) € S+ J(V).

Thus S is an NE quasi prime sub-module.
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