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A B S T R A C T  
 

In this work, fuzzy semi Two-Absorbing second sub-modules and fuzzy strongly semi Two-Absorbing 
second sub-modules are presented. The connections between fuzzy semi prime (fuzzy strongly semi 
prime) second sub-modules, fuzzy quasi prime (fuzzy strongly quasi prime) second sub-modules, and 
fuzzy Two-Absorbing (fuzzy strongly Two-Absorbing) second sub-modules are also covered. Here are 
some fundamental characteristics and attributes of these ideas. 

 

 

 

 

 

 

 
  

 

 

1. INTRODUCTION 

Zadeh [16] first put forward fuzzy sets in 1965. Fuzzy groups, a generalization of the prime fuzzy ideal, were first proposed 
by Rosenfeld [1] in 1971. In 1989, Mukherjee [14] extended this notion to the prime fuzzy ideal. In 1992, Zahedi [17] 
introduced the idea of a main fuzzy ideal. In 2004, Hadi [4] expanded this idea to include semi-primitive fuzzy sub-modules. 
The prime fuzzy sub-module notion was first presented by Rabi [14]. The definition of the quasi-prime fuzzy sub-module 
was first put forth by Hatam in [5] in 2001. In 2017, Deniz S. et al. [2] introduced the idea of the Two-Absorbing fuzzy ideal. 

In 2018 and 2019, Hatam and Wafaa introduced the notions of two-absorbing fuzzy sub-modules [6] and semi-two-absorbing 
fuzzy sub-modules [7]. In the year 2019, H. Ansari Toroghy [3] proposed fuzzy second sub-modules. Wafaa and Assel 
originally introduced the idea of fuzzy two-absorbing second sub-modules in 2021 [15]. 

There are three parts to the search. The definition and investigation of the Two-Absorbing fuzzy second sub-module are 
presented in Section (1). In section (2), along with several hypotheses, theorems, and examples, we define fuzzy semi Two-
Absorbing second sub-modules and list the necessary features. The fuzzy strongly semi-two-absorbing second sub-module 
is examined in section (3). Its properties and relationships with other fuzzy second sub-module concepts are searched for in 
the remarks and examples. 

Note that: The notations fzy sub-module, fzy singleton, and fzy module represent the fuzzy sub-module, fuzzy singleton, 
and fuzzy module. 

2. PRELIMINARIES 

Definition 1.1[16]: Let S be a non-empty set and L be an interval [0,1] of the real line (real number). A function from S into 

L is a fzy set A in S (a fzy subset of S). 

Definition 1.2[8]: Let 𝑥𝑢: 𝑆 → 𝐿 be a fzy set in S, where  𝑥 ∈ 𝑆, 𝑢 ∈ 𝐿, define by  
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𝑥𝑢(𝑦) = {
𝑢   𝑖𝑓 𝑥 = 𝑦
0  𝑖𝑓 𝑥 ≠ 𝑦 

, 𝑥𝑢 is known as fzy singleton in S, If 𝑥 = 0 and 𝑢 = 1, then 01(𝑦) = {
1   𝑖𝑓 𝑦 = 0
0  𝑖𝑓 𝑦 ≠ 0 

  

 

Definition 1.1.8[18]: A fzy ideal of a ring T is a fzy subset K of that ring, if for all 𝑥, 𝑦 ∈ 𝑇: 

1- 𝐾(𝑥 − 𝑦) ≥ 𝑚𝑖𝑛{𝐾(𝑥), 𝐾(𝑦)}. 

2- 𝐾(𝑥𝑦) ≥ 𝑚𝑎𝑥{𝐾(𝑥), 𝐾(𝑦)}. 

 

Definition 1.3[18]: Let W be a T-module fzy set Y of W is called fzy module of a T-module W if  

1- 𝑌(𝑥 − 𝑦) ≥ 𝑚𝑖𝑛{𝑌(𝑥), 𝑌(𝑦)}, for all 𝑥, 𝑦 ∈ 𝑊. 

2- 𝑌(𝑟𝑥) ≥ 𝑌(𝑥), for all 𝑥 ∈ 𝑊, 𝑟 ∈ 𝑇. 

3- 𝑋(0) = 1 (0 is the zero element of W). 

 

Definition 1.4[9]: Let Y and A be two fzy modules of a T-module W. A is called fzy sub-module of Y if 𝐴 ⊆ 𝑌. 

Proposition 1.5[12]: Let A be fzy set of W. Then the level subset 𝐴𝑢, ∀𝑢 ∈ 𝐿 is a sub-module of M if and only if A is fzy 

submodule of fzy module of a T-module W. 

Definition 1.6[18]: Let A and B be two fzy sub-modules of fzy module Y. The residual quotient of A and B denoted by 

(𝐴: 𝐵) is the fzy subset of T defined by: 

(𝐴: 𝐵)(𝑟) = 𝑠𝑢𝑝{𝑣 ∈ 𝐿: 𝑟𝑣 . 𝐵 ⊆ 𝐴} for all 𝑟 ∈ 𝑇. That (𝐴: 𝐵) = {𝑟𝑣: 𝑟𝑣 . 𝐵 ⊆ 𝐴 ; 𝑟𝑣  𝑖𝑠 𝑎 𝑓𝑧𝑦 𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛 𝑜𝑓 𝑇}. If 𝐵 =<
𝑥𝑘 >, then (𝐴: < 𝑥𝑘 >) = {𝑟𝑣: 𝑟𝑣 . 𝑥𝑘 ⊆  𝐴 ; 𝑟𝑣  𝑖𝑠 𝑓𝑧𝑦 𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛 𝑜𝑓 𝑇}. 

Definition 1.7 [9]: Assume that A is a proper fzy sub-module of Y. The definition of the fzy annihilator of A, represented 

by F-annA, is:(𝐹 − 𝑎𝑛𝑛𝐴)(𝑟) = 𝑠𝑢𝑝{𝑣: 𝑣 ∈ 𝐿 , 𝑟𝑣𝐴 ⊆ 01}, To all 𝑟 ∈ 𝑇. 

Note that: F − ann𝐴 = (01:𝑅 𝐴), hence (𝐹 − 𝑎𝑛𝑛𝑌)𝑣 ⊆ 𝑎𝑛𝑛𝑌𝑣, [5]. 

Proposition 1.8 [9]: F-annY is the fzy ideal of T if Y is the fzy module of a T-module W.. 

Definition 1.9 [11]: A ring T's prime fzy ideal is its fzy ideal Ĥ, provided that H is non-empty and that for any 𝑎𝑠, 𝑏𝑙  fzy 

singleton of T,  𝑎𝑠𝑏𝑙 ⊆ Ĥ suggests that a choice of 𝑎𝑠 ⊆ Ĥ or 𝑏𝑙 ⊆ Ĥ, ∀𝑠, 𝑙 ∈ 𝐿. 

Definition 1.10 [2]: Let Ĥ be a fzy ideal of R that is not empty. Therefore, Ĥ is referred to as the Two-Absorbing fzy ideal 

if, for any fzy singletons 𝑎𝑠,  𝑏𝑙 ,  𝑟𝑘 of T then 𝑎𝑠𝑏𝑙  𝑟𝑘 ⊆ Ĥ Suggest that a choice of 𝑎𝑠𝑏𝑙 ⊆ Ĥ or 𝑎𝑠 𝑟𝑘 ⊆ Ĥ or 𝑏𝑙  𝑟𝑘 ⊆ Ĥ. 

Definition 1.11 [8]: If B is any fzy sub-module of X that contains A, then 𝐵 = 𝑋. A maximum fzy sub-module is a correct 

fzy sub-module A of a fzy module X of a T-module W. 

Definition 1.12[3]: Let 𝐴 ≠ 01 be the fzy second sub-module of a T-module W, and let Y be its fzy module ∀𝑟 ∈ 𝑅 we've 

1r. 𝐴 = 𝐴 or 1r. 𝐴 = 01 where 1r is fzy ideal of T.    

Definition 1.13[13]: A divisible fuzzy module is a fzy module Y of a T-module W if each fzy singleton 01 ≠ 𝑟𝑣  of R such 

that 𝑟𝑣 ∙ 𝑌 = 𝑌. 

Definition 1. 14[15]: Let Y be a T-module's fzy. W. A suitable submodule It is claimed that A of Y is an entirely irreducible 

fzy sub-module if 𝐴 = ⋂ Aii∈I ,where {Ai}i∈I is a family of fzy sub-modules of Y, suggest that 𝐴 = Ai for any 𝑖 ∈ 𝐼. Every 

fzy sub-module of Y is an intersection of a fully irreducible fzy sub-module of Y, as is readily apparent.   

Definition 1.15[15]: If fzy singleton 𝑎𝑠 of T and B are entirely irreducible fzy sub-modules, then let 𝐴 ≠ 01 be designated 

as fzy prime (fzy Strongly prime) second sub-module (B be fzy sub-module). as𝐴 ⊆ 𝐵, then 𝐴 ⊆ 𝐵 or as ⊆ 𝐹 − 𝑎𝑛𝑛 (𝐴). 

Definition 1.16[15]: Let 𝐴 ≠ 01 be fzy sub-module of fzy module of Y of a T-module W. A is named fzy Two-Absorbing 

second sub-module if each time fzy singletons as, bl of T , B is completely irreducible fzy sub-module and asbl𝐴 ⊆ 𝐵 then 

either as𝐴 ⊆ 𝐵 or bl𝐴 ⊆ 𝐵 or asbl ⊆ 𝐹 − 𝑎𝑛𝑛 (𝐴).  

Definition 1.17[15]: Let 𝐴 ≠ 01 be fzy sub-module of fzy module of Y of a T-module W. A is named fzy quasi-prime (fzy 

strongly quasi-prime) second sub-module if each time fzy singletons as, bl of R, B is completely irreducible fzy sub-module 

(B is fzy sub-module) and asbl𝐴 ⊆ 𝐵 then either as𝐴 ⊆ 𝐵 or bl𝐴 ⊆ 𝐵. 

Remarks 1.18[15]: The fzy Two-Absorbing second sub-module is clearly the same as every fzy quasi-prime second sub-

module. 

 

3. FZY SEMI TWO-ABSORBING SECOND SUB-MODULES 

In this part, the fzy semi-two-absorbing second sub-module notion will be examined along with its properties, theorems, 
assertions, notes, and examples. 
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Definition 2.1: A non-zero fzy sub-module A of fzy module Y of a T-module W is known as fzy semi prime second sub-

module if whenever 𝑎𝑠
2𝐴 ⊆ 𝐾 where 𝑎𝑠 is fzy singleton of T, 𝑠 ∈ 𝐿 and K is completely irreducible fzy sub-module of Y, 

implies 𝑎𝑠𝐴 ⊆ 𝐾.  

Proposition 2.2: Let 𝐴 ≠ 01 be a fzy sub-module of fzy module Y of a T-module W. Then A is a fzy semi prime second 

sub-module of Y if and only if the level 𝐴𝑢 is semi prime second sub-module of 𝑌𝑢, for all 𝑢 ∈ L. 

Proof: ⟹) Let 𝑎2𝐴𝑢 ⊆ 𝐾𝑢 for every 𝑎 ∈ 𝑅 and 𝐴𝑢 ≠ 0 be a submodule of 𝑌𝑢 , 𝐾𝑢 be a completely irreducible sub-module 

of 𝑌𝑢, we have 𝑎𝐴𝑢 ⊆ 𝐾𝑢 then 𝐾(𝑎𝐴) ≥ 𝑢. So (𝑎2𝐴)𝑢 ⊆ 𝐾 implies that 𝑎𝑠
2𝐴𝑢 ⊆ 𝐾. Since A is a fzy semi prime second 

sub-module, then 𝑎𝑠𝐴 ⊆ 𝐾 equival 𝑎𝑠
2𝐴 ⊆ 𝐾. Hence, (𝑎𝐴)𝑢 ⊆ 𝐾 and (𝑎2𝐴)𝑢 ⊆ 𝐾, so that 𝑎𝐴𝑢 ⊆ 𝐾𝑢 and 𝑎2𝐴𝑢 ⊆ 𝐾𝑢. Thus, 

𝐴𝑢 is a semi prime second sub-module. 

⟸) Let 𝑎𝑠
2𝐴 ⊆ 𝐾 for fzy singletons 𝑎𝑠 of T ,∀𝑠 ∈ 𝐿, hence (𝑎2𝐴)𝑢 ⊆ 𝐾 so that 𝐾(𝑎2𝐴) ≥ 𝑢 implies 𝑎2𝐴 ⊆ 𝐾𝑢, but 𝐴𝑢 is 

a semi prime second sub-module, then 𝑎𝐴𝑢 ⊆ 𝐾𝑢 and 𝑎2𝐴𝑢 ⊆ 𝐾𝑢. Hence, (𝑎𝐴)𝑢 ⊆ 𝐾 and (𝑎2𝐴)𝑢 ⊆ 𝐾 implies 𝑎𝑠𝐴 ⊆ 𝐾 

and 𝑎𝑠
2𝐴 ⊆ 𝐾. Thus, A is fzy semi prime second sub-module.  

Example 2.3: Let 𝑌: 𝑍10 → 𝐿 where 𝑌(𝑦) = {
1       𝑖𝑓 𝑦 ∈ 𝑍10

0                 𝑜. 𝑤.
  

It is clear Y is a fzy module of 𝑍10 as Z-module  

Now, 𝑌𝑢 = 𝑍10 as Z-module is semi prime second sub-module since 52𝑌𝑢 ⊆ (5̅), then 52𝑌𝑢 = 5𝑌𝑢 = (5̅). So that, Y is fzy 

semi prime second sub-module.  

Definition 2.4: A non-zero fzy sub-module A of fzy module Y of a T-module W, is called fzy semi Two-Absorbing second 

sub-module of Y if whenever 𝑎𝑠
2𝐴 ⊆ 𝐾 where 𝑎𝑠 is fzy singleton of R, 𝑠 ∈ 𝐿 and K is a completely irreducible fzy sub-

module, implies either 𝑎𝑠𝐴 ⊆ 𝐾 or 𝑎𝑠
2 ⊆ 𝐹 − 𝑎𝑛𝑛(𝐴)..𝑛𝑛(es either bmdubmd.) of Y 

The following proposition specificities of fzy semi Two-Absorbing second sub-module is given.  

Proposition 2.5: Let 𝐴 ≠ 01 be a fzy sub-module of fzy module Y of a T-module W. Then A is a fzy semi Two-Absorbing 

second sub-module of Y if and only if the level 𝐴𝑢 is a semi Two-Absorbing second sub-module of 𝑌𝑢, for all 𝑢 ∈ L .  

Proof: ⇒) Let 𝑎2𝐴𝑢 ⊆ 𝐾𝑢 for every 𝑎 ∈ 𝑅 and 𝐴𝑢 ≠ 0 be sub-module of 𝑌𝑢 , 𝐾𝑢 be a completely irreducible sub-module of 

𝑌𝑢, ∀𝑢 ∈ 𝐿, then 𝐾(𝑎2𝐴) ≥ 𝑢, hence (𝑎2𝐴)𝑢 ⊆ 𝐾 so that, 𝑎𝑠
2𝐴𝑣 ⊆ 𝐾 where 𝑢 = 𝑚𝑖𝑛{𝑠, 𝑣} and (𝑎2)𝑠 = 𝑎𝑠

2  but A is a fzy 

semi Two-Absorbing second sub-module, then either 𝑎𝑠𝐴 ⊆ 𝐾 or 𝑎𝑠
2 ⊆ 𝐹 − 𝑎𝑛𝑛(𝐴). Hence,(𝑎𝐴)𝑢 ⊆ 𝐾𝑢 or (𝑎2)𝑢 ⊆

𝑎𝑛𝑛(𝐴𝑢), implies 𝑎𝐴𝑢 ⊆ 𝐾𝑢 or 𝑎2 ∈ 𝑎𝑛𝑛(𝐴𝑢). Thus, 𝐴𝑢 is a semi Two-Absorbing second sub-module of 𝑌𝑢.  

⇐) Let 𝑎𝑠
2𝐴 ⊆ 𝐾, 𝑎𝑠 is a fzy singleton of T and K be completely irreducible fzy sub-module of Y, then (𝑎2𝐴)𝑢 ⊆ 𝐾 where 

𝑢 = 𝑚𝑖𝑛{𝑠, 1}, hence 𝐾(𝑎2𝐴) ≥ 𝑢 so that, 𝑎2𝐴𝑢 ≤ 𝐾𝑢. But 𝐴𝑢 is semi Two-Absorbing second sub-module of 𝑌𝑢, then 

either 𝑎𝐴𝑢 ⊆ 𝐾𝑢 or 𝑎2 ∈ 𝑎𝑛𝑛(𝐴𝑢), hence (𝑎𝐴)𝑢 ⊆ 𝐾 or (𝑎2)𝑢 ⊆ 𝑎𝑛𝑛(𝐴𝑢), so that 𝑎𝑠𝐴 ⊆ 𝐾 or 𝑎𝑠
2 ⊆ 𝐹 − 𝑎𝑛𝑛(𝐴). Thus, 

A is a fzy semi Two-Absorbing second sub-module of Y.   

Remarks and Examples 2.6: 

1- In general, the opposite is not true; for instance, every fzy-semi prime second sub-module is fzy-semi Two-Absorbing 

second sub-module:   

Let 𝑌: 𝑍9 → 𝐿 where 𝑌(𝑦) = {
1       𝑖𝑓 𝑦 ∈ 𝑍9

0          𝑜. 𝑤.      
  

It is clear Y is a fzy module of 𝑍9 as Z-module  

Now, 𝑌𝑢 = 𝑍9 as Z-module is a semi Two-Absorbing second sub-module since 32𝑌𝑢 = 0 but it is not semi prime second 

sub-module since 32𝑌𝑢 = (0) but 3𝑌𝑢 ≠ (0) so that, Y is fzy semi Two-Absorbing second sub-module, but it is not fzy-

semi prime second sub-module  

2- Every fzy Two-Absorbing second sub-module is fzy semi Two-Absorbing second sub-module. However, In general, 

the opposite is untrue. For instance:  

Let 𝑌: Z20 → L where 𝑌(𝑦) = {
1   if y ∈ Z20  

 
0   o. w.

  

As a Z-module, it is clear that Y is a fzy module of 𝑍20.  

Now, Yu = Z20 as Z- module, for all 𝑢 ∈ 𝐿, is semi Two-Absorbing second sub-module since 52(𝑌𝑢) ⊆ (5̅), then 

5(𝑌𝑢) ⊆ (5̅), but it is not Two-Absorbing second sub-module since 2.5(𝑌𝑢) ⊆ (10), but 2. (𝑌𝑢) ⊈ (10), 5. (𝑌𝑢) ⊈ (10) 

and 2.5 ∉ 𝑎𝑛𝑛(𝑌𝑢) = 20𝑍. So that, Y is a fzy- semi Two-Absorbing second sub-module, which it is not fzy Two-

Absorbing second sub-module of Y.  

3- Every fzy quasi prime second sub-module is a fzy semi Two-Absorbing second sub-module, However, as demonstrated 

by the example in part (2), the opposite is generally false.   

 

Proposition 2.7: Let 𝐴 ≠ 01 be a fzy sub-module of fzy module Y of a T-module W. Then the following expressions are 

equivalent:  

1- A is fzy semi Two-Absorbing second sub-module and F-ann(A) is a fzy semi prime ideal.  
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2- A is a fzy prime second sub-module. 

3- A is a fzy semi prime second sub-module. 

4- A is a fzy quasi prime second sub-module. 

5- A is fzy Two-Absorbing second sub-module and F-ann(A) is a fzy prime ideal. 

Proof: (1) → (2)  

Let 𝑎𝑠(𝑎𝑠𝐴) ⊆ 𝐾 for fzy singleton 𝑎𝑠 of R. Since A is fzy semi Two-Absorbing second sub-module, then 𝑎𝑠𝐴 ⊆ 𝐾 or 𝑎𝑠
2 ⊆

𝐹 − 𝑎𝑛𝑛(𝐴). If 𝑎𝑠𝐴 ⊆ 𝐾 then we are done. If 𝑎𝑠
2 ⊆ 𝐹 − 𝑎𝑛𝑛(𝐴) then 𝑎𝑠 ⊆ 𝐹 − 𝑎𝑛𝑛(𝐴) since 𝐹 − 𝑎𝑛𝑛(𝐴) is a fzy semi 

prime ideal. So that, A is a fzy prime second sub-module. 

(1) → (3)  

Let 𝑎𝑠
2𝐴 ⊆ 𝐾 for fzy singleton 𝑎𝑠 of T. Since A is fzy Two-Absorbing second sub-module, then 𝑎𝑠𝐴 ⊆ 𝐾 or 𝑎𝑠

2 ⊆ 𝐹 −
𝑎𝑛𝑛(𝐴), If 𝑎𝑠𝐴 ⊆ 𝐾 the proof is complete. If 𝑎𝑠

2 ⊆ 𝐹 − 𝑎𝑛𝑛(𝐴), then 𝑎𝑠 ⊆ 𝐹 − 𝑎𝑛𝑛(𝐴) since F-ann(A) is a fzy semi 

prime ideal. Hence, 𝑎𝑠𝐴 ⊆ 𝐾 . Thus, A is a fzy semi prime second sub-module.  

(2) → (3)  

Let 𝑎𝑠
2𝐴 ⊆ 𝐾 for fzy singelton 𝑎𝑠 of T. Since A is a fzy prime second sub-module, then 𝑎𝑠𝐴 ⊆ 𝐾 then we are done .    

(3) → (4) Let 𝑎𝑠(𝑎𝑠𝐴) ⊆ 𝐾 for fzy singleton 𝑎𝑠 of T. Since A is a fzy semi prime second submodule, then  𝑎𝑠𝐴 ⊆ 𝐾 , shows 

that A is a second submodule of fzy quasi prime.   

(4) → (5) Since A is a fzy quasi-prime second submodule, then A is a fzy Two-Absorbing second sub-module by Remarks 

(1.18)  

Now , let 𝑎𝑠𝑏𝑙 ⊆ 𝐹 − 𝑎𝑛𝑛(𝐴) , for fzy singletons 𝑎𝑠 , 𝑏𝑙  of R then 𝑎𝑠𝑏𝑙𝐴 ⊆ 01, hence 𝑎𝑠𝐴 ⊆ 01 or 𝑏𝑙𝐴 ⊆ 01. Thus, 𝑎𝑠 ⊆
𝐹 − 𝑎𝑛𝑛(𝐴) or 𝑏𝑙 ⊆ 𝐹 − 𝑎𝑛𝑛(𝐴), so that F-ann(A) is a fzy prime ideal.  

(5) → (1) It is clear.  

 

4. FZY STRONGLY SEMI TWO-ABSORBING SECOND SUBMODULE 

In this section, the definition of the strongly semi Two-Absorbing fzy second sub-module is discussed, along with some of 
the associated conclusions and proofs. 

Definition 3.1: A non-zero fzy submodule A of fzy module Y of a T-module W, is called a fzy strongly semi Two-Absorbing 

second submodule if whenever 𝑎𝑠
2𝐴 ⊆ 𝐾 enever led strongly semi T-ABSO F.second subm, where 𝑎𝑠 fzy singleton of T and 

K fzy sub-module of Y, implies either 𝑎𝑠𝐴 ⊆ 𝐾 or 𝑎𝑠
2 ⊆ 𝐹 − 𝑎𝑛𝑛𝐴 Equivalently if 𝐴 ≠ 01 fzy sub-module is called a fzy 

strongly semi Two-Absorbing second submodule 𝑎𝑠
2𝐴 = 𝑎𝑠𝐴 or 𝑎𝑠

2𝐴 = 01 for all 𝑎𝑠 fzy singleton of R. 

Proposition 3.2: Let 𝐴 ≠ 01 be a fzy sub-module of fzy module Y of a T-module. Then A is a fzy strongly semi Two-

Absorbing second sub-module of Y if and only if the level 𝐴𝑢 is a strongly semi Two-Absorbing second sub-module of 𝑌𝑢, 

for all 𝑢 ∈ 𝐿.  

Proof: The same proof of Proposition (2.5) only replaces K is a completely irreducible fzy sub-module by K is a fzy 

submodule of Y.  

Proposition 3.3 : Let Y be a fzy module of a T-module M. A non-zero fzy sub-module A of Y is a fzy strongly semi Two-

Absorbing second submodule of Y if and only if (𝐾:𝑅 𝐴) is a fzy semi prime ideal of T for each fzy sub-module 𝐴 ⊈ 𝐾 in 

Y and 𝑎𝑠
2𝐴 ≠ 01 for each fzy singleton 𝑎𝑠 of T .  

 

Proof:  

⇒) Let 𝐴 ≠ 01 be a fzy strongly semi Two-Absorbing second submodule of Y and K fzy sub-module Y such that 𝐴 ⊈ 𝐾 

implies (𝐾: 𝐴) be a proper fzy ideal of T. Let 𝑎𝑠 be fzy singleton of T such that 𝑎𝑠
2 ∈ (𝐾: 𝐴), then 𝑎𝑠

2𝐴 ⊆ 𝐾 and 𝑎𝑠
2𝐴 ≠ 01, 

then 𝑎𝑠𝐴 ⊆ 𝐾 . Hence, 𝑎𝑠 ∈ (𝐾: 𝐴). Thus, (𝐾: 𝐴) is a fzy semi prime ideal of T.  

⇐) Let K be a fzy sub-module of Y and (𝐾: 𝐴) be fzy semi prime, let 𝑎𝑠 be fzy singleton of T such that 𝑎𝑠
2𝐴 ⊆ 𝐾 ingleton 

of R such that. In case 𝐴 ⊆ 𝐾, then 𝑎𝑠𝐴 ⊆ 𝐾. If 𝐴 ⊈ 𝐾 and 𝑎𝑠
2 ∈ (𝐾: 𝐴), then 𝑎𝑠 ∈ (𝐾: 𝐴) since (𝐾: 𝐴) is a fzy semi prime 

ideal, so that 𝑎𝑠𝐴 ⊆ 𝐾. Thus, A is a fzy strongly semi Two-Absorbing second sub-module.  

Corollary 3.4 : If A is a fzy strongly semi Two-Absorbing second sub-module, then F-ann(A) is a fzy semi prime ideal of 

T. 

 

Proof: By Proposition (3.3), it is complete proof.  

Remark 3.5: In general, the opposite of Corollary (3.4) is not true, as demonstrated by:   

Let 𝑌: 𝑍 → 𝐿 where 𝑌(𝑦) = {
1      𝑖𝑓 𝑦 ∈ 𝑍 
0       𝑜. 𝑤.       

   

Since Z is a Z-module, it is clear that Y is a fzy module of Z..  

Let 𝐴: 𝑍 → 𝐿 where 𝐴(𝑦) = {
𝑢
0

            𝑖𝑓 𝑦 ∈ 𝑃𝑍 
              𝑜. 𝑤.         
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P is a prime number in this case. A's status as a fzy submodule of Y is clear. 

Now, 𝐴𝑢 = 𝑃𝑍 and 𝑌𝑢 = 𝑍 as Z-module, 𝑎𝑛𝑛(𝐴𝑢) = 0 is a semi prime ideal of Z, but 𝐴𝑢 is not strongly semi Two-

Absorbing second sub-module since 𝑃2𝐴𝑢 ⊆ 𝑃2𝐴𝑢 but 𝑃𝐴𝑢 ⊈ 𝑃2𝐴𝑢 and 𝑃2 ∉ 𝑎𝑛𝑛(𝐴𝑢) = 0. So that 𝐹 − 𝑎𝑛𝑛(𝐴) = 01 is 

a semi prime fzy ideal, but A is not fzy strongly semi Two-Absorbing second sub-module of Y.  

 

Proposition3.6: Anon zero fzy sub-module A of fzy module Y of a T-module W is a fzy strongly semi Two-Absorbing  

second sub-module if and only if for each fzy ideal H of t and for fzy sub-module K of Y such that 𝐻2𝐴 ⊆ 𝐾 and 𝐻2𝐴 ≠ 01 

implies H𝐴 ⊆ 𝐾.  

Proof:  

⇒) Let A be a fzy strongly semi Two-Absorbing second submodule of Y. Then 𝐴 ≠ 01, let H be a fzy ideal and K fzy 

submodule of Y. If 𝐴 ⊈ 𝐾, then either 𝐻2𝐴 ⊈ 𝐾 and so nothing to prove or 𝐻2𝐴 ⊆ 𝐾, hence 𝐻2 ⊆ (𝐾:𝑅 𝐴) and by 

Proposition (3.3) is fzy semi prim ideal of R, so we have 𝐻 ⊆ (𝐾:𝑅 𝐴), then 𝐻𝐴 ⊆ 𝐾.   

⇐) It is clear.  

 

Remarks and Examples 3.7:  

1- Every fzy strongly semi prime second sub-module is fzy strongly semi Two-Absorbing second submodule, However, 

generally speaking, the opposite is not true. For instance:  

Let 𝑌: 𝑍4 → 𝐿 where 𝑌(𝑦) = {
1             𝑖𝑓 𝑦 ∈ 𝑍4

0              𝑜. 𝑤.         
  

It is clear Y is a fzy module of 𝑍4 as Z-module  

Now, 𝑌𝑢 = 𝑍4 as Z-module is strongly semi Two-Absorbing second sub-module since 22𝑌𝑢 = 0 but it is not strongly 

semi prime second sub-module since 22𝑌𝑢 = (0) but 2𝑌 ≠ (0) so that, Y is a fzy strongly semi Two-Absorbing second 

sub-module, but it is not strongly semi prim fzy second sub-module.  

2- It is evident that the second submodule that is fzy strongly quasi-prime is also fzy strongly semi Two-Absorbing; 

however, this is not always the case. For instance:  

Let 𝑌: 𝑍6 → 𝐿 where 𝑌(𝑦) = {
1            𝑖𝑓 𝑦 ∈ 𝑍6

0              𝑜. 𝑤.         
   

It is clear that Y is fzy module of 𝑍6 as Z-module  

Let 𝐴: 𝑍6 → 𝐿 where 𝑌(𝑦) = {
1

2
             𝑖𝑓 𝑦 ∈ 𝑍6

0              𝑜. 𝑤.         
     

It is clear A is a fzy sub-module of Y.  

A is a fzy strongly semi Two-Absorbing second sub-module since 𝑎𝑠
2𝐴 = 𝑎𝑠𝐴 for each fzy singleton of Z, However, 

the second sub-module is not a fzy strongly quasi-prime one since 21

3

. 31

3

 𝐴 = 01

3

⊆ 01 but 21

3

 𝐴 ⊈ 01 and 31

3

 𝐴 ⊈ 01. 

3- Every fzy second sub-module is a fzy strongly semi Two-Absorbing second sub-module, but the converse incorrect in 

general, for example, see the example in part (2) where A is a fzy strongly semi Two-Absorbing second sub-module but 

it is not fzy second submodule since 𝑎𝑠𝐴 ≠ 𝐴 for each 𝑎𝑠 fzy singleton of Z. 

4- A fzy secondary sub-module is a fzy strongly semi Two-Absorbing second sub-module. The conversely is not true, see 

example part (2) A is a fzy strongly semi Two-Absorbing second sub-module, but it is not a fzy secondary sub-module 

since 𝑎𝑠𝐴 ≠ 𝐴 and 𝑎𝑠
2𝐴 ≠ 01.  

5- It is obvious that a fzy strongly Two-Absorbing second sub-module is a fzy strongly semi Two-Absorbing second sub-

module. In general, the opposite is not true. For instance:   

Let 𝑌: 𝑍6⨁𝑍𝑝∞ → 𝐿 where 𝑌(𝑦) = {
1            𝑖𝑓 𝑦 ∈ 𝑍6⨁𝑍𝑝∞ 

0                          𝑜. 𝑤.        
  

Where p is a prime number, it is clear that Y is a fzy module of 𝑍6⨁𝑍𝑝∞ as Z- module. Now, 𝑌𝑢 = 𝑍6⨁𝑍𝑝∞  as Z-

module is strongly semi Two-Absorbing second submodule since 𝑎2𝑌𝑢 = 𝑎𝑌𝑢 for each 𝑎 ∈ 𝑍, but it is not strongly 

Two-Absorbing second submodule since 2.3𝑌𝑢 = 0⨁𝑍𝑝∞ we have neither 2𝑌𝑢 ⊆ 0⨁𝑍𝑝∞, nor 3𝑌𝑢 ⊆ 0⨁𝑍𝑝∞ and nor 

2.3𝑌𝑢 ⊆ (0)𝑌𝑢. So that, Y is a fzy strongly semi Two-Absorbing second submodule, but it is not fzy strongly Two-

Absorbing second sub-module. 
6- If A is maximal fzy sub-module and hence (prime fzy sub-module) then A may not be fzy strongly semi Two-Absorbing 

second sub-module for example:  

Let 𝑌: 𝑍 → 𝐿 where 𝑌(𝑦) = {
1             𝑖𝑓 𝑦 ∈ 𝑍
0               𝑜. 𝑤.     

  

It is clear Y is a fzy module of Z as Z- module.  

Let 𝐴: 𝑍 → 𝐿 where 𝑌(𝑦) = {
1

2
            𝑖𝑓 𝑦 ∈ 𝑃𝑍 

0                 𝑜. 𝑤.      
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Where p is a prime number, it is clear A is a fzy submodule of Y.  

A is a maximal fzy submodule of Y, but A is not strongly semi Two-Absorbing fzy second submodule since 𝑎𝑠
2𝐴 ≠ 𝑎𝑠𝐴 

and 𝑎𝑠
2𝐴 ≠ 01 for each 𝑎𝑠 ≠ 01 fzy singleton of Z.  

7- Let A and B be fzy submodules of fzy module Y of a T-module W, with 𝐴 ⊆ 𝐵 ⊆ 𝑌. If B is a fzy strongly semi Two-

Absorbing second sub-modules then A may not be a fzy strongly semi Two-Absorbing second sub-module of Y, for 

example: 

Let 𝑌: 𝑄 → 𝐿 where 𝑌(𝑦) = {
1          𝑖𝑓 𝑦 ∈ 𝑄 
0           𝑜. 𝑤.       

  

It is clear that Y is a fzy module of Q as Z-module.  

Let 𝐴: 𝑄 → 𝐿 where 𝐴(𝑦) = {
1

2
             𝑖𝑓 𝑦 ∈ 𝑍 

0             𝑜. 𝑤.         
  

It is clear that A is a fzy submodule of Y  

Let 𝐵 = 𝑌 where 𝐴 ⊆ 𝐵 ⊆ 𝑌, since B is divisible fzy module if X is a fzy divisible sub-module of itself.  

Then B is fzy strongly semi Two-Absorbing second sub-module but the fzy sub-module A is not fzy strongly semi Two-

Absorbing second sub-module since 𝑎𝑠
2𝐴 ≠ 𝑎𝑠𝐴 and 𝑎𝑠

2𝐴 ≠ 01 for each 𝑎𝑠 ≠ 01 fzy singleton of Z.  
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