

Babylonian Journal of Mathematics Vol. 2024, pp. 171–177 DOI:https://doi.org/10.58496/BJM/2024/018; ISSN:3006-113X https://mesopotamian.press/journals/index.php/mathematics

suppose

(CS) is

Research Article Factor Group for Some SL groups

Niran Sabah Jasim ¹,*,⁽¹⁾, Mohammed Serdar I.Kirdar ²,⁽¹⁾, Hadi Hamad ^{3,(1)}, Azza I.M.S. Abu-Shams ⁴, ⁽¹⁾, Aisha Zbaida ⁵, ⁽¹⁾

¹ Department of Mathematics, College of Education for Pure Science Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq

² Applied Science Department, University of Technology, Baghdad, Iraq

³ Department of Mathematics, An-Najah National University, Nablus P400, Palestine

⁴ Philadelphia University, College of Science, Mathematics Department, Ammaan Jordan

⁵ Mathematics department, Faculty of Education, Bani waleed university, Libya.

ARTICLE INFO

Revised: 18 Oct 2024

Accepted 16 Nov 2024

Published 08 Dec 2024

circular segmentation

special linear group

invertible n × n matrices

 (\cdot)

class functions

finite group

Article History Received 18 Sep 2024

Keywords

ABSTRACT

This work found the circular segmentation (CS) for p = 11, 13, 17, and 19 to $\mathcal{SL}(2, p)$, after we find the (RRCT) for each group and diagonal the matrix of this (RRCT) if we that the terms of this basic diagonal are a, b, c, \dots, n then the $Z_a \oplus Z_{\mathcal{B}} \oplus Z_c \oplus \dots \oplus Z_n.$

Let V vector void on F, $\mathcal{GL}(V)$ indicate whole linear isomo. of V upon same, a representation of G for representation void V is a homo. of G to $\mathcal{GL}(V)$. A representation model of G is a homo. of G to $\mathcal{GL}(n, F)$, where n is the degree of the representation model.

Whole invertible $n \times n$ model form a group on a field F indicate $\mathcal{GL}(n,F)$. A homo. of GL(n,F)to F-{0} is the determinant of these model, SL(n,F) indicate the kernel of it. Thus (n,F) is a subgp. of $\mathcal{GL}(n,F)$ include whole models of determinant 1 on F.

1. INTRODUCTION

The collection of whole Z-account grade maps respecting a restricted group G of commutative group cf (G,Z) beneath spot wise addendum. Into this one group own Z - account generalized characters a subgroup indicate R(G). The significance of character and representation notion for survey of group's proceeds on one duke to the reality ought to be indispensable to offer a fixed depiction of a group; it can accomplish together with a model representation. Another duke, group notion profit at most to the employ of characters representations and, while these oncoming are utilize as a further to resolve the constructing a group. Furthermore character and representation notion supply diverse applications, not exclusive in other offshoot of mathematics but as well in chemistry and physics, [1].

We compute the circular segmentation (CS) for p = 11,13,17, and 19 to $\mathcal{SL}(2,p)$ from the rational representations character table (RRCT).

2. FUNDAMENTAL

Theorem 2.1: [2]

The group has order $p^k (p^{2k} - 1)$.

Theorem 2.2: [2]

The conjugacy classes is satisfied by the following table From [3]

$g \in G$	Notation	Cg	C _g	CG(g)
$ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $	1	C1	1	$p^{k}(p^{2k}-1)$
$ \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} $	Ζ	Ca	1	$p^{k}(p^{2k}-1)$
$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$	с	Cc	$(p^{2k}-1)/2$	$2p^k$
$\begin{pmatrix} 1 & 0 \\ \nu & 1 \end{pmatrix}$	d	Cd	$(p^{2k}-1)/2$	$2p^k$
$\begin{pmatrix} -1 & 0 \\ -1 & -1 \end{pmatrix}$	zc	Czc	$(p^{2k}-1)/2$	$2p^k$
$\begin{pmatrix} -1 & 0 \\ -\nu & -1 \end{pmatrix}$	zd	C _{zd}	$(p^{2k}-1)/2$	$2p^k$
$ \begin{pmatrix} \nu^{\ell} & 0 \\ 0 & \nu^{-\ell} \end{pmatrix} $	al	Ca ^ℓ	$p^k(p^k+1)$	$p^{k} - 1$
Element of $order(p^{k+1})$ m	Ът	Cb ^m	$p^k(p^k-1)$	$p^{k} + 1$

TABLE I. THE CONJUGACY CLASSES IS SATIFIED

$$\mu(n) = \begin{cases} 1 & \text{if } n=1 \\ 0 & \text{if } a^2/n \text{ for some } a>1 \\ (-1)^K & \text{if } n = p_1 p_2 \cdots p_K, p_i \text{ are distinct primes.} \end{cases}$$

Lemma (2.3): [1].

For G = $\mathcal{SL}(2, p^k)$, $e, e' < (p^k - 1)/2$ and $f, f' < (p^k + 1)/2$, also $\mathcal{E} = (-1)^{(p^k - 1)/2}$, let $\rho, \sigma \in \mathbb{C}$ are $(p^k - 1)$ and $(p^k + 1)$ -th origin of 1 resp.

 $\mathcal{B}(k) = \begin{cases} 1 & \text{if } k \text{ is even} \\ 2 & \text{otherwise} \end{cases}, \quad \mathbf{E}(p^k) = \begin{cases} 1 & \text{if } p^k \text{ } i \equiv 3 \mod 4 \\ 2 & \text{otherwise} \end{cases}, \quad \mathcal{A}(e) = (1/2) \emptyset((p^k - 1)/e),$

 $\mathcal{C}(f) = (1/2) \mathcal{O}((p^k + 1)/f) , \ \tau_1(e, e') = [\mathcal{O}((p^k - 1)/e)/\mathcal{O}((p^k - 1)/e e')] \ \mu((p^k - 1)/e e'), \ \tau_2(f, f') = [\mathcal{O}((p^k + 1)/f)/\mathcal{O}((p^k + 1)/f f')] \ \mu((p^k + 1)/f f') = [\mathcal{O}((p^k + 1)/f)/\mathcal{O}((p^k + 1)/f f')] \ \mu((p^k + 1)/f f') = [\mathcal{O}((p^k + 1)/f f')] \ \mu((p^k + 1)/f f') \ \mu((p^k + 1)/f f') = [\mathcal{O}((p^k + 1)/f f')] \ \mu((p^k + 1)/f f') \ \mu((p$

The (CTRR) is

Cg	1	Z	c and d	a e'	b f [*]
Cg	1	1	$(p^{2k}-1)/2$	$p^{k}(p^{k}+1)$	$p^{k}(p^{k}-1)$
CG(g)	$p^{k}(p^{2k}-1)$	$p^{k}(p^{2k}-1)$	$2p^k$	$p^k - 1$	$p^k + 1$
1g	1	1	1	1	1
Ψ	P^k	p^k	0	1	-1
Xe	$(p^k+1)A(e)B(e)$	$(-1)^e (p^k + 1)A(e)B(e)$	A(e)B(e)	$B(e)\tau_1(e,e')$	0
θ_f	$(p^k-1) \operatorname{C}(f) \operatorname{B}(f)$	$(-1)^{f}(p^{k}-1) C(f)B(f)$	-C(f)B(f)	0	- B(f)t ₂ (f , f)
$\zeta_1 + \zeta_2$	$(p^{k} + 1)$	$\epsilon (p^k + 1)$	1	(-1) ^{e'} 2	0
$\eta_1 + \eta_1$	$(p^k-1)\mathbb{E}(p^k)$	$-\varepsilon (p^k - 1) \mathbb{E}(p^k)$	-1	0	$(-1)^{f'+1} 2E(p^k)$

TABLE II. THE CTRR.

<u>Theorem (2.4):</u> [4,5]

$$\mathbf{K}(\mathbf{G}) = \bigoplus_{i=1}^{n} \mathbf{Z} \, \boldsymbol{P}^{i} \, .$$

3. THE RESULTS

3.1 The (CS) of *SL*(2,11)

The (RRCT) is:

TABLE III. THE RRCT

Cg	1	z	с	<u>zc</u>	a	<i>a</i> ²	b	<i>b</i> ²	<i>b</i> ³	b ⁴
Cg	1	1	60	60	132	132	110	110	110	110
$ C_{G}(g) $	1320	1320	22	22	10	10	12	12	12	12
1 _G	1	1	1	1	1	1	1	1	1	1
ψ	11	11	0	0	1	1	-1	-1	-1	-1
χ1	24	-24	2	-2	1	-1	0	0	0	0
X2	24	24	2	2	-1	-1	0	0	0	0
θ1	20	-20	-2	2	0	0	0	-2	0	2
θ2	10	10	-1	-1	0	0	-1	1	2	1
θ3	10	-10	-1	1	0	0	0	2	0	-2
θ4	10	10	-1	-1	0	0	1	1	-2	1
$\xi_1 + \xi_2$	12	-12	1	-1	-2	2	0	0	0	0
$\eta_1 + \eta_2$	10	10	-1	-1	0	0	2	-2	2	-2

Then the diagonal of it is

(1320	0	0	0	0	0	0	0	0	0
0	-330	0	0	0	0	0	0	0	0
0	0	-2	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	0	0	-2	0	0	0	0
0	0	0	0	0	0	-2	0	0	0
0	0	0	0	0	0	0	6	0	0
0	0	0	0	0	0	0	0	-2	0
0	0	0	0	0	0	0	0	0	1)

Thus, we obtained $K(\mathcal{SL}(2,11)) = \bigoplus \mathbb{Z}_{p}$ for p = 1320,330,2,1,1,2,2,6,2,1.

3.2 The (CS) of *SL*(2,13)

The (RRCT) is :

Cg	1	z	с	ZC	а	<i>a</i> ²	<i>a</i> ³	a ⁴	b	<i>b</i> ²
	1	1	84	84	182	182	182	182	156	156
$ C_{G}(g) $	2184	2184	26	26	12	12	12	12	14	14
1 _G	1	1	1	1	1	1	1	1	1	1
Ψ	13	13	0	0	1	1	1	1	-1	-1
χ1	28	-28	2	-2	0	2	0	-2	0	0
X2	14	14	1	1	1	-1	-2	-1	0	0
χз	14	-14	1	-1	0	-2	0	2	0	0
X4	14	14	1	1	-1	-1	2	-1	0	0
θ_1	36	-36	-3	3	0	0	0	0	-1	1
θ2	36	36	-3	-3	0	0	0	0	1	1
$\xi_1 + \xi_2$	14	14	1	1	-2	2	-2	2	0	0
$\eta_1 + \eta_2$	12	-12	-1	1	0	0	0	0	2	-2

Then the diagonal of it is

(2184	0	0	0	0	0	0	0	0	0
0	-546	0	0	0	0	0	0	0	0
0	0	- 1	0	0	0	0	0	0	0
0	0	0	- 1	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	0	0	-2	0	0	0	0
0	0	0	0	0	0	-6	0	0	0
0	0	0	0	0	0	0	- 4	0	0
0	0	0	0	0	0	0	0	2	0
(0	0	0	0	0	0	0	0	0	1 ,

Thus, we obtained $K(\mathcal{SL}(2,13)) = \bigoplus \mathbb{Z}_{p}$ for p = 2184,546,1,1,1,2,6,4,,2,1.

3.3 The (CS) of *SL*(2,17))

The (RRCT) is :

Cg	1	z	с	<u>zc</u>	a	<i>a</i> ²	<i>a</i> ⁴	b	<i>b</i> ²	<i>b</i> ³	b ⁶
	1	1	144	144	306	306	306	272	272	272	272
$ C_{G}(g) $	4896	4896	34	34	16	16	16	18	18	18	18
1 _G	1	1	1	1	1	1	1	1	1	1	1
Ψ	17	17	0	0	1	1	1	-1	-1	-1	-1
χ1	72	-72	4	-4	0	0	0	0	0	0	0
χ2	36	36	2	2	0	0	-4	0	0	0	0
X4	18	18	1	1	0	-2	2	0	0	0	0
θ1	48	-48	-3	3	0	0	0	0	0	-3	3
θ2	48	48	-3	-3	0	0	0	0	0	3	3
θ3	16	-16	-1	1	0	0	0	-1	1	2	-2
θ6	16	16	-1	-1	0	0	0	1	1	-2	-2
$\xi_1 + \xi_2$	18	18	1	1	-2	2	2	0	0	0	0
$\eta_1 + \eta_2$	16	-16	-1	1	0	0	0	2	-2	2	-2

Then the diagonal of it is

(4896	0	0	0	0	0	0	0	0	0	0)
0	-1224	0	0	0	0	0	0	0	0	0
0	0	-2	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	0	4	0	0	0	0	0
0	0	0	0	0	0	2	0	0	0	0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	2	0	0
0	0	0	0	0	0	0	0	0	3	0
0	0	0	0	0	0	0	0	0	0	6)

Thus, we obtained $K(\mathcal{SL}(2,17)) = \bigoplus \mathbb{Z}_p$ for p = 4896,1224,2,1,1,4,2,1,2,3,6.

3.4 The (CS) of *SL*(2,19))

The (RRCT) is :

g	1	z	с	zc	a	a ²	a ³	a ⁶	b	<i>b</i> ²	<i>b</i> ⁴
C _g	1	1	180	180	380	380	380	380	342	342	342
$ C_{G}(g) $	6840	6840	38	38	18	18	18	18	20	20	20
1 _G	1	1	1	1	1	1	1	1	1	1	1
Ψ	19	19	0	0	1	1	1	1	-1	-1	-1
χ1	60	-60	3	-3	0	0	3	-3	0	0	0
X2	60	60	3	3	0	0	-3	-3	0	0	0
χз	20	-20	1	-1	1	-1	-2	2	0	0	0
X6	20	20	1	1	-1	-1	2	2	0	0	0
θ_1	72	-72	-4	4	0	0	0	0	0	-2	2
θ_2	72	72	-4	-4	0	0	0	0	0	2	2
θ4	18	-18	-1	1	0	0	0	0	0	2	-2
$\xi_1 + \xi_2$	20	-20	1	-1	-2	2	-2	2	0	0	0
$\eta_1 + \eta_2$	18	18	-1	-1	0	0	0	0	2	-2	-2

Then the diagonal of it is

(6840	0	0	0	0	0	0	0	0	0	0)
0	-1710	0	0	0	0	0	0	0	0	0
0	0	2	0	0	0	0	0	0	0	0
0	0	0	3	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	0	6	0	0	0	0	0
0	0	0	0	0	0	-2	0	0	0	0
0	0	0	0	0	0	0	-1	0	0	0
0	0	0	0	0	0	0	0	-1	0	0
0	0	0	0	0	0	0	0	0	2	0
(0	0	0	0	0	0	0	0	0	0	4)

Thus, we obtained K($\mathcal{SL}(2,19)$) = $\oplus \mathbb{Z}_p$ for p = 6840,1710,2,3,1,6,2,1,1,2,4.

Conflicts Of Interest

There are no conflicts of interest.

Funding

There is no funding for the paper.

Acknowledgment

Our researcher extends his Sincere thanks to the editor and members of the preparatory committee of the Babylonian Journal of mathematics.

References

- [1] J.P.Serre; "Linear Representation Of Finite Groups", Springer-Verlage, 1977.
- [2] K.E.Gehles, "Ordinary Characters of Finite Special Linear Groups", M.Sc. Dissertation, University of ST. Andrews; 2002.
- [3] M.S.Kirdar; "On Brauer's Proof Of The Artin Induction Theorem", Abhath AL–Yarmouk (Basic Sciences and Engineering), Yarmouk University, Vol.11, No.1A, pp.51–54, 2002.
- [4] H.Behravesh, "The Rational Character Table Of Special Linear Groups", J.Sci.I.R.Iran, Vol.9, No.2, pp.173 180; 1998.
- [5] M.S.Kirdar, "The Factor Group of the Z-Valued Class Function Module The Group of the Generalized Characters", Ph.D. Thesis, University of Birmingham; 1982.