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ABSTRACT

This research will demonstrate several novel dynamic inequalities of the Hardy type
on time scales. These inequalities will be generalized and expanded. Several new
integral and difference inequalities are produced as a consequence of our findings
in both continuous and discrete scenarios. The dynamic Hölder inequality, the
integration by parts formula on time scales, and Keller’s chain rule on time scales
will be utilized to demonstrate the primary findings. To apply the primary findings,
we shall employ discrete calculus, quantum calculus, and continuous calculus and
treat them as special cases.

1. INTRODUCTION

The extended Hardy-type inequalities, among the most famous and widely utilized inequalities in mathematics, are
the primary focus of this work. They are crucial in a wide variety of mathematical physics and mathematical analytic
applications. Hardy inequalities, variants, and generalizations have a wealth of theory and a mountain of literature.
They also play an important role in the investigation of inequalities that are associated with the eigenvalues of particular
differential operators [1, 2]. Researchers can make predictions, analyze solutions to differential equations carefully, and
see patterns via these inequalities. Theoretically and in practice, Hardy-type inequalities are crucial tools for understanding
mathematical structures and for advancing research with broad scientific and engineering applications. Throughout this
article, the set of real numbers is denoted by R, while R1 = [0,∞) is the subset of R.

1.1 Aims

Hardy-type inequalities aim to establish relationships and provide estimates for integrals involving functions and their
derivatives. In mathematical analysis, these inequalities are essential, especially in fields such as partial differential
equations and functional analysis. Hardy-type inequalities give limitations and conditions on the convergence of integrals,
which help us to understand mathematical models in engineering and physics. They are useful in both applied and
theoretical mathematics because they can be effective instruments for demonstrating the existence of solutions to a wide
range of differential equations. All things considered, the main goal of Hardy-type inequalities is to provide a framework
for the analysis and bounding of specific integral types, thereby promoting a better understanding of mathematical
structures and their applications. In 1920, Hardy proved this famous distinct inequality [3].
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Theorem 1. Suppose {b(m)}∞m=0 is a R1 real sequence and q > 1. After that,

∞∑
m=1

( 1
m

m∑
j=1

b( j)
)q
≤
( q
q − 1

)q ∞∑
m=1

bq(m). (1)

To streamline the existing demonstration of Hilbert’s inequality for double series, Hardy stumbled onto this inequality.
The integral equivalent of inequality (1) above was provided by Hardy himself in 1925 through the utilization of the
calculus of variations [4].

Theorem 2. Suppose g is a R1 continuous function on R1 and q > 1. After that

∞∫
0

(1
y

y∫
0

g(s)ds
)q

dy ≤
( q
q − 1

)q ∞∫
0

gq(y)dy. (2)

In 1927, this discrete inequality was derived from an extension of the inequality (1) by Littlewood and Hardy [5].

Theorem 3. Suppose that series of R1 real numbers {b(m)}∞m=0 exists.
(i) If β > 1 and q > 1. After that,

∞∑
m=1

1
mβ
( m∑

j=1

b( j)
)q
≤ C(q, β)

∞∑
m=1

1
mβ−q bq(m). (3)

(ii) If β < 1 and q > 1. After that,

∞∑
m=1

1
mβ
( ∞∑

j=m

b( j)
)q
≤ C(q, β)

∞∑
m=1

1
mβ−q bq(m), (4)

where the nonnegative constant C(q, β) is defined in inequality (3) and (4) and is dependent on q and β. This notable
disparity in Hardy-type was shown by the authors in the same work [5].

Theorem 4. Suppose g is a R1 continuous function on R1 and q > 1. After that

∞∫
0

(1
y

∞∫
y

g(s)ds
)q

dy ≤ qq

∞∫
0

gq(y)dy,

which can be rewritten as

∞∫
0

( ∞∫
y

g(s)ds
)q

dy ≤ qq

∞∫
0

yqgq(y)dy. (5)

Hardy [6] showed that the following formulations of the inequalities (3) and (4) are continuous in the year 1928.

Theorem 5. Suppose g is a R1 continuous function on R1.
(i) If β > 1 and q > 1. After that,

∞∫
0

1
yβ
( y∫

0

g(s)ds
)q

dy ≤
( q
β − 1

)q ∞∫
0

1
yβ−q gq(y)dy. (6)

(ii) If β < 1 and q > 1. After that,

∞∫
0

1
yβ
( ∞∫

y

g(s)ds
)q

dy ≤
( q
1 − β

)q ∞∫
0

1
yβ−q gq(y)dy. (7)
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The discrete Hardy inequality in (1) was expanded by Copson, who also produced the two subsequent discrete inequalities
in the same year [7].

Theorem 6. Suppose {b(m)}∞m=1 and {h(m)}∞m=1 be sequences of R1. Then

∞∑
m=1

h(m)(
∑m

j=1 h( j)b( j))q

(
∑m

j=1 h( j))β
≤
( q
β − 1

)q ∞∑
m=1

h(m)bq(m)
( m∑

j=1

h( j)
)q−β
, (8)

for q ≥ β > 1, and

∞∑
m=1

h(m)(
∑∞

j=m h( j)b( j))q

(
∑m

j=1 h( j))β
≤
( q
1 − β

)q ∞∑
m=1

h(m)bq(m)
( m∑

j=1

h( j)
)q−β
, (9)

for q > 1 > β ≥ 0.

In year 1970, Leindler [8] examined the scenario in which the sum
∑∞

m=1 h( j) < ∞ on the side to the left of the inequality
(8) is replaced by the sum

∑∞
n=m h( j) < ∞. His result can be expressed in the next theorem.

Theorem 7. Let {b(m)}∞m=1 and {h(m)}∞m=1 be sequences of R1 with
∑∞

j=m h( j) < ∞. Suppose q > 1 > β ≥ 0, then

∞∑
m=1

h(m)(
∑m

j=1 h( j)b( j))q

(
∑∞

j=m h( j))β
≤
( q
1 − β

)q ∞∑
m=1

h(m)bq(m)
( ∞∑

j=m

h( j)
)q−β
, (10)

Copson [9] provided the continuous versions of the inequality (8) and (9) in 1976. Specifically, he demonstrated the
following result through his work.

Theorem 8. Suppose g and h are R1 continuous functions on R1. Then

∞∫
0

h(y)(
∫ y

0 h(s)g(s)ds)q

(
∫ y

0 h(s)ds)β
dy ≤

( q
β − 1

)q ∞∫
0

h(y)gq(y)
( y∫

0

h(s)ds
)q−β

dy, (11)

for q ≥ β > 1,
and

∞∫
0

h(y)(
∫ ∞

y h(s)g(s)ds)q

(
∫ y

0 h(s)ds)β
dy ≤

( q
1 − β

)q ∞∫
0

h(y)gq(y)
( y∫

0

h(s)ds
)q−β

dy, (12)

for q > 1 > β ≥ 0.

Bennet showed the following result in 1987 [10], utilizing the work that Leindler had done in Theorem 1.7

Theorem 9. Suppose {b(m)}∞m=1 and {h(m)}∞m=1 be sequences of R1 with
∑∞

j=m h( j) < ∞. Provided that q ≥ β > 1, then:

∞∑
m=1

h(m)(
∑∞

j=m h( j)b( j))q

(
∑∞

j=m h( j))β
≤
( q
β − 1

)q ∞∑
m=1

h(m)bq(m)
( ∞∑

j=m

h( j)
)q−β
, (13)

Many researchers have been and continue to be interested in studying Hardy-type inequalities. We direct the interested
reader to the articles [6–15], the books [16–19], and the references provided therein for a wealth of information on the
aforementioned inequalities, which have been extensively studied and improved for several decades.

In an effort to bridge the gap between discrete and continuous analysis, Stefan Hilger launched the widely discussed
theory of time scales in his doctoral dissertation. Problems in a variety of domains, including physics, engineering, and
economics, can be analysed and generalized thanks to this capability of researchers [20, 21].

The primary objective is to solve a dynamic inequality or equation in situations where the boundaries of the unresolved
function are the so-called time scale T. This time scale can be any closed subset of the real numbers R [21–23].
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Calculus on time scales is most famously used in three areas: differential calculus, difference calculus, and quantum
calculus [23], i.e., at the same time T = R, T = Z, and T = nZ = {nZ : z ∈ Z} ∪ {0} where n > 1. A large portion of time
scale calculus is organized and summarized in the book on time scales by Bohner and Peterson [24–26].

Before anyone else, Řehák extended Hardy-type inequalities with time scales in 2005. As will be seen below, he
consolidated his previous work on the oscillation theory of half-linear dynamic equations which involved generalizing
inequalities (1) and (2) to any arbitrary time scale into a single form [27].

Theorem 10. Suppose T is a time scale, g ∈ Crd([b,∞)T, R1). In this theorem q > 1,

∞∫
b

( ∫ ξ(ζ)
b g(s)∆s

ξ(ζ) − b

)q
∆ζ <

( q
q − 1

)q ∞∫
b

gq(ζ)∆ζ, (14)

unless g ≡ 0.

Additionally, the inequality (14) becomes sharp when µ(ζ)/ζ → 0 as ζ → ∞. Saker et al. [28] demonstrated four Hardy-
type dynamic inequalities in 2014.

Theorem 11. Consider T is a time scale with b ∈ [0,∞)T. suppose g and h are R1 rd-continuous functions at [b,∞)T.
(i) If q ≥ β > 1, then

∞∫
b

h(ζ)
( ∫ ξ(ζ)

b h(s)g(s)∆s
)q( ∫ ξ(ζ)

b h(s)∆s
)β ∆ζ ≤

( q
β − 1

)q ∞∫
b

h(ζ)gq(ζ)
( ∫ ξ(ζ)

b h(s)∆s
)β(q−1)( ∫ ζ

b h(s)∆s
)q(β−1)

∆ζ. (15)

(ii) If q > 1 > β ≥ 0, then

∞∫
b

h(ζ)
( ∫ ∞
ζ

h(s)g(s)∆s
)q( ∫ ξ(ζ)

b h(s)∆s
)β ∆ζ ≤

( q
1 − β

)q ∞∫
b

h(ζ)gq(ζ)
( ∫ ξ(ζ)

b
h(s)∆s

)q−β
∆ζ. (16)

(iii) If q > 1 > β ≥ 0, then

∞∫
b

h(ζ)
( ∫ ξ(ζ)

b h(s)g(s)∆s
)q( ∫ ∞

ζ
h(s)∆s

)β ∆ζ ≤
( q
1 − β

)q ∞∫
b

h(ζ)gq(ζ)
( ∞∫
ζ

h(s)∆s
)q−β
∆ζ. (17)

(iv) If q ≥ β > 1, then

∞∫
b

h(ζ)
( ∫ ∞
ζ

h(s)g(s)∆s
)q( ∫ ∞

ζ
h(s)∆s

)β ∆ζ ≤
( q
β − 1

)q ∞∫
b

h(ζ)gq(ζ)
( ∞∫
ζ

h(s)∆s
)q−β
∆ζ. (18)

Ahmed A. El-Deeb proved some novel Hardy-type dynamic inequalities over arbitrary time scales in 2020 and 2022,
respectively [2, 29]. The results stated above apply to both continuous and discrete domains. In light of the existing
inequalities based on time scales, the present study seeks to offer new, more general results. Thus, supreme outcomes
would be generated, from which several other results, both past and present, can be derived. For several types of time-
scale inequalities, including integrals of the Hardy-type dynamic inequalities, see the following papers [2, 29–33].

Table 1 provides a quick summary of various time scales and the Hardy-type inequalities that are connected with them. By
doing so, the chart highlights the definitions, types of inequalities, and typical applications for each time scale. However,
it is important to keep in mind that the particulars of these inequalities can change depending on the precise formulation
and properties of the dynamic equations that are being investigated on each time scale.

For a more versatile and all-encompassing study of dynamic systems, time scales offer a unified framework that integrates
discrete and continuous mathematical modeling. To comprehend the actions of solutions to dynamic equations, adaptations
of Hardy-type inequalities to various time scales are essential. To guarantee seamless transitions in dynamic processes,
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TABLE I. Comparison of time scales with Hardy-type inequalities

Time Scale Definition Hardy-Type Inequality Applications
Continuous
Time (CT)

R Classical Hardy inequal-
ities involve functions
and derivatives

Analysis of differential
equations and integral
inequalities

Discrete Time
(DT)

Z Discrete-time Hardy
inequalities for
difference equations

Stability and behavior
analysis in discrete-time
systems

Time Scales
(TS)

Unified frame-
work

Generalized Hardy-type
inequalities for both
continuous and discrete
cases

Analysis of systems with
mixed continuous and
discrete dynamic

Delta and
Nabla TS

Jump operators
(forward and
backward)

Extension of classical
Hardy inequalities to
dynamic equations on
time scales

Systems with forward
and backward jumps

Hilger Time
Scale

Specific type
defined by
Stefan Hilger

Development of Hardy-
type inequalities specific
to Hilger time scales

Problems where a Hilger
time scale is the natural
choice

Mixed Time
Scales

Combination
of different
time scales

Corresponding Hardy-
type inequalities
developed for mixed
time scales

Systems with compo-
nents evolving on differ-
ent time scales

stability assessments in differential equations rely on Hardy inequalities in continuous time.

When it comes to digital signal processing and difference equations, discrete-time Hardy inequalities are useful for
describing how solutions evolve. Time scales provide a holistic view by incorporating continuous and discrete processes
in a seamless manner. The classical results can be extended to dynamic systems with both forward and backward jumps by
using the delta and nabla time scales. For both continuous and discrete analysis, a unified approach is given by Hilger time
scales with particular Hardy-type inequality. Combining different time structures on mixed time scales poses problems
that are addressed by related Hardy-type inequalities, providing a flexible toolbox for analyzing systems with different
temporal properties. We have high hopes that the reader has sufficient knowledge of the dynamic inequalities of the Hardy
type on time scales.

In this paper, we demonstrate the existence of several hardy-type dynamic inequalities on time scales, which are
generalizations of inequalities from previous papers. Some known integral inequalities of the Hardy type will be extended
by the results, and some continuous inequalities and their discrete analogues will be unified and extended as well.

Here is the layout of the paper: The second section provides an overview of the fundamental ideas and lemmas of time
scale calculus. In Section 3, we present the most important findings and explain their significance. Section 4 provides a
discussion and conclusion of the manuscript.

2. BASICS OF TIME SCALES

A time scale T is a closed subset of R that is arbitrary and nonempty. The topology of T is assumed to be the same
throughout, deriving from the standard topology of the real numbers R. The operator for forward jump ξ : T → T is
defined as follows:

ξ(ζ) := in f {s ∈ T : s > ζ}, ζ ∈ T. (19)

We established in the previous definition that in fϕ = supT (i.e., if ζ is the greatest of T, then ξ(ζ) = ζ), where ϕ is the
empty set.
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On a time scale T, consider the real-valued function g : T→ R. After that, for each ζ ∈ Tk, we define g∆(ζ) as the number
that, if it exists, has the condition that, ϵ > 0 there is a neighborhood µ of ζ such that, ∀ s ∈ µ, we have

|[g(ξ(ζ)) − g(s)] − g∆(ζ)[ξ(ζ) − s]| ≤ ϵ |ξ(ζ) − s|. (20)

In this particular scenario, we say that g is delta differentiable on Tk lay out g∆(ζ) exists, ∀ ζ ∈ Tk. It is possible to derive
the product rule for gh from two delta differentiable functions g and h in the following way.

(gh)∆(ζ) = g∆(ζ)h(ζ) + g(ξ(ζ))h∆(ζ) = g(ζ)h∆(ζ) + g∆(ζ)h(ξ(ζ)). (21)

The formula for delta integration by parts can be represented through the use of time scales as

c∫
b

w(ζ)x∆(ζ)∆ζ = [w(ζ)x(ζ)]c
b −

c∫
b

w∆(ζ)xξ(ζ)∆ζ. (22)

We shall make frequent use of the following significant relations.
(i) If T = R, then

ξ(ζ) = ζ, g∆(ζ) = g′(ζ),

c∫
b

g(ζ)∆ζ =

c∫
b

g(ζ)dζ. (23)

(ii) If T = Z, then

ξ(ζ) = ζ + 1, g∆(ζ) = ∆g(ζ),

c∫
b

g(ζ)∆ζ =
c−1∑
ζ=b

g(ζ). (24)

(iii) If T = fZ, then

ξ(ζ) = ζ + f , g∆(ζ) =
g(ζ + f ) − g(ζ)

h
,

c∫
b

g(ζ)∆ζ =

c
f −1∑
ζ= b

f

f g( f ζ). (25)

(iv) If T = nZ, then

ξ(ζ) = nζ, g∆(ζ) =
g(nζ) − g(ζ)

(n − 1)ζ
,

c∫
b

g(ζ)∆ζ = (n − 1)
(lognc)−1∑
ζ=lognζ

nζg(nζ). (26)

Lemma 1. Suppose h : R → R is continuous function h : T → R is ∆ differentiable on Tk, and g : R → R is continuous
differentiable (Chain Rule on time scales, see [24]). Then, in such case, d ∈ [ζ, ξ(ζ)] with

(goh)∆(ζ) = g′
(
h(d)
)
h∆(ζ). (27)

Lemma 2. Consider b, c ∈ T and g, h ∈ Crd([b, c]T,R1) (Dynamic Hölder inequality, see [28]). If q, n > 1 with 1/q+1/n =
1, then

c∫
b

g(ζ)h(ζ)∆ζ ≤
( c∫

b

gq(ζ)∆ζ
) 1

q (hn(ζ)∆ζ
) 1

n
. (28)

3. MAIN RESULTS

Theorem 12. Consider T is a time scale with b ∈ [0,∞)T. consider g, h, l, r, u, v, k, p be R1 rd-continuous functions on
[b,∞)T that is to say l is non increasing. Furthermore, let us assume that there is ϕ, θ, α, γ ≥ 0 such that u∆(ζ)

u(ζ) ≤ ϕ(
H∆(ζ)
Hξ(ζ) ),

p∆(ζ)
p(ζ) ≤ θ(

H∆(ζ)
Hξ(ζ) ), v∆(ζ)

v(ζ) ≤ α( L∆(ζ)
Lξ(ζ) ) and k∆(ζ)

kξ(ζ) ≤ γ(
L∆(ζ)
L(ζ) ), where H(ζ) =

ζ∫
b

h(s)∆s with H(∞) = ∞ and L(ζ) =
ζ∫

b
r(s)g(s)∆s,



184 Saqib et al, Babylonian Journal of Mathematics Vol.2024, 178-197

ζ ∈ [b,∞)T.
If q ≥ 1 and β > ϕ + 1, then

∞∫
b

lξ(ζ)vξ(ζ)kξ(ζ)p(ζ)u(ζ)h(ζ)
(
Hξ(ζ)

)−β(Lξ(ζ))q∆ζ
≤
( q + α + γ
β − θ − ϕ − 1

)q ∞∫
b

lξ(ζ)vξ(ζ)kξ(ζ)p(ζ)u(ζ)rq(ζ)gq(ζ)
(
Hξ(ζ)

)β(q−1)

hq−1(ζ)Hq(β−1)(ζ)
∆ζ. (29)

Proof. Applying the formula of integration by parts to time scales in (20) with

w∆(ζ) = p(ζ)u(ζ)h(ζ)
(
Hξ(ζ)

)−β and xξ(ζ) = lξ(ζ)vξ(ζ)kξ(ζ)
(
Lξ(ζ)

)q
,

we have
∞∫

b

lξ(ζ)vξ(ζ)kξ(ζ)p(ζ)u(ζ)h(ζ)
(
Hξ(ζ)

)−β(Lξ(ζ))q∆ζ
= [w(ζ)l(ζ)v(ζ)k(ζ)Lq(ζ)]∞b +

∞∫
b

(
− w(ζ)

)(
l(ζ)v(ζ)k(ζ)Lq(ζ)

)∆
∆ζ, (30)

where we suppose that

w(ζ) = −

∞∫
ζ

p(s)u(s)h(s)
(
Hξ(s)

)−β
∆s.

Applying the rules in (21) and (27) on time scales, and the hypothesis u∆(ζ)
u(ζ) ≤ ϕ(

H∆(ζ)
Hξ(ζ) ), p∆(ζ)

p(ζ) ≤ θ(
H∆(ζ)
Hξ(ζ) ) we see that there

is d ∈ [s, ξ(s)] such that(
p(s)u(s)H1−β(s)

)∆
= p∆(s)u(s)H1−β(s) + p(s)u∆(s)

(
Hξ(s)

)1−β
+ p(s)u(s)

(
H1−β(s)

)∆
≤ θp(s)u(s)H∆(s)

(
Hξ(s)

)−β
+ ϕp(s)u(s)H∆(s)(Hξ(s)

)−β
+(1 − β)p(s)u(s)H−β(d)H∆(s).

Since H∆(s) = h(s) ≥ 0, d ≤ ξ(s) and β > 1, we get(
p(s)u(s)H1−β(s)

)∆
≤ θp(s)u(s)h(s)

(
Hξ(s)

)−β
+ ϕp(s)u(s)h(s)(Hξ(s)

)−β
+(1 − β)p(s)u(s)h(s)

(
Hξ(s)

)−β
.

= (1 − β + θ + ϕ)p(s)u(s)h(s)
(
Hξ(s)

)−β
.

This gives us that

p(s)u(s)h(s)
(
Hξ(s)

)−β
≤

1
1 − β + θ + ϕ

(
p(s)u(s)H1−β(s)

)∆
.

Hence

−w(ζ) =

∞∫
ζ

p(s)u(s)h(s)
(
Hξ(s)

)−β
∆s ≤

1
1 − β + θ + ϕ

∞∫
ζ

(
p(s)u(s)

(
H1−β(s)

)∆
∆s

=
1

β − θ − ϕ − 1
p(ζ)u(ζ)

(
H1−β(ζ). (31)
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Applying the rules (21) and (27) on time scales, we may observe that there d ∈ [ζ, ξ(ζ)] such that(
l(ζ)k(ζ)v(ζ)Lq(ζ)

)∆
=
(
l(ζ)k(ζ)v(ζ)

)∆Lq(ζ) + lξ(ζ)kξ(ζ)vξ(ζ)
(
Lq(ζ)

)∆
= l∆(ζ)k(ζ)v(ζ)Lq(ζ) + lξ(ζ)k∆(ζ)v(ζ)Lq(ζ) + lξ(ζ)k(ζ)v∆(ζ)Lq(ζ)

+qlξ(ζ)kξ(ζ)vξ(ζ)Lq−1(d)L∆(ζ).

Since l∆(ζ) ≤ 0, L∆(ζ) = r(ζ)g(ζ) ≥ 0, d ≤ ξ(ζ), q ≥ 1, v∆(ζ)
vξ(ζ) ≤ α

( L∆(ζ)
L(ζ)
)
, and k∆(ζ)

kξ(ζ) ≤ γ
( L∆(ζ)

L(ζ)
)
, we have(

l(ζ)k(ζ)v(ζ)Lq(ζ)
)∆
≤ γkξ(ζ)lξ(ζ)vξ(ζ)r(ζ)g(ζ)Lq−1(ζ) + αvξ(ζ)lξ(ζ)k(ζ)r(ζ)g(ζ)Lq−1(ζ)

qlξ(ζ)kξ(ζ)vξ(ζ)r(ζ)g(ζ)
(
Lξ(ζ)

)q−1

≤ (q + α + γ)kξ(ζ)lξ(ζ)vξ(ζ)r(ζ)g(ζ)
(
Lξ(ζ)

)q−1
. (32)

It is important to note that L(b) = 0 and w(∞) = 0, which we receive. After combining (30), (31), and (32)
∞∫

b

lξ(ζ)vξ(ζ)kξ(ζ)p(ζ)u(ζ)h(ζ)
(
Hξ(ζ)

)−β(Lξ(ζ))q∆ζ
≤

q + α + γ
β − θ − ϕ − 1

∞∫
b

lξ(ζ)vξ(ζ)kξ(ζ)p(ζ)u(ζ)r(ζ)g(ζ)H1−β(ζ)
(
Lξ(ζ)

)q−1
∆ζ,

or equivalently,
∞∫

b

lξ(ζ)vξ(ζ)kξ(ζ)p(ζ)u(ζ)h(ζ)
(
Hξ(ζ)

)−β(Lξ(ζ))q∆ζ
≤

q + α + γ
β − θ − ϕ − 1

∞∫
b

(
lξ(ζ)vξ(ζ)kξ(ζ)p(ζ)u(ζ)h(ζ)

) q−1
q
(
Hξ(ζ)

) −β(q−1)
q
(
Lξ(ζ)

)q−1)
×
( (lξ(ζ)vξ(ζ)kξ(ζ)p(ζ)u(ζ)

) 1
q r(ζ)g(ζ)

(
Hξ(ζ)

) β(q−1)
q

h
q−1

q (ζ)Hβ−1(ζ)

)
∆ζ.

The dynamic Hölder inequality (28), when applied with indices q and q
q−1 , allows us to obtain.

∞∫
b

lξ(ζ)vξ(ζ)kξ(ζ)p(ζ)u(ζ)h(ζ)
(
Hξ(ζ)

)−β(Lξ(ζ))q∆ζ
≤

q + α + γ
β − θ − ϕ − 1

( ∞∫
b

lξ(ζ)vξ(ζ)kξ(ζ)p(ζ)u(ζ)h(ζ)
(
Hξ(ζ)

)−β(Lξ(ζ))q∆ζ) (q−1)
q

×
( ∞∫

b

lξ(ζ)vξ(ζ)kξ(ζ)p(ζ)u(ζ)rq(ζ)gq(ζ)
(
Hξ(ζ)

)β(q−1)

hq−1(ζ)Hq(β−1)(ζ)
∆ζ
) 1

q
,

which implies that
∞∫

b

lξ(ζ)vξ(ζ)kξ(ζ)p(ζ)u(ζ)h(ζ)
(
Hξ(ζ)

)−β(Lξ(ζ))q∆ζ
≤
( q + α + γ
β − θ − ϕ − 1

)q ∞∫
b

lξ(ζ)vξ(ζ)kξ(ζ)p(ζ)u(ζ)rq(ζ)gq(ζ)
(
Hξ(ζ)

)β(q−1)

hq−1(ζ)Hq(β−1)(ζ)
∆ζ.

The proof is now complete.
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Remark 1. Assuming ϕ = α = θ = γ = 0, we may simplify inequality (29) to inequality (15) by setting l(ζ) = v(ζ) =
k(ζ) = p(ζ) = u(ζ) = 1 and r(ζ) = h(ζ).

Corollary 1. According to Theorem 12, if T = R, then inequality (29) can be shown using relations (23)
∞∫

b

l(ζ)v(ζ)k(ζ)p(ζ)u(ζ)h(ζ)H−β(ζ)Lq(ζ)∆ζ

≤
( q + α + γ
β − θ − ϕ − 1

)q ∞∫
b

l(ζ)v(ζ)k(ζ)p(ζ)u(ζ)rq(ζ)gq(ζ)Hq−β(ζ)
hq−1(ζ)

dζ, (33)

where : H(ζ) =
ζ∫

b
h(s)ds and L(ζ) =

ζ∫
b

r(s)g(s)ds.

Remark 2. Assuming ϕ = α = θ = γ = 0, we may simplify inequality (33) to inequality (11) in corollary 1 by setting
l(ζ) = v(ζ) = k(ζ) = p(ζ) = u(ζ) = 1, r(ζ) = h(ζ) and b = 0.

Corollary 2. In theorem 12, we take T = fZ, and then inequality (27) becomes, using the relations (25)
∞∑
ζ= b

f

l( f ζ + f )v( f ζ + f )k( f ζ + f )p( f ζ)u( f ζ)h( f ζ)H−β( f ζ + f )Lq( f ζ + f )

≤
( q + α + γ
β − θ − ϕ − 1

)q ∞∑
ζ= b

f

l( f ζ + f )v( f ζ + f )k( f ζ + f )p( f ζ)u( f ζ)rq( f ζ)gq( f ζ)Hβ(q−1)( f ζ + f )
hq−1( f ζ)Hq(β−1)( f ζ + f )

, (34)

where

H(ζ) = f
ζ
f −1∑
s= b

f

h( f s) and L(ζ) = f
ζ
f −1∑
s= b

f

r( f s)g( f s).

Corollary 3. In Corollary 2, we just set f = 1 for T = Z. Then inequality (27) becomes:
∞∑
ζ=b

l(ζ + 1)v(ζ + 1)k(ζ + 1)p(ζ)u(ζ)h(ζ)H−β(ζ + 1)Lq(ζ + 1)

≤
( q + α + γ
β − θ − ϕ − 1

)q ∞∑
ζ=b

l(ζ + 1)v(ζ + 1)k(ζ + 1)p(ζ)u(ζ)rq(ζ)gq(ζ)Hβ(q−1)(ζ + 1)
hq−1(ζ)Hq(β−1)(ζ + 1)

, (35)

where

H(ζ) =
ζ−1∑
s=b

h(s) and L(ζ) =
ζ−1∑
s=b

r(s)g(s).

Remark 3. Assuming ϕ = α = θ = γ = 0, in corollary 3, set l(ζ) = v(ζ) = k(ζ) = p(ζ) = u(ζ) = 1, and r(ζ) = h(ζ) and
b = 1, then inequality (33) reduces to:

∞∑
ζ=1

h(ζ)(
∑ζ

s=1 h(s)g(s))q

(
∑ζ

s=1 h(s))β
≤
( q
β − 1

)q ∞∑
ζ=1

h(ζ)gq(ζ)(
∑ζ

s=1)h(s))β(q−1)

(
∑ζ−1

s=1 h(s))q(β−1)
, (36)

according to this interpretation, the discrete inequality (8) can be understood differently.

Corollary 4. Using relations (26) with Theorem 12 and using T = nZ, then inequality (29) becomes:
∞∑

ζ=lognb

l(nζ+1)v(nζ+1)k(nζ+1)p(nζ)u(nζ)h(nζ)H−β(nζ+1)Lq(nζ+1)

≤
( q + α + γ
β − θ − ϕ − 1

)q ∞∑
ζ=lognb

l(nζ+1)v(nζ+1)k(nζ+1)p(nζ)u(nζ)rq(nζ)gq(nζ)Hβ(q−1)(nζ+1)
hq−1(nζ)Hq(β−1)(nζ)

, (37)

where

H(ζ) = (n − 1)
(lognζ)−1∑
s=lognb

nsh(ns) and L(ζ) = (n − 1)
(lognζ)−1∑
s=lognb

nsr(ns)g(ns).
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Theorem 13. Consider T is a time scale with b ∈ [0,∞)T. Inclusion, consider g, h, l, r, u, p, v, k are R1 rd-continuous
functions on [b,∞)T that is to say l is nondecreasing. Furthermore, let us assume that there is ϕ, θ, α, γ ≥ 0 such that
u∆(ζ)
uξ(ζ) ≤ ϕ(

H∆(ζ)
H(ζ) ), p∆(ζ)

pξ(ζ) ≤ θ(
H∆(ζ)
H(ζ) ), v∆(ζ)

v(ζ) ≤ α(G∆(ζ)
Gξ(ζ) ) and k∆(ζ)

kξ(ζ) ≤ γ(
G∆(ζ)
G(ζ) ), where

H(ζ) =
ζ∫

b
h(s)∆s with H(∞) = ∞ and G(ζ) =

∞∫
ζ

r(s)g(s)∆s, ζ ∈ [b,∞)T.

If q ≥ 1 and 0 ≤ β < 1, then

∞∫
b

l(ζ)v(ζ)k(ζ)pξ(ζ)uξ(ζ)h(ζ)
(
Hξ(ζ)

)−β(Gq(ζ)
)
∆ζ

≤
( q + α + γ
1 − β + θ + ϕ

)q ∞∫
b

l(ζ)v(ζ)k(ζ)pξ(ζ)uξ(ζ)rq(ζ)gq(ζ)
(
Hξ(ζ)

)(q−β)
hq−1(ζ)

∆ζ. (38)

Proof. Applying the formula of integration by parts to time scales (22) with:

∞∫
b

l(ζ)v(ζ)k(ζ)pξ(ζ)uξ(ζ)h(ζ)
(
Hξ(ζ)

)−βGq(ζ)∆ζ

= [w(ζ)l(ζ)v(ζ)k(ζ)Gq(ζ)]∞b +

∞∫
b

wξ(ζ)
(
− l(ζ)v(ζ)k(ζ)Gq(ζ)

)∆
∆ζ, (39)

where we suppose that:

w(ζ) =

ζ∫
b

pξ(s)uξ(s)h(s)
(
Hξ(s)

)−β
∆s.

Applying the rules (19) and (25) on time scales, and the hypothesis u∆(ζ)
u(ζ) ≤ ϕ(

H∆(ζ)
Hξ(ζ) ), p∆(ζ)

pξ(ζ) ≤ θ(
H∆(ζ)
Hξ(ζ) ) we see that there is

d ∈ [s, ξ(s)] such that:

(
p(s)u(s)H1−β(s)

)∆
= p∆(s)u(s)H1−β(s) + p(s)u∆(s)

(
Hξ(s)

)1−β
+ p(s)u(s)

(
H1−β(s)

)∆
≥ θpξ(s)uξ(s)H∆(s)

(
Hξ(s)

)−β
+ ϕpξ(s)uξ(s)H∆(s)(Hξ(s)

)−β
+ (1 − β)pξ(s)uξ(s)H−β(d)H∆(s).

Since H∆(s) = h(s) ≥ 0, d ≤ ξ(s) and 0 ≤ β < 1, we get(
p(s)u(s)H1−β(s)

)∆
≥ θpξ(s)uξ(s)h(s)

(
Hξ(s)

)−β
+ ϕpξ(s)uξ(s)h(s)(Hξ(s)

)−β
+ (1 − β)pξ(s)uξ(s)h(s)

(
Hξ(s)

)−β
.

= (1 − β + θ + ϕ)pξ(s)uξ(s)h(s)
(
Hξ(s)

)−β
.

This gives us that:

pξ(s)uξ(s)h(s)
(
Hξ(s)

)−β
≤

1
1 − β + θ + ϕ

(
p(s)u(s)H1−β(s)

)∆
.

Hence,

wξ(ζ) =

ξ(ζ)∫
b

pξ(s)uξ(s)h(s)
(
Hξ(s)

)−β
∆s ≤

1
1 − β + θ + ϕ

ξ(ζ)∫
b

(
p(s)u(s)

(
H1−β(s)

)∆
∆s

=
1

1 − β + θ + ϕ
pξ(ζ)uξ(ζ)

(
Hξ(ζ)

)1−β
. (40)
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Applying the rules (19) and (25) on time scales, we may observe that there d ∈ [ζ, ξ(ζ)] such that:(
− l(ζ)k(ζ)v(ζ)Gq(ζ)

)∆)
= −
((

l(ζ)k(ζ)v(ζ)
)∆Gξ(ζ))q + l(ζ)k(ζ)v(ζ)

(
Gq(ζ)

)∆)
= −
(
l∆(ζ)k(ζ)v(ζ)Gξ(ζ)

)q
+ l(ζ)k∆(ζ)v(ζ)Gξ(ζ)

)q
+ l(ζ)k(ζ)v∆(ζ)Gξ(ζ)

)q
+ ql(ζ)k(ζ)v(ζ)Gq−1(d)G∆(ζ)

)
.

Since l∆(ζ) ≥ 0, G∆(ζ) = −r(ζ)g(ζ) ≤ 0, d ≥ ζ, q ≥ 1, v∆(ζ)
v(ζ) ≥ α

(G∆(ζ)
Gξ(ζ)
)
, and k∆(ζ)

k(ζ) ≥ γ
(G∆(ζ)

G(ζ)
)
, we have(

− l(ζ)k(ζ)v(ζ)Gq(ζ)
)∆
≤ αk(ζ)l(ζ)v(ζ)r(ζ)g(ζ)

(
Gξ(ζ)

)q−1
+ γv(ζ)l(ζ)k(ζ)r(ζ)g(ζ)

(
Gξ(ζ)

)q−1

+ql(ζ)k(ζ)v(ζ)r(ζ)g(ζ)
(
Gξ(ζ)

)q−1

≤ (q + α + γ)l(ζ)v(ζ)k(ζ)r(ζ)g(ζ)Gq−1(ζ). (41)

It is important to note that G(∞) = 0 and w(b) = 0, which we receive. After combining (39), (40), and (41)
∞∫

b

l(ζ)v(ζ)k(ζ)pξ(ζ)uξ(ζ)h(ζ)
(
Hξ(ζ)

)−βGq(ζ)∆ζ

≤
q + α + γ

1 − β + θ + ϕ

∞∫
b

l(ζ)v(ζ)k(ζ)pξ(ζ)uξ(ζ)r(ζ)g(ζ)
(
Hξ(ζ)

)1−βGq−1(ζ)∆ζ,

or equivalently,

∞∫
b

l(ζ)v(ζ)k(ζ)pξ(ζ)uξ(ζ)h(ζ)
(
Hξ(ζ)

)−βGq(ζ)∆ζ

≤
q + α + γ

1 − β + θ + ϕ

∞∫
b

(
l(ζ)v(ζ)k(ζ)pξ(ζ)uξ(ζ)h(ζ)

) q−1
q
(
Hξ(ζ)

) −β(q−1)
q Gq−1(ζ)

)
×
( (l(ζ)v(ζ)k(ζ)pξ(ζ)uξ(ζ)

) 1
q r(ζ)g(ζ)

(
Hξ(ζ)

) (q−β)
q

h
q−1

q (ζ)

)
∆ζ.

The dynamic Hölder inequality (28), when applied with indices q and q
q−1 , allows us to obtain.

∞∫
b

l(ζ)v(ζ)k(ζ)pξ(ζ)uξ(ζ)h(ζ)
(
Hξ(ζ)

)−βGq(ζ)∆ζ

≤
q + α + γ

1 − β + θ + ϕ

( ∞∫
b

l(ζ)v(ζ)k(ζ)pξ(ζ)uξ(ζ)h(ζ)
(
Hξ(ζ)

)−βGq(ζ)∆ζ
) (q−1)

q

×
( ∞∫

b

l(ζ)v(ζ)k(ζ)pξ(ζ)uξ(ζ)rq(ζ)gq(ζ)
(
Hξ(ζ)

)(q−β)
hq−1(ζ)

∆ζ
) 1

q
,

which implies that
∞∫

b

l(ζ)v(ζ)k(ζ)pξ(ζ)uξ(ζ)h(ζ)
(
Hξ(ζ)

)−βGq(ζ)∆ζ

≤
( q + α + γ
1 − β + θ + ϕ

)q ∞∫
b

l(ζ)v(ζ)k(ζ)pξ(ζ)uξ(ζ)rq(ζ)gq(ζ)
(
Hξ(ζ)

)(q−β)
hq−1(ζ)

∆ζ.

The proof is now complete.
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Remark 4. Assuming ϕ = α = θ = γ = 0, we may simplify inequality (38) to inequality (16) by setting l(ζ) = v(ζ) =
k(ζ) = p(ζ) = u(ζ) = 1 and r(ζ) = h(ζ).

Corollary 5. Using relations (23) with Theorem 13 and using T = R, then inequality (38) becomes:

∞∫
b

l(ζ)v(ζ)k(ζ)p(ζ)u(ζ)h(ζ)H−β(ζ)Gq(ζ)∆ζ

≤
( q + α + γ
1 − β + θ + ϕ

)q ∞∫
b

l(ζ)v(ζ)k(ζ)p(ζ)u(ζ)rq(ζ)gq(ζ)Hq−β(ζ)
hq−1(ζ)

dζ, (42)

where: H(ζ) =
ζ∫

b
h(s)ds and G(ζ) =

∞∫
ζ

r(s)g(s)ds.

Remark 5. Assuming ϕ = α = θ = γ = 0, we may simplify inequality (42) in Corollary 5 with inequality (12) by setting:
l(ζ) = v(ζ) = k(ζ) = p(ζ) = u(ζ) = 1 and r(ζ) = h(ζ) and b = 0.

Corollary 6. Using relations (25) with Theorem 13 and using T = fZ, then inequality (38) becomes:

∞∑
ζ= b

f

l( f ζ)v( f ζ)k( f ζ)p( f ζ + f )u( f ζ + f )h( f ζ)H−β( f ζ + f )Gq( f ζ)

≤
( q + α + γ
1 − β + θ + ϕ

)q ∞∑
ζ= b

f

l( f ζ)v( f ζ)k( f ζ)p( f ζ + f )u( f ζ + f )rq( f ζ)gq( f ζ)Hq−β( f ζ + f )
hq−1( f ζ)

, (43)

where :H(ζ) = f
ζ
f −1∑
s= b

f

h( f s) and G(ζ) = f
∞∑

s= ζf

r( f s)g( f s).

Corollary 7. In Corollary 6, we just set f = 1 for T = Z. Then inequality (38) becomes

∞∑
ζ=b

l(ζ)v(ζ)k(ζ)p(ζ + 1)u(ζ + 1)h(ζ)H−β(ζ + 1)Gq(ζ)

≤
( q + α + γ
1 − β + θ + ϕ

)q ∞∑
ζ=b

l(ζ)v(ζ)k(ζ)p(ζ + 1)u(ζ + 1)rq(ζ)gq(ζ)Hq−β(ζ + 1)
hq−1(ζ)

, (44)

where : H(ζ) =
ζ−1∑
s=b

h(s) and G(ζ) =
∞∑

s=ζ
r(s)g(s).

Remark 6. In Corollary 7, if we set l(ζ) = v(ζ) = k(ζ) = p(ζ) = u(ζ) = 1, r(ζ) = h(ζ), and b = 1, then we may take
ϕ = α = θ = γ = 0, so inequality (44) reduces to the inequality (9).

Corollary 8. Using relations (26) with Theorem 13 and using T = nZ, then inequality (38) becomes

∞∑
ζ=lognb

l(nζ)v(nζ)k(nζ)p(nζ+1)u(nζ+1)h(nζ)H−β(nζ+1)Gq(nζ)

≤
( q + α + γ
1 − β + θ + ϕ

)q ∞∑
ζ=lognb

l(nζ)v(nζ)k(nζ)p(nζ+1)u(nζ+1)rq(nζ)gq(nζ)Hq−β(nζ+1)
hq−1(nζ)

, (45)

where : H(ζ) = (n − 1)
(lognζ)−1∑
s=lognb

nsh(ns) and G(ζ) = (n − 1)
∞∑

s=lognζ
nsr(ns)g(ns).
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Theorem 14. Consider T is a time scale with b ∈ [0,∞)T. Inclusion, consider g, h, l, r, u, v, k, p are R1 rd-continuous
functions on [b,∞)T that is to say l is non increasing. Furthermore, let us assume that there is ϕ, θ, α, γ ≥ 0 such that
u∆(ζ)
u(ζ) ≤ ϕ(

F∆(ζ)
Fξ(ζ) ), p∆(ζ)

p(ζ) ≤ θ(
F∆(ζ)
Fξ(ζ) ), v∆(ζ)

vξ(ζ) ≤ α( L∆(ζ)
L(ζ) ) and k∆(ζ)

kξ(ζ) ≤ γ(
L∆(ζ)
L(ζ) ), where:

F(ζ) =
∞∫
ζ

h(s)∆s and
ζ∫

b
r(s)g(s)∆s, ζ ∈ [b,∞)T.

If q1q≥ 1and0 < 10 ≤ β < 1, then :to
∞∫
b

lξ(ζ)vξ(ζ)kξ(ζ)p(ζ)u(ζ)h(ζ)F−β(ζ)
(
Lξ(ζ)

)q
∆ζ

≤
(

q+α+γ
1−β+θ+ϕ

)q ∞∫
b

lξ(ζ)vξ(ζ)kξ(ζ)p(ζ)u(ζ)rq(ζ)gq(ζ)Fq−ξ(ζ)
hq−1(ζ) ∆ζ.

Proof. Applying the formula of integration by parts to time scales (22) with

w∆(ζ) = p(ζ)u(ζ)h(ζ)F−α(ζ) and xξ(ζ) = lξ(ζ)vξ(ζ)kξ(ζ)
(
Lξ(ζ)

)q
,

we have
∞∫

b

lξ(ζ)vξ(ζ)kξ(ζ)p(ζ)u(ζ)h(ζ)F−β(ζ)
(
Lξ(ζ)

)q
∆ζ

= [w(ζ)l(ζ)v(ζ)k(ζ)Lq(ζ)]∞b +

∞∫
b

(
− w(ζ)

)(
l(ζ)v(ζ)k(ζ)Lq(ζ)

)∆
∆ζ, (46)

where we suppose that

w(ζ) = −

∞∫
ζ

p(s)u(s)h(s)F−β(s)∆s.

Applying the rules (21) and (25) on time scales, and the hypothesis u∆(ζ)
u(ζ) ≤ ϕ(

F∆(ζ)
Fξ(ζ) ), p∆(ζ)

p(ζ) ≤ θ(
F∆(ζ)
Fξ(ζ) ) we see that there is

d ∈ [s, ξ(s)] such that (
− p(s)u(s)F1−β(s)

)∆
= −
(
p∆(s)u(s)

(
Fξ(s)

)1−β
+ p(s)u∆(s)

(
Fξ(s)

)1−β
+p(s)u(s)

(
F1−β(s)

)∆)
≥ −
(
θp(s)u(s)

(
Fξ(s)

)−βF∆(s) + ϕp(s)u(s)(Fξ(s)
)−βF∆(s)

+(1 − β)p(s)u(s)F−β(d)F∆(s)
)
.

Since F∆(s) = h(s) ≤ 0, d ≥ s and 0 ≤ β < 1, we get:(
− p(s)u(s)F1−β(s)

)∆
≥ ϕp(s)u(s)h(s)F−β(s) + ϕp(s)u(s)h(s)F−β(s)

+(1 − β)p(s)u(s)h(s)F−β(s).

= (1 − β + θ + ϕ)p(s)u(s)h(s)F−β(s).

This gives us that:

p(s)u(s)h(s)F−β(s) ≤
1

1 − β + θ + ϕ
(
− p(s)u(s)F1−β(s)

)∆
.

Hence

−w(ζ) =

∞∫
ζ

p(s)u(s)h(s)F−β(s)∆s ≤
1

1 − β + θ + ϕ

∞∫
ζ

(
− p(s)u(s)F1−β(s)∆∆s
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=
1

1 − β + θ + ϕ
p(ζ)u(ζ)F1−β(ζ). (47)

Applying the rules (21) and (25) on time scales, we may observe that there d ∈ [ζ, ξ(ζ)] such that(
l(ζ)v(ζ)k(ζ)Lq(ζ)

)∆
=
(
l(ζ)v(ζ)k(ζ)

)∆Lq(ζ) + lξ(ζ)vξ(ζ)kξ(ζ)
(
Lq(ζ)

)∆
= l∆(ζ)v(ζ)k(ζ)Lq(ζ) + lβ(ζ)k∆(ζ)v(ζ)Lq(ζ) + lξ(ζ)k(ζ)v∆(ζ)Lq(ζ)

+qlξ(ζ)vξ(ζ)kξ(ζ)Lq−1(d)L∆(ζ).

Since l∆(ζ) ≤ 0, L∆(ζ) = r(ζ)g(ζ) ≥ 0, d ≤ ξ(ζ), q ≥ 1, v∆(ζ)
vξ(ζ) ≤ α

( L∆(ζ)
L(ζ)
)
, and k∆(ζ)

kξ(ζ) ≤ γ
( L∆(ζ)

L(ζ)
)
, we have(

l(ζ)v(ζ)k(ζ)Lq(ζ)
)∆
≤ αlξ(ζ)vξ(ζ)kξ(ζ)r(ζ)g(ζ)Lq−1(ζ) + γlξ(ζ)vξ(ζ)kξ(ζ)r(ζ)g(ζ)Lq−1(ζ)

+qlξ(ζ)vξ(ζ)kξ(ζ)r(ζ)g(ζ)
(
Lξ(ζ)

)q−1

≤ (q + α + γ)lξ(ζ)vξ(ζ)kξ(ζ)r(ζ)g(ζ)
(
Lξ(ζ)

)q−1
. (48)

It is important to note that L(b) = 0 and w(∞) = 0, which we receive. After combining (47), (48) and (491)
∞∫

b

lξ(ζ)vξ(ζ)kξ(ζ)p(ζ)u(ζ)h(ζ)F−β(ζ)
(
Lξ(ζ)

)q
∆ζ

≤
q + α + γ

1 − β + θ + ϕ

∞∫
b

lξ(ζ)vξ(ζ)kξ(ζ)p(ζ)u(ζ)r(ζ)g(ζ)F1−β(ζ)
(
Lξ(ζ)

)q−1
∆ζ,

or equivalently,
∞∫

b

lξ(ζ)vξ(ζ)kξ(ζ)p(ζ)u(ζ)h(ζ)F−β(ζ)
(
Lξ(ζ)

)q
∆ζ

≤
q + α + γ

1 − β + θ + ϕ

∞∫
b

(
lξ(ζ)vξ(ζ)kξ(ζ)p(ζ)u(ζ)h(ζ)

) q−1
q F

−β(q−1)
q (ζ)

(
Lξ(ζ)

)q−1)
×
( (lξ(ζ)vξ(ζ)kξ(ζ)p(ζ)u(ζ)

) 1
q r(ζ)g(ζ)F

(q−β)
q

h
q−1

q (ζ)

)
∆ζ.

The dynamic Hölder inequality (28), when applied with indices q and q
q−1 , allows us to obtain.

∞∫
b

lξ(ζ)vξ(ζ)kξ(ζ)p(ζ)u(ζ)h(ζ)F−β(ζ)
(
Lξ(ζ)

)q
∆ζ

≤
q + α + γ

1 − β + θ + ϕ

( ∞∫
b

lξ(ζ)vξ(ζ)kξ(ζ)p(ζ)u(ζ)h(ζ)F−β(ζ)
(
Lξ(ζ)

)q
∆ζ
) (q−1)

q

×
( ∞∫

b

lξ(ζ)vξ(ζ)kξ(ζ)p(ζ)u(ζ)rq(ζ)gq(ζ)Fq−β(ζ)
hq−1(ζ)

∆ζ
) 1

q
,

which implies that
∞∫

b

lξ(ζ)vξ(ζ)kξ(ζ)p(ζ)u(ζ)h(ζ)F−β(ζ)
(
Lξ(ζ)

)q
∆ζ

≤
( q + α + γ
1 − β + θ + ϕ

)q ∞∫
b

lξ(ζ)vξ(ζ)kξ(ζ)p(ζ)u(ζ)rq(ζ)gq(ζ)Fq−β(ζ)
hq−1(ζ)

∆ζ.

The proof is now complete.
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Remark 7. Assuming ϕ = α = θ = γ = 0, we may simplify inequality (46) to inequality (17) with theorem 14 by setting
l(ζ) = v(ζ) = k(ζ) = p(ζ) = u(ζ) = 1 and r(ζ) = h(ζ).

Corollary 9. Using relations (23) in the Theorem 14 and using T = R, then inequality (46) becomes:

∞∫
b

l(ζ)v(ζ)k(ζ)p(ζ)u(ζ)h(ζ)F−β(ζ)Lq(ζ)dζ

≤
( q + α + γ
1 − β + θ + ϕ

)q ∞∫
b

l(ζ)v(ζ)k(ζ)p(ζ)u(ζ)rq(ζ)gq(ζ)Fq−β(ζ)
hq−1(ζ)

dζ, (49)

where: F(ζ) =
∞∫
ζ

h(s)ds and L(ζ) =
ζ∫

b
r(s)g(s)ds.

Remark 8. In Corollary 9, if we set l(ζ) = v(ζ) = k(ζ) = p(ζ) = u(ζ) = 1, r(ζ) = h(ζ), and b = 0, then we take
ϕ = α = θ = γ = 0, so inequality (49) reduces to:

∞∫
0

h(ζ)(
∫ ζ

0 h(s)g(s)ds)q

(
∫ ∞
ζ

h(s)ds)β
dζ ≤

( q
1 − β

)q ∞∫
0

h(ζ)gq(ζ)
( ∞∫
ζ

h(s)ds
)q−β

dζ, (50)

According to this interpretation, the discrete inequality (10) can be understood differently.

Corollary 10. Using relations (25) with Theorem 14 and using T = fZ, then inequality (46) becomes:

∞∑
ζ= b

f

l( f ζ + f )v( f ζ + f )k( f ζ + f )p( f ζ)u( f ζ)h( f ζ)F−β( f ζ)Lq( f ζ + f )

≤
( q + α + γ
1 − β + θ + ϕ

)q ∞∑
ζ= b

f

l( f ζ + f )v( f ζ + f )k( f ζ + f )p( f ζ)u( f ζ)rq( f ζ)gq( f ζ)Fq−β( f ζ)
hq−1( f ζ)

, (51)

where

F(ζ) = f
∞∑

s= ζf

h( f s) and L(ζ) = f
ζ
f −1∑
s= b

f

r( f s)g( f s).

Corollary 11. In Corollary 10, we just set f = 1 for T = Z. Then inequality (46) becomes:

∞∑
ζ=b

l(ζ + 1)v(ζ + 1)k(ζ + 1)p(ζ)u(ζ)h(ζ)F−β(ζ + 1)Lq(ζ + 1)

≤
( q + α + γ
1 − β + θ + ϕ

)q ∞∑
ζ=b

l(ζ + 1)v(ζ + 1)k(ζ + 1)p(ζ)u(ζ)rq(ζ)gq(ζ)Fq−β(ζ)
hq−1(ζ)

, (52)

where : F(ζ) =
∞∑

s=b
h(s) and L(ζ) =

ζ−1∑
s=b

r(s)g(s).

Corollary 12. Using relations (26) with Theorem 14 and using T = nZ, then inequality (46) becomes:

∞∑
ζ=lognb

l(nζ+1)v(nζ+1)k(nζ+1)p(nζ)u(nζ)h(nζ)F−β(nζ)Lq(nζ+1)

≤
( q + α + γ
1 − β + θ + ϕ

)q ∞∑
ζ=lognb

l(nζ+1)v(nζ+1)k(nζ+1)p(nζ)u(nζ)rq(nζ)gq(nζ)Fq−β(nζ)
hq−1(nζ)

, (53)

where : F(ζ) = (n − 1)
∞∑

s=lognζ
nsh(ns) and L(ζ) = (n − 1)

(lognζ)−1∑
s=lognb

nsr(ns)g(ns).
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Theorem 15. Consider T is a time scale with b ∈ [0,∞)T. Inclusion, consider g, h, l, r, u, p, v, k are R1 rd-continuous
functions on [b,∞)T that is to say l is non decreasing. Furthermore, let us assume that there is ϕ, θ, α, γ ≥ 0 such that
u∆(ζ)
uξ(ζ) ≤ ϕ(

F∆(ζ)
F(ζ) ), p∆(ζ)

pξ(ζ) ≤ θ(
F∆(ζ)
F(ζ) ), v∆(ζ)

v(ζ) ≤ α(G∆(ζ)
Gξ(ζ) ) and k∆(ζ)

kξ(ζ) ≤ γ(
G∆(ζ)
G(ζ) ), where:

F(ζ) =
∞∫
ζ

h(s)∆s and G(ζ) =
∞∫
ζ

r(s)g(s)∆s, ζ ∈ [b,∞)T.

If q ≥ 1 and β > ϕ + 1, then

∞∫
b

l(ζ)v(ζ)k(ζ)pξ(ζ)uξ(ζ)h(ζ)F−β(ζ)Gq(ζ)∆ζ

≤
( q + α + γ
β − θ − ϕ − 1

)q ∞∫
b

l(ζ)v(ζ)k(ζ)pξ(ζ)uξ(ζ)rq(ζ)gq(ζ)Fβ(q−1)(ζ)

hq−1(ζ)
(
Fξ(ζ)

)q(β−1) ∆ζ. (54)

Proof. Applying the formula of integration by parts to time scales (22) with:

∞∫
b

l(ζ)v(ζ)k(ζ)pξ(ζ)uξ(ζ)h(ζ)F−β(ζ)Gq(ζ)∆ζ

= [w(ζ)l(ζ)v(ζ)k(ζ)Gq(ζ)]∞b +

∞∫
b

wξ(ζ)
(
− l(ζ)v(ζ)k(ζ)Gq(ζ)

)∆
∆ζ, (55)

where we suppose that:

w(ζ) =

ζ∫
b

pξ(s)uξ(s)h(s)F−β(s)∆s.

Applying the rules (21) and (27) on time scales, and the hypothesis u∆(ζ)
uξ(ζ) ≥ ϕ(

F∆(ζ)
F(ζ) ), p∆(ζ)

pξ(ζ) ≥ θ(
F∆(ζ)
F(ζ) ) we see that there is

d ∈ [s, ξ(s)] such that:(
p(s)u(s)F1−β(s)

)∆
= p∆(s)uξ(s)F1−β(s) + pξ(s)u∆(s)

(
Fξ(s)

)1−β
+ pξ(s)uξ(s)

(
F1−β(s)

)∆
≥ θpξ(s)uξ(s)F−β(s)F∆(s) + ϕpξ(s)uξ(s)F−β(s)F∆(s)
+(1 − β)pξ(s)uξ(s)F−β(d)F∆(s).

Since F∆(s) = −h(s) ≤ 0, d ≥ s and β > 1, we get:(
p(s)u(s)F1−β(s)

)∆
≥ −θpξ(s)uξ(s)h(s)F−β(s) − ϕpξ(s)uξ(s)h(s)F−β(s)
+(β − 1)pξ(s)uξ(s)h(s)F−β(s).

= (β − θ − ϕ − 1)pξ(s)uξ(s)h(s)F−β(s).

This gives us that

pξ(s)uξ(s)h(s)F−β(s) ≤
1

β − θ − ϕ − 1
(
p(s)u(s)F1−β(s)∆.

Hence

wξ(ζ) =

ξ(ζ)∫
b

pξ(s)uξ(s)h(s)F−β(s)∆s ≤
1

β − θ − ϕ − 1

ξ(ζ)∫
b

(
p(s)u(s)

(
F1−β(s)

)∆
∆s
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=
1

β − θ − ϕ − 1

(
pξ(ζ)uξ(ζ)

(
Fξ(ζ)

)1−β
− p(b)u(b)

(
F(b)
)1−β)

≤
1

β − θ − ϕ − 1
pξ(ζ)uξ(ζ)

(
Fξ(ζ)

)1−β
. (56)

Applying the rules (21) and (27) on time scales, we may observe that there d ∈ [ζ, ξ(ζ)] such that:(
− l(ζ)v(ζ)k(ζ)Gq(ζ)

)∆)
= −
((

l(ζ)v(ζ)k(ζ)
)∆Gξ(ζ))q + l(ζ)v(ζ)k(ζ)

(
Gq(ζ)

)∆)
= −
(
l∆(ζ)v(ζ)k(ζ)Gξ(ζ)

)q
+ l(ζ)v∆(ζ)k(ζ)Gξ(ζ)

)q
+ l(ζ)v(ζ)k∆(ζ)Gξ(ζ)

)q
+ql(ζ)v(ζ)k(ζ)Gq−1(d)G∆(ζ)

)
.

Since l∆(ζ) ≥ 0, G∆(ζ) = −r(ζ)g(ζ) ≤ 0, d ≥ ζ, q ≥ 1, v∆(ζ)
v(ζ) ≥ α

(G∆(ζ)
Gξ(ζ)
)
, and k∆(ζ)

k(ζ) ≥ γ
(G∆(ζ)

Gξ(ζ)
)
, we have:

(
− l(ζ)v(ζ)k(ζ)Gq(ζ)

)∆
≤ αl(ζ)v(ζ)k(ζ)r(ζ)g(ζ)

(
Gξ(ζ)

)q−1
+ γl(ζ)v(ζ)k(ζ)r(ζ)g(ζ)

(
Gξ(ζ)

)q−1

+ql(ζ)v(ζ)k(ζ)r(ζ)g(ζ)
(
Gξ(ζ)

)q−1

≤ (q + α + γ)l(ζ)v(ζ)k(ζ)r(ζ)g(ζ)Gq−1(ζ). (57)

It is important to note that G(∞) = 0 and w(b) = 0, which we receive. After combining (54), (55) and (56):

∞∫
b

l(ζ)v(ζ)k(ζ)pξ(ζ)uξ(ζ)h(ζ)F−β(ζ)Gq(ζ)∆ζ

≤
q + α + γ
β − θ − ϕ − 1

∞∫
b

l(ζ)v(ζ)k(ζ)pξ(ζ)uξ(ζ)r(ζ)g(ζ)
(
Fξ(ζ)

)1−βGq−1(ζ)∆ζ,

or equivalently,

∞∫
b

l(ζ)v(ζ)k(ζ)pξ(ζ)uξ(ζ)h(ζ)F−β(ζ)Gq(ζ)∆ζ

≤
q + α + γ
β − θ − ϕ − 1

∞∫
b

(
l(ζ)v(ζ)k(ζ)pξ(ζ)uξ(ζ)h(ζ)

) q−1
q F

−β(q−1)
q (ζ)Gq−1(ζ)

)
×
( (l(ζ)v(ζ)k(ζ)pξ(ζ)uξ(ζ)

) 1
q r(ζ)g(ζ)F

β(q−1)
q

h
q−1

q (ζ)
(
Fξ(ζ)

)β−1

)
∆ζ.

The dynamic Hölder inequality (28), when applied with indices q and q
q−1 , allows us to obtain.

∞∫
b

l(ζ)v(ζ)k(ζ)pξ(ζ)uξ(ζ)h(ζ)F−β(ζ)Gq(ζ)∆ζ

≤
q + α + γ
β − θ − ϕ − 1

( ∞∫
b

l(ζ)v(ζ)k(ζ)pξ(ζ)uξ(ζ)h(ζ)F−β(ζ)Gq(ζ)∆ζ
) (q−1)

q

×
( ∞∫

b

l(ζ)v(ζ)k(ζ)pξ(ζ)uξ(ζ)rq(ζ)gq(ζ)Fβ(q−1)(ζ)

hq−1(ζ)
(
Fξ(ζ)

)q(β−1) ∆ζ
) 1

q
,
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which implies that
∞∫

b

l(ζ)v(ζ)k(ζ)pξ(ζ)uξ(ζ)h(ζ)F−β(ζ)Gq(ζ)∆ζ

≤
( q + α + γ
β − θ − ϕ − 1

)q ∞∫
b

l(ζ)v(ζ)k(ζ)pξ(ζ)uξ(ζ)rq(ζ)gq(ζ)Fβ(q−1)(ζ)

hq−1(ζ)
(
Fξ(ζ)

)q(β−1) ∆ζ.

The proof is now complete.

Remark 9. Assuming ϕ = α = θ = γ = 0, we may simplify inequality (54) to inequality (18) with Theorem 15 by setting
l(ζ) = v(ζ) = k(ζ) = p(ζ) = u(ζ) = 1 and r(ζ) = h(ζ).

Corollary 13. Using relations (23) with Theorem 15 and using T = R, then inequality (54) becomes:
∞∫

b

l(ζ)v(ζ)k(ζ)p(ζ)u(ζ)h(ζ)F−β(ζ)Gq(ζ)∆ζ

≤
( q + α + γ
β − θ − ϕ − 1

)q ∞∫
b

l(ζ)v(ζ)k(ζ)p(ζ)u(ζ)rq(ζ)gq(ζ)Fq−β(ζ)
hq−1(ζ)

dζ, (58)

where

F(ζ) =
∞∫
ζ

h(s)ds and G(ζ) =
∞∫
ζ

r(s)g(s)ds.

Remark 10. In Corollary 13, if we set l(ζ) = v(ζ) = k(ζ) = p(ζ) = u(ζ) = 1, r(ζ) = h(ζ), and b = 0, then we take
ϕ = α = θ = γ = 0, so inequality (58) reduces to:

∞∫
0

h(ζ)(
∫ ∞
ζ

h(s)g(s)ds)q

(
∫ ∞
ζ

h(s)ds)β
dζ ≤

( q
β − 1

)q ∞∫
0

h(ζ)gq(ζ)
( ∞∫
ζ

h(s)g(s)ds
)q−β

dζ, (59)

This is the discrete inequality (13), but in continuous form.

Corollary 14. Using relations (25) in the theorem 15 and using T = fZ, then inequality (53) becomes:
∞∑
ζ= b

f

l( f ζ)v( f ζ)k( f ζ)p( f ζ + f )u( f ζ + f )h( f ζ)F−β( f ζ)Gq( f ζ)

≤
( q + α + γ
β − θ − ϕ − 1

)q ∞∑
ζ= b

f

l( f ζ)v( f ζ)k( f ζ)p( f ζ + f )u( f ζ + f )rq( f ζ)gq( f ζ)Fβ(q−1)( f ζ)
hq−1(ζ)Fq(β−1)( f ζ + f )

, (60)

where:
F(ζ) = f

∞∑
s= ζf

h( f s) and G(ζ) = f
∞∑

s= ζf

r( f s)g( f s).

Corollary 15. In Corollary 14, we just set f = 1 for T = Z. Then inequality (53) becomes:
∞∑
ζ=b

l(ζ)v(ζ)k(ζ)p(ζ + 1)u(ζ + 1)h(ζ)F−β(ζ)Gq(ζ)

≤
( q + α + γ
β − θ − ϕ − 1

)q ∞∑
ζ=b

l(ζ)v(ζ)k(ζ)p(ζ + 1)u(ζ + 1)rq(ζ)gq(ζ)Fβ(q−1)(ζ)
hq−1(ζ)Fq(β−1)(ζ + 1)

, (61)

where
F(ζ) =

∞∑
s=ζ

h(s) and G(ζ) =
∞∑

s=ζ
r(s)g(s).
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Corollary 16. Using relations (26) with Theorem 15 and using T = nZ, then inequality (53) becomes:

∞∑
ζ=lognb

l(nζ)v(nζ)k(nζ)p(nζ+1)u(nζ+1)h(nζ)F−β(nζ)Gq(nζ)

≤
( q + α + γ
β − θ − ϕ − 1

)q ∞∑
ζ=lognb

l(nζ)v(nζ)k(nζ)p(nζ+1)u(nζ+1)rq(nζ)gq(nζ)Fβ(q−1)(nζ)
hq−1(nζ)Fq(β−1)(nζ+1)

, (62)

where
F(ζ) = (n − 1)

∞∑
s=lognζ

nsh(ns) and G(ζ) = (n − 1)
∞∑

s=lognζ
nsr(ns)g(ns).

4. DISCUSSION AND CONCLUSION

We proposed some new dynamic Hardy-type inequalities in this work by using the time scales’ version of Hölder
inequality, the integration by parts method, and Keller’s chain rule. Read the remarks and corollaries that come after
each of our main results to learn more about how the inequalities we proved apply to other dynamic inequalities that have
already been written about. We applied the theorems to a variety of time scales, including R, fZ, nZ, and Z as a subcase
of fZ, in order to demonstrate each type of inequality. By combining the strengths of both discrete and continuous
analysis, these inequalities open up new avenues for research into the temporal features of dynamic processes. Applying
these inequalities to more complicated systems with jumps and hybrid dynamics is just the beginning of their extensive
range of possible uses. Extended and generalised dynamic Hardy-type inequalities on time scales are still fundamental
to the development of dynamic equations and mathematical analysis in this area of study. It is possible that future study
will investigate a variety of generalisations and modifications of the dynamic Hardy inequality by using the findings
presented in this paper. The results of this paper will help us understand more about many mathematical problems,
especially functional analysis. This study will present the mathematical framework for the Hardy type inequality and
show its importance in understanding fundamental functions and their interconnections.
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