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A B S T R A C T  
 

In this work, we study the two-dimensional boundary layer flow of Sisko fluid over stretching surface. 
Further we have observed, the effect of chemical reaction and activation energy on unsteady radiative 
flow of Sisko fluid. The suitable transformations are used to convert non-linear partial differential 
equations (PDEs) into ordinary differential equations (ODEs). Numerical solutions are obtained for the 
velocity, temperature and concentration profiles by utilizing the bvp4c technique. The effect of various 
parameters on the heat transfer and concentration profiles are depicted in the graphs and tables are briefly 
discussed. 

 

 

 

 

 
  

1. INTRODUCTION 

Due to boundary layer flow has several applications in technology and engineering, it is significant when it occurs across a 
stretched surface. Such a sheet creates movement in fluid when surfaces inflate or contract, like when bubbles and 
pseudopods elongate. In particular, stretching flow happens in the cooling bath, during paper chilling and drawing, during 
textile and glass fiber manufacture, etc. In these instances, the ultimate outcome of these attributes is contingent upon the 
pace of stretching, the rate of cooling throughout the entire process, and the stretching mechanism itself. The investigation 
of boundary layer flow across a continuous, uniformly-moving solid surface was first carried out by Sakiadis [1]. Later, 
Crane [2] investigated the boundary flow of Newtonian fluid resulting from the stretching of an elastic at sheet that travels 
in its own plane under uniform stress, with a velocity that varies linearly with distance from a fixed point. The micropolar 
fluid flow via a stretched sheet with a changing surface temperature was examined by Hassanien et al. [3]. 

The effect of a uniform magnetic field on the flow of an electrically conducting Visco-elastic fluid across a stretched sheet 
was investigated by Anderson et al. [4]. The MHD flow of an electrically conducting power law fluid across a stretched 
surface in the presence of a transverse magnetic field was also studied by Andersson [5]. There has been a great deal of 
research on boundary layer flow across stretched surfaces [6-10]. 

In the field of fluid mechanics, the Rayleigh dilemma and the Stokes oscillating plate are typical manifestations of unsteady 
boundary layers. Unsteady boundary layers differ from steady state in that they are caused by an additional time-dependent 
term that is included in the governing equations and can influence fluid structure, movement, and boundary layer separation 
[11, 12]. A non-uniform source of heat and an unstable stretching surface were the subjects of a study by Tsai et al. [13]. 
Todd [14] developed a significant unstable boundary layer problem for a free stream flowing at a constant velocity across 
an established semi-infinite flat plate. This also included a detailed discussion of the momentum boundary layer and an 
evolving leading edge including a flow with a particular rate of accretion or ablation. Unsteady stretching flow problems 
have received a lot of interest lately; some of them are discussed in [15-17]. The problem of heat transmission across an 
unstable stretched surface with a predetermined wall temperature has been studied by Ishak et al. [18]. The impact of 
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changing fluid characteristics on the MHD flow and heat transfer of Ostwald-de Waele fluid across an unstable stretched 
sheet was investigated by Vajravelu et al. [19]. The unsteady flow and heat transport in a power law fluid across an unstable 
radially extending surface were studied by Ahmed et al. [20]. 

The practical significance of magnetohydrodynamics in engineering has grown in importance. This kind of flow can be 
employed to address issues with induction flow meters, which rely only on the fluid s potential difference orthogonal to the 
direction of motion and the magnetic field. The unstable hydro-magnetic flow as well as heat transfer from a non-isothermal 
stretched sheet submerged in a porous medium were examined by Chamkha [21]. A comparable non-linear problem was 
solved by Liao [22] using HAM. The MHD flow in the Jaffrey fluid model over a stretched sheet with radiative heat transfer 
was examined by Ahmed et al. [23]. There was a noticeable drop as the magnetic field strength increased. An external 
magnetic field has been the subject of much research, as evidenced by the literature [24, 25]. Applications for ow via suction 
or injection in engineering include gaseous diffusion, environmental contamination, and rotational particle separation [26]. 

As far as we are aware, there has not yet been any attempt to use the activation energy and concentration idea to simulate the 
flow of the Sisko fluid model across an unstable stretching surface. This gap is being filled by the current investigation. 
Pseudoplastic and dilatant fluid behavior may be predicted by the Sisko fluid model. The Sisko model applies to many actual 
fluids. The field of oil engineering regularly use this paradigm. For the movement of greases, the Sisko fluid model is the 
most appropriate [27]. Not much research has been done with this model, considering its wide range of usage in industry 
[28, 29]. 

The current study examines the heat transmission and MHD flow of a Sisko fluid across an unstable planner stretchable 
surface using suction. By employing reasonable similarity transformations, the nonlinear partial differential equations 
(PDEs) are reduced to ordinary differential equations (ODEs). We use the bvp4c approach for numerical solutions. A detailed 
discussion is also given to the impacts on the temperature, velocity, and concentration profiles for different factors. 

 

2.  FLOW GOVERNING EQUATIONS 

Let us consider unsteady, two-dimensional boundary layer flow of in-compressible over a stretching sheet in the presence 

of melting with non-linear thermal radiation and concentration equation. Time dependent uniform magnetic field 

perpendicularly applied to sheet. By the assumptions of weak magnetic field due to by which magnetic induction 

phenomenon effect vanishes. More-ever the velocity component u and v are along x- and y- direction respectively. The 

flow is caused by unsteady stretched of the sheet along x-axis. The following equations governed are used for the above 

assumptions 
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The relevant boundary conditions are:  

𝑢 = 𝑈𝑤 =
𝑐𝑥

1 − 𝛼𝑡
, 𝑣 = −𝑓(𝑥, 𝑡) = 𝑣𝑤 , 𝑇 = 𝑇𝑤, 𝐶 = 𝐶𝑤𝑎𝑡𝑦 = 0,                                   (5) 

𝑢 = 0, 𝑇 ⟶ ∞, 𝐶 ⟶ ∞ as 𝑦 ⟶ ∞.                                                                                        (6) 

In the above expression u and v are the components of velocity along x and y direction respectively, n is the power law 

index with a and b are material constants, T is the temperature, the thermal diffusivity, k is the thermal conductivity and cp 

is the specific heat, where qr is radiative heat flux in equation is given by Rosseland approximation as follows 

𝑞𝑟 =
−4σ∗

3𝑘∗

𝜕𝑇4

𝜕𝑦
                                                                                                      (7) 

where σ∗ the Stefan-Boltzmann constant and 𝑘∗ the mean absorption coefficient. We introduce the following similarity 

transformations 
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Ψ(𝑥, 𝑦) =
𝑐𝑥

1 − 𝛼𝑡
(𝑥(ℜ𝑏)

−1
1+𝑛𝑓(𝜂)) ;          𝜂 =

𝑦

𝑥
(ℜ𝑏)

1
1+𝑛                                                      (8) 

𝜙(𝜂) =
𝐶 − 𝐶∞

𝑐∞

;          (𝜂) =
𝑇 − 𝑇∞

𝑇𝑠 − 𝑇∞

.                                                                      (9) 

Here (x; y) denotes the stream-function in standard form we can write as 

𝑢 =
𝜕𝜓

𝜕𝑦
, 𝑣 =

−𝜕𝜓

𝜕𝑥
,                                                                                              (10) 

which undoubted fulfill the continuity equation, is the similarity variable f (η) being the similarity function, θ(η) is the 

dimensionless temperature ϕ(η) is the dimensionless volume fraction. By using these similarity variables, the non-

dimensional form of the governing equations is stated below as 

𝐴∗𝑓´´´ + 𝑛(−𝑓´´)
1
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2𝑛

1+𝑛
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) 𝜂𝑓´´ + 𝑓´) = 0                                                 (11) 
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−𝐸
1+𝜎𝜃 = 0.                                 (13) 

The non-dimensional boundary condition is 

𝑓(0) = 𝑆, 𝑓´(0) = 1, 𝑓´(∞) = 0, 𝜃(0) = 1, 𝜃´(∞) = 0, 𝜙(0) = 1, 𝜙´(∞) = 0.                                        (14) 

In the above equations, prime indicates differentiation with references to η. In this equations S is the mass transfer 

parameter. Now in a case of mass suction, we select S > 0 and for injection, the criteria are in that form S < 0. The other 

parameters in the above equation are defined as 
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3. PARAMETERS OF PHYSICAL INTEREST 

In this problem the main term, that we will use is the local skin friction that can be defined as 

𝐶𝑓 =
𝜏𝑤

1 2⁄ 𝑈2𝜌
, 𝜏𝑤 = 𝑎 + 𝑏. |
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𝜕𝑦
|

𝑛−1 𝜕𝑢
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|

𝑦=0

= 0.                                                             (17) 

and the dimensionless variable can be the form 

𝐴∗𝑓´´(0) − (−1)𝑛(𝑓´´(0))
𝑛

=
1

2
𝐶𝑓ℜ𝑏

−1
1+𝑛.                                                                (18) 

The local Nusselt number Nux at the wall can be defined as: 

𝑁𝑢𝑥 =
𝑥𝑞𝑤

𝑇𝑠 − 𝑇∞

.                                                                                               (19) 

where the term qw that is mention in the above heat flux its mathematics can be written as 

𝑞𝑤 = (
𝛿𝑇

𝛿𝑦
|

𝑦=0

) (𝑘) = 0,                                                                                     (20) 

which reduces to 

 𝑁𝑢𝑥(ℜ𝑏)
1

1+𝑛 = −𝜃′(0).                                                                                     (21) 
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4. SOLUTION METHODOLOGY  

Numerical approach is used to find the solution of nonlinear differential equations with the boundary conditions specified 

in Eqs. (11), (12), (13), and (14). The nonlinear differential equations with power law index (n) are solved using the bvp4c 

technique. The nonlinear differential equation will first be changed into a system of seven first-order ordinary differential 

equations, as shown below 

𝑓 = 𝑦1, 𝑓´ = 𝑦2 , 𝑓´´ = 𝑦3 , 𝑓´´´ = 𝑦´3,                                                                           (22) 

𝜃 = 𝑦4, 𝜃´ = 𝑦5, 𝜃´´ = 𝑦´5,                                                                                       (23) 

𝜙 = 𝑦6, 𝜙´ = 𝑦7, 𝜙´´ = 𝑦´7.                                                                                     (24) 

In contrast to Eqs. (22) (24) which only provides four initial conditions, the solution to our seven ODEs can only be reached 

when we have seven initial conditions. As a result, an appropriate starting approximation for y3 (0), y5 (0) and y7 (0) is 

chosen; in this case, we suppose that they are -1. The answer is now calculated using the bvp4c approach. If the border 

residual is smaller than the absolute error tolerance threshold 10-6, the resulting solution will converge. The original estimate 

will be adjusted using the secant approach until the answer satisfies the desired criteria if the calculated solution does not 

satisfy the convergence threshold. 

 

5. GRAPHICAL RESULTS AND DISCUSSION 
This part of paper contains a variety of findings from the flow and heat transfer of Sisko fluid across a time-dependent 

stretching surface when a magnetic field is present. The bvp4c approach has been used to numerically solve the nonlinear 

ordinary differential equations that are subjected to the boundary equations (11), (12), (13), and (14). A detailed analysis 

and detailed illustrations of the impact of important physical factors on the velocity, temperature, and concentration profiles 

are provided in Figs. [1] [12]. 
A brief glance at the velocity profile reveals the physical nature of the boundary layer structure that formed in the vicinity 

of the sheet. Effect of unsteadiness parameter A on velocity profile are displayed in Figure 1. Figure 1 shows that the 

velocity profile increases with the increasing value of unsteadiness parameter A for pseudo plastic (0 < n < 1) and opposite 

behavior for dilatant (n > 1) fluids. 

The effects of magnetic parameter M, on velocity profile are plotted in Figure 2. These figures clearly show that the velocity 

profile and the thickness of the boundary layer decrease with a rise in the magnetic parameter M for pseudoplastic (0 < n 

< 1) and dilatant (n > 1) fluids. 

 

Fig. 1. Fluctuation of velocity profile for distinct values of unsteadiness parameter A for shear thinning and shear thickening fluid. 

This suggests that an increment in the magnetic parameter M significantly lowers the rate of transport. It clarifies that the 

transport phenomenon is opposed by the transverse magnetic field. This is because changes in the magnetic parameter 

cause changes in the Lorentz force, which in turn provides resistance to the phenomenon of transport. . It clarifies that the 

transport phenomenon is opposed by the transverse magnetic field. This is because changes in the magnetic parameter 

cause changes in the Lorentz force, which in turn provides resistance to the phenomenon of transport. 
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Fig. 2. Fluctuation of velocity pro le for distinct values of magnetic parameter M for shear thinning and shear thickening fluid. 

 

The impact of material parameter A* on the velocity profile is seen in Figure 3. We observed that by increases of A* due 

to which increment occurs in the boundary layer thickness and velocity profile, for a case of pseudoplastic (0 < n < 1) fluid. 

While opposite effect for dilatant (n > 1) fluid. 

 
Fig. 3. Fluctuation of velocity profile for distinct values of material parameter A for shear thinning and shear thickening fluid. 

 

Figure 4 is plotted for distinct values of suction parameter S for velocity profile. we have seen velocity profile for two types 

of fluid, i.e., pseudoplastic (0 < n < 1) and dilatant (n > 1) fluids. These graphs demonstrate how, for all pseudoplastic and 

dilatant fluids, the suction (S > 0) operates to enhance the fluid s adherence to the surface, delaying flow and resulting in a 

drop in velocity and boundary layer thickness. 

 

Fig. 4. Fluctuation of velocity profile for distinct values of suction parameter S for shear thinning and shear thickening fluid. 

A quick look at the temperature profile will reveal the structure of the thermal boundary layer. Figure 5 represents the 

temperature profile (η) for distinct values of Prandtl parameter Pr: These figures show that the temperature profile (η) 

decreases with the increasing value of Prandtl parameter Pr for pseudoplastic (0 < n < 1) and dilatant (n > 1) Fluids. 
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Fig. 5. Fluctuation of temperature profile for distinct values of Prandtl parameter Pr for shear thinning and shear thickening fluid. 

The effects of temperature ratio parameter 𝜃𝑤  on temperature profile (η) is shown in figure 6. These figures show the 

temperature profile 𝑞𝑤 = (
𝜕𝑇

𝜕𝑦
)(𝑘)𝑦 = 0(η) increases with the increasing value of temperature ratio parameter 𝑁𝑢𝑥 =

𝑥𝑞𝑤

𝑇𝑠−𝑇∞
 

for both cases. 

 
Fig. 6. Fluctuation of temperature profile for distinct values of temperature ratio parameter for shear thinning and shear thickening fluid. 

Figure 7 is plotted for temperature profile (η) for distinct values of radiation parameter Rd. In both cases increment occurs 

in boundary layer thickness and temperature profile. 

 
Fig. 7. Fluctuation of temperature profile for distinct values of radiation parameter Rd for shear thinning and shear thickening fluid. 
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Figure 8 illustrates the impact of the unsteadiness parameter A on the temperature profile. It is shown that for pseudoplastic 

(0 < n < 1) and dilatant (n > 1) fluid, the thermal boundary layer thickness decreases with an increase in the unsteadiness 

parameter A. 

 
Fig. 8. Fluctuation of temperature profile for distinct values of unsteady parameter A for shear thinning and shear thickening fluid. 

We have observed the effects of Schmidt number Sc that have in figure 9. From this figure 9, we see that an increment in 

Sc causes a decrease in the concentration profile, in a case of pseudoplastic (0 < n < 1) and dilatant (n > 1) fluids. 

 
Fig. 9. Fluctuation of concentration profile for distinct values of Schmidth parameter Sc for shear thinning and shear thickening fluid. 

In Figure 10, we observed the effect of parameter σ on concentration profile. It is noted that by the increasing values of 

parameter σ decreases occurs in the concentration profile for pseudoplastic (0 < n < 1) and dilatant (n > 1) fluids. 

 
Fig. 10. Fluctuation of concentration profile for distinct values of for shear thinning and shear thickening fluid. 

Figure 11 shows the effect of parameter E on concentration profile. By the increasing values of E also increasing occurs in 

the concentration profile for pseudoplastic (0 < n < 1) and dilatant (n > 1) Fluids. 
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Fig. 11. Fluctuation of concentration profile for distinct values of activation energy E for shear thinning and shear thickening fluid. 

Figure 12 shows the effect of parameter δ on concentration profile. It is noted that by increasing values of parameter δ a 

decrease occurs for pseudoplastic (0 < n < 1) and dilatant (n > 1) fluids. 

 
Fig. 12. Fluctuation of concentration profile for distinct values of for shear thinning and shear thickening fluid. 

 

Influence of different physical parameters of interest on the local Skin friction co-efficient Cf is tabulated in Table 1.  

TABLE I. NUMERICAL VALUES OF THE LOCAL SKIN FRICTION CO-EFFICIENT FOR DIFFERENT VALUES OF PHYSICAL 

PARAMETER 

    𝟏

𝟐
(𝕽𝒃)

𝟏
𝟏+𝒏 𝑪𝒇𝒙 

 

A M A s n = 0.5 n = 1.5 

0.20 0.10 0.20 3.0 2.483000 4.092000 

0.40    2.505000 4.141000 

0.60    2.530000 4.190000 

0.80    2.556000 4.239000 

0.20 0.30   2.561000 4.153000 

 0.50   2.631000 4.213000 

 0.70   2.695000 4.272000 

 0.10 0.30  2.532000 4.114000 

  0.40  2.579000 4.136000 

  0.50  2.623000 4.158000 

  0.20 3.20 2.623000 4.314000 

   3.40 2.694000 4.538000 

   3.60 2.803000 4.762000 
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From this table it is noted that with an increment in the unsteadiness parameter A, the suction parameter S, the magnetic 

parameter M and material parameter 𝐴 the magnitude of the skin friction co-efficient increases for all pseudoplastic (0 < n 

< 1) and dilatant (n > 1) fluids.  

From table 1, we have observed that with an increase the unsteadiness parameter A, the suction parameter S the magnetic 

parameter M, material parameter A and Prandtl number the magnitude of the local Nusselt number increases for all 

pseudoplastic (0 < n < 1) and dilatant (n > 1) fluids. 

 

TABLE II.  NUMERICAL VALUES OF THE LOCAL NUSSELT NUMBER FOR DIFFERENT VALUES OF PHYSICAL PARAMETER 

     -θw  

A M A* s Pr n = 0.5 n = 1.5 

0.20 0.10 0.20 0.2 1.0 1.040000 1.299000 

0.40     1.091000 1.347000 

0.60     1.114000 1.394000 

0.80     1.197000 1.440000 

0.20 0.30    1.013000 1.289000 

 0.50    1.990200 1.281000 

 0.70    0.969400 1.273000 

 0.10 0.30   1.051000 1.313000 

  0.40   1.060000 1.323000 

  0.50   1.069000 1.332000 

  0.20 0.40  1.103000 1.132000 

   0.60  1.170000 1.123000 

   0.80  1.241000 1.113000 

   0.20 1.2 1.165000 1.440000 

    1.4 1.283000 1.571000 

    1.6 1.394000 1.694000 

    1.8 1.50000 1.812000 

 

From table 3. we have noted that with an increase the unsteadiness parameter A, the suction parameter S the magnetic 

parameter M, material parameter A Schmidt number the magnitude of the local Schmidt number increases for all 

pseudoplastic (0 < n < 1) and dilatant (n > 1) fluids. 

TABLE III. NUMERICAL VALUES OF THE LOCAL SKIN FRICTION CO-EFFICIENT FOR DIFFERENT VALUES OF PHYSICAL 

PARAMETER. 

        -𝝓(0)  

A M A* s Sc   E n = 0.5 n = 1.5 

0.20 0.10 0.20 0.2 0.5 1.0 1.5 0.5 1.000000 1.161000 
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    1.0    1.373000 1.153000 

    1.5    1.281000 1.115000 

    2.0    1.113000 1.183000 

    1.0 1.2   1.243000 1.151000 

     1.4   1.251200 1.132000 

     1.6   1.232000 1.112000 

     1.0 1.8  1.512000 1.169000 

      2.1  1.069000 1.131000 

      2.4  1.331000 1.194000 

      1.5 0.8 1.494000 1.118000 

       1.1 1.623000 1.112000 

       1.4 1.618000 1.112000 

       1.7 1.812000 1.112000 

 

 

6. CONCLUSIONS 

This study deals with the melting heat transfer and concentration in Sisko fluid ow in presence on non-linear thermal 

radiation and activation energy. The bvp4c technique has been used to solve the dimensionless governing equation for 

velocity, temperature and concentration fields. The following main point of the present study are given below: 

1. The temperature profile θ(η) increases for increasing values of unsteadiness parameter A of a Sisko fluid and opposite 

behavior are found for generalized Prandtl number Pr: 

2. It is noted that temperature profile θ(η) and boundary layer thickness increases for higher values of temperature ratio 

θw parameter. 

3. It is observed that temperature profile θ(η) increases are found for radiation parameter Rd. 

4. The concentration profile ϕ(η) decreases for increasing values sigma parameter of a Sisko fluid. 

5. It is noted that concentration profile ϕ(η) and boundary layer thickness decreases for higher values of Schmidth 

parameter Sc and opposite effect occurs for parameter E: 

6. It is noted that concentration profile ϕ(η) and boundary layer thickness decreases for increasing values. 
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