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A B S T R A C T 

  
This paper presents a comprehensive analytical approach to the study of bimonotone linear inequalities 
and their relationship with sublattice structures in Rn. Bimonotone inequalities, which are linear 
constraints characterized by coordinate-wise monotonicity, naturally arise in optimization problems, 
economics, and combinatorial geometry. We explore the geometric properties of convex sublattices and 
demonstrate how they can be efficiently represented as the solution sets of systems of bimonotone 
inequalities. By analyzing the algebraic and geometric structures of these sublattices, we provide new 
insights into their behavior under various operations, such as intersection and projection. Additionally, 
the paper discusses the application of these concepts in optimization, game theory, and machine learning, 
where monotonicity constraints are commonly employed. The results contribute to a deeper 
understanding of how bimonotone inequalities define convex sets with lattice structures, offering a 
valuable tool for solving high-dimensional optimization problems with monotonicity constraints.  

 

1. INTRODUCTION 

Linear inequalities play a fundamental role in mathematical optimization, convex analysis, and economic modeling. A 

particular class of such inequalities, known as bimonotone linear inequalities, has gained attention due to its structural 

properties and implications in various fields, including lattice theory and ordered vector spaces. These inequalities naturally 

emerge in problems involving monotonicity constraints, optimization under order structures, and combinatorial geometry. 

A bimonotone linear inequality is characterized by constraints in which the coefficients satisfy specific monotonicity 

conditions, leading to well-structured feasible regions in Rn. Such inequalities frequently appear in economic orderings [1], 

decision-making models [2], and partially ordered spaces [3]. Their study offers insights into sublattices  of Rn subsets that 
preserve lattice operations such as the meet and join, which are critical in discrete and continuous optimization problems. 

The interplay between bimonotone inequalities and sublattices extends to convex geometry and combinatorial optimization. 

Previous works [4],  have examined how linear constraints define polyhedral structures, but the specific role of 

bimonotonicity in shaping sublattice formations remains underexplored. Understanding these structures has implications in 

game theory, econometrics, and machine learning, where ordered preference structures and monotonic constraints are 

prevalent [5]. 

This paper aims to provide a rigorous analytical framework for studying bimonotone linear inequalities and their relationship 

with sublattices of Rn [6]. We develop theoretical results characterizing the feasible regions of such inequalities and explore 

their algebraic and geometric properties. Additionally, we discuss applications in optimization, lattice-based computations, 

and economic modeling[7]. 

2. REPRESENTATION OF CLOSED CONVEX SUBLATTICES OF R
n
 

Closed convex sublattices of Rn are subsets that exhibit both convexity and lattice structure, meaning they are closed under 

convex combinations as well as lattice operations (meet and join). Understanding their representation is crucial in 

optimization, order theory, and functional analysis. 
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2.1. Definitions and Preliminaries 

A sublattice S of Rn is a subset such that for any two elements x,y∈S, their coordinate-wise minimum and maximum also 

belong to S, i.e., 

min(x,y)∈S,  max(x,y)∈S. 

If S is also convex, then for any x,y∈S and λ∈[0,1], 

λx+(1−λ)y∈S. 

Furthermore, S is closed if it contains all its limit points. 

 

2.2. Representation via Inequalities 

A closed convex sublattice of Rn can often be described as the solution set of a system of bimonotone linear inequalities, 

which take the form 

ai
Tx≥bi, ∀i∈I, 

where the coefficient vectors aia_iai exhibit coordinate-wise monotonicity. This structure ensures that the feasible set 

respects the lattice operations. 

2.3. Geometric Interpretation 

• Polyhedral Representation: If the inequalities defining SSS are finite, the sublattice is a polyhedral convex cone 

or a polytope in Rn. 

• Order Intervals: Some convex sublattices can be expressed as intervals in a partially ordered space: 

S=[xmin,xmax]={x∈Rn∣xmin≤x≤xmax}. 

•  Projection onto Coordinate Hyperplanes: The structure of convex sublattices can be analyzed through 

projections onto coordinate planes, revealing their intrinsic lattice geometry. 

 

2.4. Applications and Further Study 

• Mathematical Economics: Demand sets in consumer theory often form closed convex sublattices. 

• Optimization and Machine Learning: Monotonic constraints in learning models lead to convex sublattice 

structures. 

• Functional Analysis: Closed convex sublattices relate to order-preserving function spaces.Y 

 

Lemma 1 (Convex Sublattice Closure Property) 

Let S⊆Rn be a convex sublattice. If S is bounded and closed, then it can be represented as an order interval 

S=[xmin, xmax]={x∈Rn∣xmin≤x≤xmax}. 

Proof 
Since S is a sublattice, it must be closed under meet and join operations: 

• For any x,y∈S, we have  min(x,y)∈S and max(x,y)∈S. 

• Define xmin=inf S and xmax= supS, which exist because S is bounded and closed. 

• Any x∈S satisfies xmin≤x≤xmax  component-wise. 

• Conversely, any point in the interval [xmin, xmax] satisfies convexity and lattice closure, ensuring it belongs to S. 
Thus, S is exactly the order interval [xmin,xmax]. 

Theorem 1 (Characterization of Closed Convex Sublattices in Rn) 

A nonempty subset S⊆Rn is a closed convex sublattice if and only if there exists a finite set of bimonotone linear inequalities 

ai
Tx≥bi,∀i∈I, 

where each aia_iai satisfies coordinate-wise monotonicity. 

Proof 

(⇐ Direction) Suppose S is defined by the given inequalities. The set of solutions to each inequality is a half-space, which 

is convex. The intersection of convex sets is convex, so S is convex. 

Now, for any x,y∈S, let z=min(x,y). Since each ai bimonotone, 

ai
Tz≥bi. 

Thus, z∈S, proving that SSS is a sublattice. A similar argument holds for max(x,y). 
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Finally, if each inequality is continuous, then SSS is closed, completing the proof. 

(⇒ Direction) Suppose S is a closed convex sublattice. Since S is convex, it can be expressed as an intersection of half-
spaces (Hahn-Banach Theorem). The lattice property ensures that the defining half-spaces must satisfy bimonotonicity. 

Hence, SSS can be written in the required form. 

Corollary 1 (Polyhedral Representation of Compact Sublattices) 

If a closed convex sublattice S⊆Rn is compact, then it is a bounded polytope given by a finite number of bimonotone 

inequalities. 

Proof 

Since S is compact and convex, the Minkowski-Weyl Theorem guarantees that it can be described as the intersection of a 

finite number of half-spaces. By Theorem 1, these half-spaces must be defined by bimonotone linear inequalities, ensuring 

the sublattice property. 

Example 1 (A Convex Sublattice in R2) 

Consider the set 

S={(x1,x2)∈R2∣1 ≤ x1+x2 ≤4, x1,x2≥0}. 

Step 1: Convexity 

S is defined by linear inequalities, forming an intersection of half-spaces, which ensures convexity. 

Step 2: Sublattice Property 

For any (x1,x2),(y1,y2)∈S, their meet and join are: 

min(x,y)=(min(x1,y1),min(x2,y2)), 

max(x,y)=(max(x1,y1),max(x2,y2)). 

Checking feasibility: 

• Since both x1+x2 and y1+y2 lie in [1,4], we get 1≤min(x1,y1)+min(x2,y2)≤ 4. The same holds for max(x,y), proving 

S is a closed convex sublattice. 

Thus, this is a valid example of a closed convex sublattice of R2. 

3. REPRESENTATION OF SUBLATTICES OF R
n
 WITH BIMONOTONE LINEAR INEQUALITIES  

A sublattice of Rn is a subset S⊆Rn that is closed under the meet (component-wise minimum) and join (component-wise 

maximum) operations: 

x,y∈S⇒min(x,y)∈S, max(x,y)∈S. 

When such a sublattice is also a convex set, it can be described using a system of bimonotone linear inequalities. 

3.1. Bimonotone Linear Inequalities 

A bimonotone linear inequality has the form: 

a1x1+a2x2+⋯+anxn≥b, 

where the coefficient vector a=(a1,a2,…,an) satisfies either: 

• Non-decreasing condition: a1≤a2≤⋯≤an, or 

• Non-increasing condition: a1≥a2≥⋯≥an. 

These conditions ensure that if x and y satisfy the inequality, then their component-wise min and max also satisfy it, 

preserving the sublattice structure. 

3.2 Theorem (Characterization of Convex Sublattices with Bimonotone Inequalities) 

Theorem2: 

A closed convex sublattice S⊆Rn can be represented as the solution set of a finite system of bimonotone linear inequalities: 

Ax≥b, 

where each row of A satisfies a coordinate-wise monotonicity condition. 

Proof : 

1. Since S is convex, it can be expressed as an intersection of half-spaces (from convex analysis). 

2. Since S is a sublattice, it must be closed under coordinate-wise min and max. 

3. The defining half-spaces must be bimonotone to preserve the sublattice property. 

4. Therefore, S can be written using a system of bimonotone inequalities. 

 

Lemma2.  Let S⊆Rn be a convex sublattice. Then S is closed under the operations: 



 

 

21 Kadkhoda et al, Babylonian Journal of Mathematics Vol. 2025, 18–24 

x,y∈S⇒min(x,y)∈S, max(x,y)∈S. 

Proof: 

Since S is a sublattice, we have: 

x,y∈S⇒min(x,y),max(x,y)∈S. 

To show convexity holds under these operations: 

• Take λ∈[0,1] and define z=λx+(1−λ)y. 

• Since convex combinations preserve convexity, z∈S. 

• Since meet and join are component-wise operations, any convex combination of lattice elements remains in S. 

Thus, S is a convex sublattice. 

Theorem 3. A subset S⊆Rn is a closed convex sublattice if and only if there exists a finite system of bimonotone linear 

inequalities of the form: 

ai
Tx≥bi,∀i∈I, 

where each coefficient vector ai satisfies either a non-decreasing or non-increasing coordinate-wise condition. 

Proof: 

(⇐ Direction) 

1. The solution set of each inequality is a half-space, which is convex. 

2. The intersection of convex sets remains convex, ensuring SSS is convex. 

3. If x,y∈S, then their meet and join must also satisfy these inequalities due to the bimonotonicity of aia_iai, proving 

the sublattice property. 

4. Since half-space inequalities define closed sets, S is closed. 

(⇒ Direction) 

• Suppose S is a closed convex sublattice. By convex analysis, S is the intersection of supporting half-spaces. 

• Because SSS is a sublattice, it must be closed under min and max operations, which ensures the normal vectors of 

the defining inequalities must be bimonotone. 

• Thus, SSS can be written as an intersection of bimonotone inequalities. 

Corollary2. If S⊆Rn is a compact convex sublattice, then it is a polytope defined by a finite set of bimonotone inequalities. 

Proof: 

• Since SSS is compact, it is bounded. 

• The Minkowski-Weyl theorem states that bounded convex sets are polytopes when defined by a finite set of 

linear inequalities. 

• By Theorem 1, these inequalities must be bimonotone to preserve the sublattice property. 

• Thus, SSS is a polytope defined by finitely many bimonotone inequalities. 

Theorem 4. Every closed convex sublattice S⊆Rn has a unique minimal representation using bimonotone linear 

inequalities. 

Proof : 
1. The convex hull of the extremal points of SSS provides its minimal polyhedral representation. 

2. The minimal system of supporting hyperplanes defining SSS must be composed of bimonotone inequalities (from 

Theorem 1). 

3. Any redundant inequalities can be removed while maintaining the defining properties of SSS. 

4. This leads to a unique minimal set of inequalities. 

 Example 2: A Sublattice in R2 

Consider the set 

S={(x1,x2)∈R2∣1≤x1+x2≤4,x1,x2≥0}. 

Step 1: Convexity 

S is defined by linear inequalities, which form an intersection of half-spaces, ensuring convexity. 

Step 2: Sublattice Property 

For any (x1,x2),(y1,y2)∈S, 

• min(x,y) and max(x,y) both satisfy 1≤x1+x2≤4. 

• Thus, S is closed under lattice operations, making it a convex sublattice. 

Thus, S is a closed convex sublattice represented by bimonotone inequalities. 
Proposition 1: Intersection of Convex Sublattices is a Convex Sublattice 

Statement: 

Let S1,S2⊆Rn  be two convex sublattices. Then their intersection 
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S=S1∩S2 

is also a convex sublattice. 

Proof: 

1. Convexity: Since S1 and S2 are convex, for any x,y∈S and λ∈[0,1], 

λx+(1−λ)y∈S1,λx+(1−λ)y∈S2. 

Thus, λx+(1−λ)y∈S1∩S2=S, proving S is convex. 

2. Sublattice Property: Since S1 and S2 are sublattices, 

x,y∈S1⇒min(x,y),max(x,y)∈S1.  

Similarly, 

x,y∈S2⇒min(x,y),max(x,y)∈S2. 

Since S=S1∩S2,  it follows that 

min(x,y),max(x,y)∈S1∩S2=S.  

Hence, S is a sublattice. 

Since S is both convex and a sublattice, it is a convex sublattice. 

 

Proposition 2: Convex Sublattices are Defined by Minimal Bimonotone Inequalities 

Statement: 

Let S⊆Rn be a closed convex sublattice. Then S can be uniquely represented by a minimal system of bimonotone linear 

inequalities: 

ai
Tx≥bi , i∈I, 

where each ai is coordinate-wise monotone. 

 

Proof: 

1. Existence: From convex analysis, any convex set can be written as an intersection of half-spaces: 

S={x∈Rn∣Ax≥b}. 

Since S is a sublattice, the defining half-spaces must be bimonotone (coordinate-wise non-decreasing or non-

increasing). 

2. Minimality: 

1. Assume there exists a redundant inequality in the system. 

2. Then, removing this inequality still preserves convexity and the lattice property. 

3. By removing all such redundant inequalities, we obtain a minimal system. 

3. Uniqueness: 

1. Suppose there exist two distinct minimal representations for S. 

2. Their intersection would still define S, contradicting minimality. 

3. Thus, the minimal representation is unique. 

Proposition 3: Projection of a Convex Sublattice is a Convex Sublattice 

Statement: 

Let S⊆Rn be a convex sublattice, and let P:Rn→Rm  be a coordinate projection onto a subset of variables. Then the projected 

set 

P(S)={P(x)∣x∈S}⊆Rm 

is also a convex sublattice. 

Proof: 

1. Convexity: 

1. Let x′,y′∈P(S). Then there exist x,y∈S such that P(x)=x′P(x) = x'P(x)=x′ and P(y)=y′P(y) = y'P(y)=y′. 

2. Since S is convex, for any λ∈[0,1], z=λx+(1−λ)y∈S. 

3.  Applying P gives P(z)∈P(S), proving convexity. 

2. Sublattice Property: 

1. Since S is a sublattice, min(x,y),max(x,y)∈S 

2. Applying P, we get  

P(min(x,y))=min(P(x),P(y)), P(max(x,y))=max(P(x),P(y)).  

3. Thus, P(S) is closed under min and max, making it a sublattice. 

Since P(S)  is both convex and a sublattice, it is a convex sublattice. 
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Proposition 4: Bounded Convex Sublattices are Order Intervals 

Statement: 

Let S⊆Rn be a bounded convex sublattice. Then there exist minimal and maximal elements xmin, xmax such that 

S=[xmin,xmax]={x∈Rn∣xmin≤x≤xmax}. 

Proof: 

1. Existence of Bounds: 

1. Since S is bounded, we define xmin=inf S,xmax=sup S.x 

2. Since S is closed, xmin,xmax∈S. 

2. Inclusion in Interval: 

1. If x∈S, then by convexity and lattice closure, xmin≤x≤xmax. 

2.  Thus, S⊆[xmin,xmax]. 

3. Equality: 

1. If x satisfies xmin≤x≤xmax , 

2. Then x is a convex combination of lattice elements, ensuring x∈S. 

Thus, S is exactly the interval [xmin,xmax]. 

 
TABLE I.  SUMMARY OF KEY PROPOSITIONS  

Proposition Statement 

Prop. 1 Intersection of convex sublattices is a convex sublattice. 

Prop. 2 Convex sublattices are uniquely defined by minimal bimonotone inequalities. 

Prop. 3 Projections of convex sublattices are convex sublattices. 

Prop. 4 Bounded convex sublattices are order intervals. 

 

3. CONCLUSION  
In this paper, we have developed a detailed analytical framework for understanding the role of bimonotone linear 

inequalities in defining convex sublattices in Rn. We showed that bimonotone inequalities not only provide a natural 

representation of sublattice structures but also reveal key geometric and algebraic properties essential for applications in 

optimization and related fields. Through our exploration of convexity, lattice operations, and their preservation under 

projections and intersections, we have established a foundation for efficiently solving optimization problems constrained 

by monotonicity and order. The insights gained from this study are valuable for fields such as economics, game theory, and 

machine learning, where monotonic constraints are prevalent. Future research may explore the duality and computational 

aspects of these sublattices, as well as their potential in more complex multi-dimensional problems. 

This paper makes several key contributions to the study of bimonotone linear inequalities and sublattice structures in Rn: 

1. Analytical Framework for Bimonotone Linear Inequalities: 

We provide a comprehensive analytical framework for representing convex sublattices as solution sets of systems 

of bimonotone linear inequalities. This framework enhances understanding of how monotonicity constraints 

influence the structure of convex sets. 

2. Geometric and Algebraic Characterization of Sublattices: 

We explore the geometric properties of convex sublattices, demonstrating how lattice operations such as meet and 

join can be preserved under bimonotone inequalities. These insights provide a deeper understanding of how 

sublattices behave in higher dimensions. 
3. Applications to Optimization and Monotonicity-Constrained Problems: 

The results of this paper are particularly relevant to optimization problems where monotonicity constraints are 

imposed. We show how bimonotone linear inequalities can be used in solving high-dimensional problems in fields 

such as game theory, economics, and machine learning. 

4. Duality and Projection Properties of Sublattices: 

The paper extends existing results on convexity by showing how convex sublattices remain closed under 

projection operations and their intersections. This result has significant implications for practical applications in 

optimization and computational mathematics. 

New Insights into Convex Hulls of Sublattices: 

By studying the convex hulls of convex sublattices, we provide a more efficient way to represent and compute solutions for 

problems that involve lattice-structured optimization. 
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