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A B S T R A C T 

  
Geometric programming (GP) is a powerful framework for optimizing posynomial and signomial 
functions, which are widely used in engineering design, economics, and other fields. A critical aspect of 
solving geometric programs efficiently lies in understanding the convexity properties of the functions 
involved, as convexity ensures that local minima are also global minima. This work focuses on correcting 
and verifying the convexity proofs for two specific signomial functions in geometric programming: f 1  
(x)=x 1 2  x 2 −1  +x 2 3  −x 1  x 2 and f₂(x) = x₁³x₂⁻² + x₁⁻¹x₂² - x₁x₂⁻¹. Through a detailed analysis, we 
demonstrate that f1(x) is **not convex** over the domain (x1,x2)> 0, as its Hessian matrix fails to be 
positive semi-definite for all positive values of x1and x2. For f2(x), the convexity **cannot be 
conclusively determined** based on the analysis, as the logarithmic transformation does not universally 
preserve convexity for signomial functions with negative coefficients. Specific cases suggest local 
convexity, but a general proof for all (x1,x2)> 0 remains elusive. 

These results highlight the challenges in analyzing signomial functions and emphasize the importance of 
rigorous convexity verification in geometric programming. The findings have significant implications 
for optimization feasibility and modeling considerations, particularly in applications where signomial 
functions with negative coefficients arise. This work provides a foundation for further research into 
advanced techniques for analyzing and optimizing such functions, ensuring more robust and reliable 
solutions in geometric programming.  

 

1. INTRODUCTION 

Convexity is a fundamental concept in optimization, particularly in geometric programming, where the structure of the 
objective function and constraints often dictates the tractability and efficiency of solution methods. Signomial functions, 
which extend posynomials by allowing negative coefficients, are widely used in engineering design, chemical engineering, 
and other applied fields [1, 2, 4, 6]. The convexity of these functions is crucial for developing reliable optimization algorithms 
and ensuring the validity of the solutions obtained. However, verifying the convexity of signomial functions can be 
challenging, and errors in such verifications can lead to incorrect conclusions and flawed algorithmic designs. 

In recent years, several papers by Tsai et al. [4, 6, 7, 8, 9] have employed specific signomial functions in the context of 
geometric programming, asserting their convexity based on certain arguments. Unfortunately, these arguments contain 
repeated flaws, which have propagated through subsequent works. These inaccuracies not only undermine the theoretical 
foundations of the proposed methods but also raise concerns about the validity of the results derived from them. Motivated 
by the need for rigorous mathematical foundations in optimization, this note aims to correct these errors by providing accurate 
proofs for the convexity of two signomial functions frequently used in the literature. 

The first function we consider is of the from 𝑓1(𝑥) = 𝑐1 ∏  𝑛
𝑖=1 𝑥𝑖

𝛼𝑖, where 𝑐1 > 0 and 𝛼𝑖 ≤ 0 for all 𝑖.for all i. The second 

function is 𝑓2(𝑥) = 𝑐2 ∏  𝑛
𝑖=1 𝑥𝑖

𝛼𝑖, for i=1 to n, where c₂ < 0 and αᵢ > 0 for all i, with the additional condition 1 − ∑  𝑛
𝑖=1 𝛼𝑖 ≥
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0. Both functions are central to the geometric programming problems discussed in [4, 6, 7, 8, 9], and their convexity is 

essential for the application of convex optimization techniques. 

In this work, we revisit the convexity proofs for these functions, addressing the flaws in the existing arguments. We employ 

rigorous mathematical analysis, leveraging properties of symmetric matrices, eigenvalues, and principal minors [1, 3], to 

establish the correct conditions under which these functions are convex. Our approach not only corrects the errors in the 

previous works but also provides a more general framework for verifying the convexity of signomial functions in geometric 

programming. 

The remainder of this note is organized as follows. In Section 1, we review the basic concepts of signomial functions, 

convexity, and the properties of symmetric matrices that are essential for our analysis. In Section 2, we present our main 

results, providing correct proofs for the convexity of the two signomial functions. We also discuss the implications of our 

findings and their relevance to the broader field of geometric programming. Finally, we conclude with a discussion of the 

significance of our results and their potential impact on future research in optimization. 

By addressing these issues, we hope to contribute to the development of more robust and reliable optimization methods, 

ensuring that the theoretical foundations of geometric programming remain solid and trustworthy. 

2- MOTIVATION AND BASIC CONCEPTS 

A. Signomial Functions 

A signomial function is a linear combination of monomials of positive variables  x1, x2, …, xn . A monomial is a function 

of the form: 

𝑓(𝑥) = 𝑐𝑥1
𝛼1𝑥2

𝛼2 ⋯ 𝑥𝑛
𝛼𝑛 

where: c > 0  (positive coefficient), αi∈ 𝑅 for all i  (real exponents). 

A posynomial is a sum of monomials: 

𝑓(𝑥) = ∑  

𝑁

𝑘=1

𝑐𝑘𝑥1
𝛼1𝑘𝑥2

𝛼2𝑘 ⋯ 𝑥𝑛
𝛼𝑛𝑘 

where  ck > 0 and αik ∈ 𝑅. Signomials are more general than posynomials because they allow for negative coefficients. 

Geometric programming (GP) is a powerful framework for optimizing posynomial and signomial functions, which are 

widely used in engineering design, economics, and various other fields. A key aspect of solving geometric programs 

efficiently lies in understanding the convexity properties of the functions involved. Convexity ensures that local minima 

are also global minima, making optimization problems more tractable. 

In this exploration, we focus on two specific signomial functions within the context of geometric programming. Our goal 

is to correct and verify the convexity proofs for these functions. Signomial functions, unlike posynomials, can have negative 

coefficients, which introduces complexity in determining their convexity. Therefore, a meticulous approach is necessary 

to ensure the accuracy of convexity proofs. 

B. Understanding the Basics 

Before diving into the specific functions, it's essential to establish a foundational understanding of the key concepts 

involved: 

1. Geometric Programming (GP): A mathematical optimization technique where the objective function and 

constraints are posynomials or signomials. 

2. Posynomial: A function of the form  

𝑓(𝑥) = ∑  

𝑁

𝑘=1

𝑐𝑘𝑥1
𝛼1𝑘𝑥2

𝛼2𝑘 ⋯ 𝑥𝑛
𝛼𝑛𝑘 

where  ck > 0 and αik ∈ 𝑅,xi> 0. 

3. Signomial: Similar to a posynomial but allows for negative coefficients ck. 

4. Convex Function: A function where the line segment between any two points on the function's graph lies above 

or on the graph. Mathematically  𝑓 ( 𝜆 𝑥 + ( 1 − 𝜆 ) 𝑦 ) ≤ 𝜆 𝑓 ( 𝑥 ) + ( 1 − 𝜆 ) 𝑓 ( 𝑦 ) f(λx+(1−λ)y)≤λf(x)+(1−λ)f(y) 

for all 𝑥 , 𝑦 in the domain and 𝜆 ∈ [ 0 , 1 ] λ∈[0,1]. 

5. Convexity in GP: For geometric programs, convexity is often analyzed through the lens of logarithmic 

transformations, which can convert posynomials into convex functions under certain conditions. 

C. Problem Statement 

We are given two signomial functions for which initial convexity proofs have been attempted. However, these proofs 

contain errors or gaps that need to be addressed. Our task is to: 
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1. Identify the errors in the existing proofs. 

2. Provide corrected and rigorous convexity proofs for both functions. 

3. Discuss the implications of these corrections in the context of geometric programming. 

D. Function 1: Analysis and Correction 

Function Definition: 

f 1  (x)=x 1 2  x 2 −1  +x 2 3  −x 1  x 2 

Initial Proof Attempt: 

The initial proof claims that f1(x)is convex by showing that its Hessian matrix is positive semi-definite for all x1,x2>0. 

Identifying the Error: 

Upon reviewing the initial proof, it becomes apparent that the computation of the Hessian matrix was incorrect. 

Specifically, the cross-derivative terms were miscalculated, leading to an erroneous conclusion about the definiteness of 

the Hessian. 

Corrected Proof: 

1- Compute the Gradient: 

∇f₁(x) = [ [2x₁x₂⁻¹ - x₂], [-x₁²x₂⁻² + 3x₂² - x₁] ] 

2- Compute the Hessian Matrix: 

H{f₁}(x) = [ [∂²f₁/∂x₁², ∂²f₁/∂x₁∂x₂], [∂²f₁/∂x₂∂x₁, ∂²f₁/∂x₂²] ] = [ [2x₂⁻¹, -2x₁x₂⁻² - 1], [-2x₁x₂⁻² - 1, 2x₁²x₂⁻³ + 6x₂] ] 

3- Check for Positive Semi-Definiteness: 

A matrix is positive semi-definite if all its principal minors are non-negative. 

              - First Principal Minor: 2x₂⁻¹ ≥ 0 (True for x₂ > 0) 

              -Second Principal Minor (Determinant): 

det(H_{f₁}) = (2x₂⁻¹)(2x₁²x₂⁻³ + 6x₂) - (-2x₁x₂⁻² - 1)² 

              Simplifying: 

det(H_{f₁}) = 4x₁²x₂⁻⁴ + 12x₂⁻¹ - (4x₁²x₂⁻⁴ + 4x₁x₂⁻² + 1) = 12x₂⁻¹ - 4x₁x₂⁻² - 1 

              For the Hessian to be positive semi-definite, det(Hf1)≥0 

4- .Analyzing the Determinant: 

The expression 12x₂⁻¹ - 4x₁x₂⁻² - 1 is not necessarily non-negative for all x₁, x₂ > 0. For example, 

let x₁ = 1 and x₂ = 1: 

det(H_{f₁}) = 12(1)⁻¹ - 4(1)(1)⁻² - 1 = 12 - 4 - 1 = 7 ≥ 0 

However, let x₁ = 3 and x₂ = 1: 

det(H_{f₁}) = 12(1)⁻¹ - 4(3)(1)⁻² - 1 = 12 - 12 - 1 = -1 < 0 

Since the determinant can be negative, the Hessian is not positive semi-definite for all x₁, x₂ > 0. 

Conclusion for Function 1: 

The function f₁(x) is not convex over the domain x₁, x₂ > 0. The initial proof incorrectly asserted convexity due to a 

miscalculation in the Hessian matrix. 

E. Function 2: Analysis and Correction 

Function Definition: 

f₂(x) = x₁³x₂⁻² + x₁⁻¹x₂² - x₁x₂⁻¹ 

Initial Proof Attempt: 

The initial proof argues that f₂(x) is convex by demonstrating that its logarithmic transformation results in a convex 

function. 

Identifying the Error: 

The error in the initial proof lies in the assumption that the logarithmic transformation preserves convexity for signomial 

functions with negative coefficients, which is not generally true. 

Corrected Proof: 

1. Logarithmic Transformation: 

Let yᵢ = log(xᵢ), hence xᵢ = eʸⁱ. Substituting into f₂(x): 

f₂(eʸ) = e^(3y₁ - 2y₂) + e^(-y₁ + 2y₂) - e^(y₁ - y₂) 

Let g(y) = f₂(eʸ). 

2. Compute the Gradient of g(y): 

∇g(y) = [ 3e^(3y₁ - 2y₂) - e^(-y₁ + 2y₂) - e^(y₁ - y₂), 

          -2e^(3y₁ - 2y₂) + 2e^(-y₁ + 2y₂) + e^(y₁ - y₂) ] 

3. Compute the Hessian Matrix of g(y): 

Hg(y) = [ [∂²g/∂y₁², ∂²g/∂y₁∂y₂], [∂²g/∂y₂∂y₁, ∂²g/∂y₂²] ]= [ [9e^(3y₁ - 2y₂) + e^(-y₁ + 2y₂) - e^(y₁ - y₂), -6e^(3y₁ - 2y₂) - 2e^(-

y₁ + 2y₂) + e^(y₁ - y₂)], [-6e^(3y₁ - 2y₂) - 2e^(-y₁ + 2y₂) + e^(y₁ - y₂), 4e^(3y₁ - 2y₂) + 4e^(-y₁ + 2y₂) - e^(y₁ - y₂)] ] 
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4.  Check for Positive Semi-Definiteness: 

Similar to Function 1, we examine the principal minors of H_g(y). 

• First Principal Minor: 

9e^(3y₁ - 2y₂) + e^(-y₁ + 2y₂) - e^(y₁ - y₂) 

This term is not guaranteed to be non-negative for all y. For instance, if y₁ = 0 and y₂ = 0: 

9e⁰ + e⁰ - e⁰ = 9 + 1 - 1 = 9 ≥ 0 

However, if y₁ = 1 and y₂ = 2: 

9e^(3(1) - 2(2)) + e^(-1 + 2(2)) - e^(1 - 2) = 9e^(-1) + e³ - e^(-1) = 8e^(-1) + e³ 

This is positive, but without a general proof for all y, we cannot conclude convexity. 

• Second Principal Minor (Determinant): 

det(H_g) = (9e^(3y₁ - 2y₂) + e^(-y₁ + 2y₂) - e^(y₁ - y₂))(4e^(3y₁ - 2y₂) + 4e^(-y₁ + 2y₂) - e^(y₁ - y₂))- ( -6e^(3y₁ - 2y₂) - 2e^(-

y₁ + 2y₂) + e^(y₁ - y₂) )² 

This expression is complex and does not clearly indicate non-negativity for all y. 

5. Alternative Approach: 

Given the complexity of directly analyzing the Hessian, we consider specific cases to test convexity. 

• Case 1: Let y₁ = y₂ = 0: 

g(0, 0) = e⁰ + e⁰ - e⁰ = 1 + 1 - 1 = 1 

∇g(0, 0) = [3 - 1 - 1, -2 + 2 + 1] = [1, 1] 

H_g(0, 0) = [ [9 + 1 - 1, -6 - 2 + 1], [-6 - 2 + 1, 4 + 4 - 1] ] = [ [9, -7], [-7, 7] ] 

The determinant at this point: 

det(H_g(0, 0)) = (9)(7) - (-7)² = 63 - 49 = 14 ≥ 0 

Both principal minors are non-negative, indicating local convexity at this point. 

• Case 2: Let y₁ = 1, y₂ = 0: 

g(1, 0) = e³ + e⁻¹ - e¹ ≈ 20.0855 + 0.3679 - 2.7183 ≈ 17.7351 

∇g(1, 0) = [3e³ - e⁻¹ - e¹, -2e³ + 2e⁻¹ + e¹]  ≈ [3(20.0855) - 0.3679 - 2.7183, -2(20.0855) + 2(0.3679) + 2.7183] ≈[60.2565 - 

0.3679 - 2.7183, -40.171 + 0.7358 + 2.7183] ≈ [57.1703, -36.7169] 

H_g(1, 0) ≈ [ [9e³ + e⁻¹ - e¹, -6e³ - 2e⁻¹ + e¹],  [-6e³ - 2e⁻¹ + e¹, 4e³ + 4e⁻¹ - e¹] ] ≈ [ [180.7695 + 0.3679 - 2.7183, -120.513 - 

0.7358 + 2.7183], [-120.513 - 0.7358 + 2.7183, 80.342 + 1.4716 - 2.7183] ] ≈[[178.4191, -118.5305],[-118.5305, 79.0953]] 

The determinant at this point: 

det(H_g(1, 0)) ≈ (178.4191)(79.0953) - (-118.5305)² ≈ 14111.5 - 14049.5 ≈ 62 ≥ 0 

Again, both principal minors are non-negative, suggesting local convexity. 

• Case 3: Let y₁ = 0, y₂ = 1: 

g(0, 1) = e⁻² + e² - e⁻¹ ≈ 0.1353 + 7.3891 - 0.3679 ≈ 7.1565 

∇g(0, 1) = [3e⁻² - e² - e⁻¹, -2e⁻² + 2e² + e⁻¹]  ≈ [3(0.1353) - 7.3891 - 0.3679, -2(0.1353) + 2(7.3891) +0.3679] ≈ [0.4059 - 

7.3891 - 0.3679, -0.2706 + 14.7782 + 0.3679]≈ [-7.3511, 14.8755] 

H_g(0, 1) ≈ [ [9e⁻² + e² - e⁻¹, -6e⁻² - 2e² + e⁻¹],  [-6e⁻² - 2e² + e⁻¹, 4e⁻² + 4e² - e⁻¹] ] ≈ [ [9(0.1353) + 7.3891 - 0.3679, -

6(0.1353) - 2(7.3891) + 0.3679],  [-6(0.1353) - 2(7.3891) + 0.3679, 4(0.1353) + 4(7.3891) - 0.3679] ] ≈ [ [1.2177 + 7.3891 

- 0.3679, -0.8118 - 14.7782 + 0.3679],  [-0.8118 - 14.7782 + 0.3679, 0.5412 + 29.5564 - 0.3679] ] ≈[ [8.2389, -15.2221],  

[-15.2221, 29.7297] ]  

The determinant at this point: 

det(H,(0,1)) ~ (8.2389)(29.7297) — (15.2221)? ~ 244.9 — 231.7 = 13.2>0 

Both principal minors are non-negative, indicating local convexity. 

Conclusion for Function2: 

While specific cases suggest local convexity, without a general proof for all y, we cannot conclusively determine the 

convexity of f2(x) over its entire domain. The initial proof's reliance on the logarithmic transformation without 

considering the impact of negative coefficients led to an incorrect assertion of convexity. 

3. IMPLICATIONS IN GEOMETRIC PROGRAMMING  

The corrected analysis of these signomial functions has significant implications for geometric programming: 

1. Convexity Verification: It underscores the importance of meticulously verifying convexity, especially for 

signomial functions where negative coefficients can disrupt convexity properties. 

2. Optimization Feasibility: Non-convex functions complicate optimization, as local minima may not be global 

minima. This necessitates the use of more advanced optimization techniques or reformulations to convexify the 

problem. 
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3. Modeling Considerations: Engineers and practitioners must carefully model problems to ensure that the 

functions involved are convex or can be transformed into convex forms, facilitating efficient and reliable 

optimization. 

Final Answer: 

After a thorough analysis and correction of the initial proofs, we conclude the following: 

Function 1: f 1  (x)=x 1 2  x 2 −1  +x 2 3  −x 1  x 2 

• Convexity: Not convex over the domain x1,x2>0. 

• Reason: The Hessian matrix is not positive semi-definite for all positive x1 and x2. 

Function 2: f₂(x) = x₁³x₂⁻² + x₁⁻¹x₂² - x₁x₂⁻¹ 

• Convexity: Cannot be conclusively determined as convex over the entire domain based on the analysis. 

• Reason: While specific cases suggest local convexity, a general proof for all positive x1 and x2 is lacking, and the 

presence of negative coefficients complicates the convexity assessment. 

These findings highlight the necessity of rigorous convexity verification in geometric programming, particularly when 

dealing with signomial functions that include negative terms. Ensuring the convexity of such functions is crucial for 

the successful application of geometric programming techniques in optimization problems. 

4. MAIN RESULTS  

1. Function 1: f1(x)=x 1 2  x 2 −1  +x 2 3  −x 1  x 2 

• Result: f1(x) is not convex over the domain x1,x2>0. 

2. Function 2: f₂(x) = x₁³x₂⁻² + x₁⁻¹x₂² - x₁x₂⁻¹  

• Result: The convexity of f2(x) cannot be conclusively determined over the domain x1,x2>0 based on the 

analysis. 

4.1. Lemmas, Propositions, and Theorems 

1. Lemma 1: Hessian Matrix of a Twice-Differentiable Function 

• Statement: A twice-differentiable function f(x) is convex over a domain if and only if its Hessian matrix Hf

(x) is positive semi-definite for all xx in the domain. 

• Proof: This is a well-known result in convex analysis. A function is convex if and only if its second-order 

approximation (governed by the Hessian) is non-negative in all directions. For a matrix to be positive semi-

definite, all its principal minors must be non-negative. 

2. Proposition 1: Non-Convexity of f1(x) 

• Statement: The function f1(x)=x 1 2  x 2 −1  +x 2 3  −x 1  x 2 is not convex over x1,x2>0. 

• Proof: 

1. Compute the Hessian matrix Hf1(x): H_f(x) = [ 2x₁⁻¹ -2x₁x₂⁻² - 1 ] [-2x₁x₂⁻² - 1 2x₁²x₂⁻³ + 6x₂] 

2. Compute the determinant of Hf1(x): det(H_f) = (2x₁⁻¹)(2x₁²x₂⁻³ + 6x₂) - (-2x₁x₂⁻² - 1)² 

3. Simplifying: 

4. det(Hf1) = 12x₁⁻¹ - 4x₁x₂⁻² - 1 

5. Evaluate det(Hf1) at  x1=3, x2=1: 

              det(Hf1) = 12(1)⁻¹ - 4(3)(1)⁻² - 1 = 12 - 12 - 1 = -1 < 0 

6. Since the determinant is negative, Hf1(x) is not positive semi-definite for all x1,x2>0. By Lemma 1, f1(x) is 

not convex. 

Proposition 2: Indeterminate Convexity of f2(x). 

The convexity of the signomial function f₂(x) = x₁³x₂⁻² + x₁⁻¹x₂² - x₁x₂⁻¹ 

cannot be conclusively determined over the domain x1,x2>0. 

1. Proof 

1. Logarithmic Transformation: 

• Let yi=log xi , so xi=eyi. Substituting into f2(x), we obtain: 

g(y) = f₂(eʸ) - e³ʸ1⁻²ʸ2 + e⁻ʸ2⁺²ʸ1 - eʸ1⁻ʸ2 

• The function g(y) is the logarithmic transformation of f2(x) 

2. Gradient of g(y): 

• The gradient ∇g(y) is:  

7. ∇g(y) = [ 3e³ʸ1⁻²ʸ2 - e⁻ʸ1⁺²ʸ2 + eʸ⁻ʸ ] [-2e³ʸ1⁻²ʸ2 + 2e⁻ʸ1⁺²ʸ2 + eʸ1⁻ʸ2 ]. 

3- Hessian Matrix of g(y): 

Hg(y) = [∂²g/∂y₁² ∂²g/∂y₁∂y₂] [∂²g/∂y₂∂y₁ ∂²g/∂y₂² ]= [ 9e³ʸ¹⁻²ʸ² + e⁻ʸ¹⁺²ʸ² - eʸ¹⁻ʸ² -6e³ʸ¹⁻²ʸ² - 2e⁻ʸ¹⁺²ʸ² + eʸ¹⁻ʸ² ] [ -6e³ʸ¹⁻²ʸ² - 

2e⁻ʸ¹⁺²ʸ² + eʸ¹⁻ʸ² 4e³ʸ¹⁻²ʸ² + 4e⁻ʸ¹⁺²ʸ² - eʸ¹⁻ʸ² ] 

4- Positive Semi-Definiteness of Hg(y): 
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o For g(y) to be convex, Hg(y) must be positive semi-definite for all yy. This requires: 

▪ The first principal minor H11≥0. 

▪ The determinant det(Hg(y))≥0. 

5- Analysis of Specific Cases: 

• Case 1: y1=y2=0: 

Hg(0,0) = [ 9 + 1 - 1 -6 - 2 + 1 ] = [ 9 -7 ] [ -6 - 2 + 1 4 + 4 - 1 ] [ -7 7 ]. 

The determinant is: 

det(Hg(0,0))=(9)(7)−(−7)2=63−49=14≥0. 

Both principal minors are non-negative, indicating local convexity at this point. 

• Case 2: y1=0, y2=1: 

Hg(0,1)=〔
8.2389 −15.2221

−15.2221 29.7297
〕 

The determinant is: 

det(Hg(0,1))= (8.2389)(29.7297)−(−15.2221)2 ≈13.2≥0. 

Both principal minors are non-negative, indicating local convexity. 

6- General Case: 

• While the specific cases above suggest local convexity, the general expression for det(Hg(y)) is complex and 

does not guarantee non-negativity for all y. For example: 

det(Hg(y)) = (9e³ʸ¹⁻²ʸ² + e⁻ʸ¹⁺²ʸ² - eʸ¹⁻ʸ²)(4e³ʸ¹⁻²ʸ² + 4e⁻ʸ¹⁺²ʸ² - eʸ¹⁻ʸ²)- −(−6e3y1−2y
2
−2e−y1+2y

2+ey1−y2)2 

This expression does not simplify to a form that is clearly non-negative for all y. 

Conclusion:Since the convexity of g(y) (and thus f2(x)) cannot be conclusively determined for all yy, the convexity 

of f2(x) remains indeterminate over. 

Implications 

• The presence of negative coefficients in f2(x) complicates the convexity analysis, as the logarithmic transformation 

does not universally preserve convexity for signomial functions. 

• Further analysis or alternative methods (e.g., convex relaxations) may be required to determine the convexity 

of f2(x) conclusively. 

This completes the proof of Proposition 2. 

5. CONCLUSION  

The analysis of the two signomial functions,  f_1(x) = x1^2 x_2^{-1} + x_2^3 - x1 x2 and  f_2(x) = x1^3 x_2^{-2} + x1^{-

1} x_2^2 - x1 x_2^{-1} , within the context of geometric programming, has yielded the following key conclusions: 

1.Non-Convexity of f1(x) 

• The function f1(x) is not convex over the domain  x1, x2> 0 . 

• This result was established by computing the Hessian matrix of f1(x) and demonstrating that it is not positive 

semi-definite for all  x1, x2 > 0 . Specifically, the determinant of the Hessian was shown to be negative for certain 

values of  x1  and  x2 , violating the condition for convexity. 

 2. Indeterminate Convexity of f2(x)  

• The convexity of 2 cannot be conclusively determined over the domain  x1, x2 > 0 . 

• While specific cases of the logarithmic transformation  g(y) = f_2(e^y)  suggest local convexity, the general 

expression for the determinant of the Hessian matrix Hg(y)  is complex and does not guarantee non-negativity 

for all  y . As a result, the convexity of f2(x)remains uncertain. 

 3. Challenges in Analyzing Signomial Functions 

• The presence of negative coefficients in signomial functions introduces significant complexity in determining 

convexity. Unlike posynomials, which are inherently convex under logarithmic transformations, signomials 

require careful and case-specific analysis. 

• The logarithmic transformation, while useful, does not universally preserve convexity for signomial functions, 

necessitating rigorous verification of the Hessian matrix. 

 4. Implications for Geometric Programming 

• Optimization Feasibility: Non-convex functions, such as f1(x), complicate optimization problems, as local minima 

may not be global minima. This necessitates the use of advanced optimization techniques or reformulations to 

convexify the problem. 

• Modeling Considerations: Engineers and practitioners must carefully model problems to ensure that the functions 

involved are convex or can be transformed into convex forms. This is particularly important for signomial 

functions, where negative coefficients can disrupt convexity properties. 
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• Further Research: The indeterminate convexity of f2(x)highlights the need for further research into alternative 

methods for analyzing and optimizing signomial functions, such as convex relaxations or global optimization 

techniques. 

Final Remarks 

This work underscores the importance of rigorous convexity verification in geometric programming, particularly for 

signomial functions with negative coefficients. The corrected proofs for f1(x) and the indeterminate status of 

f2(x)demonstrate the challenges inherent in analyzing such functions and provide a foundation for future research and 

applications in optimization. By addressing these challenges, we can develop more robust and reliable methods for solving 

geometric programming problems in engineering, economics, and beyond. 
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