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A B S T R A C T  

This research introduces a new method to estimate Nonhomogeneous Poisson Processes (NHPP) 

parameters through integration of Modified Gompertz-Makeham Process (MGMP) with statistical 

methods and optimization techniques. The Modified Maximum Likelihood Estimator (MMLE) 

constitutes our proposed estimation solution because traditional Maximum Likelihood Estimation (MLE) 

proves inadequate when analyzing complex systems and precise parameter assessment particularly under 

conditions of low sample counts or nonlinear conditions. The method adds structural constraints together 

with supplementary information to the likelihood function to achieve enhanced inference accuracy. The 

highly non-linear likelihood equations require solution through the implementation of Particle Swarm 

Optimization (PSO) as a biologically based metaheuristic algorithm which shows excellence when 

dealing with challenging parameter spaces. The combination of MMLE with PSO results in a hybrid 

framework which demonstrates its performance against standard techniques through simulated data 

series and factory failure records taken from the Badush Cement Factory. The MMLE-PSO method 
proves its superior accuracy levels proven by tests utilizing RMSE, MSE, PRR and PP metrics. The study 

presents compelling evidence for the combination of statistical models with intelligent optimization 

methods which improves reliability studies and survival analytics and failure prediction. The research 

findings present statistical validity alongside computational feasibility which provides an effective 

parameter estimation methodology for changing stochastic processes. 
 

 

 

1. INTRODUCTION 

The Nonhomogeneous Poisson Process (NHPP) demonstrates a stochastic process type that counts events throughout time 

periods yet works with evolving event rates dependent on time duration. In contrast to Poisson processes with constant 

rates the Nonhomogeneous Poisson Process uses time-dependent intensity functions to determine how events appear 

worldwide. The time-dependent function (𝑡) serves as the intensity term in the model because it enables flexible 

descriptions of event rate changes throughout time periods. The intensity function requires modeling through techniques 

that combine parametric with non-parametric methods. Different event modeling scenarios demand various distribution 

types like Weibull distributions and exponential distributions and log-normal distributions and others that provide temporal 

dependence patterns [1], [2]. The NHPP has significant practical applications in multiple domains, including reliability 

engineering, finance, and telecommunications. In reliability engineering, for instance, the NHPP is used to model systems 

where the failure rate is not constant but instead changes over time due to aging, wear, or external factors. This allows for 

a more accurate representation of failure patterns compared to the assumption of constant failure rates in traditional models. 

Similarly, in finance and telecommunications, the NHPP is employed to model irregular event patterns such as transaction 

arrivals or call frequencies, where the event rate fluctuates in response to time-varying factors. In finance, the NHPP is 
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used to model the arrival rate of financial transactions or the occurrence of market events over time [3], [4]. In 

telecommunications, the NHPP is used to model the arrival rate of calls or messages in communication networks [5], [6]. 

One important property of the NHPP is that it satisfies the Markov property, which means that the future occurrence of 

events depends only on the current state and not on the past history of the process [7], [8]. This property makes the NHPP 

particularly useful for modeling complex systems and processes. Although, the time-varying nature of the NHPP and the 

complexity of the intensity function make the parameter estimation for the intensity function challenging, but various 

methods for estimating such parameters have been proposed; these includes Maximum Likelihood Estimation (MLE), 

Bayesian Inference, and Intelligent techniques such as Genetic Algorithms (GA) and Neural Networks [9] , [10]. 
Systems that have capabilities in software are a structured set of instructions (lines of code), which make these 

computational systems to execute some specific tasks. Today, software-based systems have become indispensable in all 

sectors in the 21st century with firms and individuals similarly relying on them. With a growing software complexity, the 

risk of defective failure causing catastrophic problems becomes higher. Serious consequences have been caused by software 

failures on many occasions, not only in regard to loss of data, but system malfunctioning, especially in critical areas like 

banking and digital finance. Therefore, before deployment, assessment of software reliability is necessary to mitigate these 

risks. Forecasting on software reliability means lower failure hours and lower costs of maintenance. Post-release reliable 

feedback from user helps us gain insights of how reliable our product currently is but it is not enough to help us with the 

proactive assessment. Software Reliability Growth Models (SRGMs) provide the systematic approach to estimate reliability 

trends in the testing phase instead of the designed or parametric models. Measurement of software quality today is a 

multidimensional problem but among all of these metrics, reliability is one of the best-known indicators of software 

robustness, as well as operational excellence [11]. 

The motivation behind developing the Modified Maximum Likelihood Estimation (MMLE) combined with Particle Swarm 

Optimization (PSO) stems from the limitations of traditional Maximum Likelihood Estimation (MLE), which can yield 

biased or imprecise estimates, particularly in small samples or complex distributions. MMLE addresses these issues by 

incorporating additional information or constraints into the likelihood function, enhancing accuracy. The integration of 

PSO provides flexibility in optimizing parameter spaces, resulting in improved performance for estimating parameters of 
the Gompertz-Make ham Process (MGMP). This approach is validated through comprehensive simulation studies and 

practical applications, such as analyzing operational data from a cement factory, underscoring its significance in fields like 

reliability analysis and survival modeling. 

 In, as of 2022, the researchers improved software reliability growth models (SRGMs), which could not take into account 

the phenomenon of the constant level of resource allocation. Since the testing intensity varies over time, the proposed 

models better represent reliability growth. Two benchmark failure data sets were used to evaluate their effectiveness and 

performance with a normalized distance ranking method using four comparison criteria. Simulation results were presented 

to show the fault prediction accuracy is better than those of conventional SRGMs, and indicates the model's potential in 

improving software testing and resource allocation strategies [10].  

The researchers propose three software reliability growth models (SRGMs) using a three-parameter generalized inflection 

S shaped (GISS) distribution as the fault reduction factor (FRF). Unlike traditional distributions, such as the probability 

function of the first output in the first order transfer function (FRF), GISS allows the FRF dynamics to be more easily 

modeled. Additionally, two models are designed for single release software, and one for multi release, with time lags 

between detection of fault and corruption accounted for. Posed on six single release and one multi release dataset, proposed 

models show that the proposed models do much better in the prediction of software reliability. Also, under a perfect 

debugging environment, development cost and optimal release times are determined [12].  

Moreover 2024, The researchers improved parameter estimation for Software Reliability Growth Models (SRGMs) by 
comparing four metaheuristics Algorithms-Grey Wolf Optimizer (GWO), Regenerative Genetic Algorithm (RGA), Sine-

Cosine Algorithm (SCA), and Gravitational Search Algorithm (GSA). Applied to three real-world failure datasets, the 

study found that RGA and GWO provided the most accurate and efficient parameter estimates. The results highlight the 

effectiveness of metaheuristic methods in enhancing software reliability assessment and failure prediction [14], [15].  

This paper organizes systematically to explain theoretical foundations and practical implementation of Modified Gompertz-

Makeham Process (MGMP) as part of Nonhomogeneous Poisson Processes (NHPP). The first part provides readers with a 

broad perspective on the problem description while highlighting the MGMP model's broad applicability across mortality 

modeling and reliability assessment domains. The paper explains the methodology through its use of MMLE estimator 

modifications and the incorporation of PSO for parameter estimation. A simulation study executes in multiple stages 

through data generation to assess the efficiency of the proposed estimation procedures. This section unites findings from 

simulation studies and industrial analysis of the Badush Cement Factory data which is illustrated through visual 

representations as well as statistical analysis. Subsequently the discussion frames the research findings by highlighting the 

methodological benefits and prospective results. This paper ends by summarizing the research achievements alongside 

future work possibilities to demonstrate the statistical process modeling significance of this study. 
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2. MODIFIED GOMPERTZ MAKEHAM PROCESS 
The number of events that occur during a period of time (0, 𝑡] tracking the Poisson distribution with a probability density 

function assuming that the Poisson process. {𝑋(𝑡), 𝑡 ≥ 0}  reflects an NHPP [16]:  

𝑝[𝑁(𝑡) = 𝑛] =
[𝜆(𝑡)]𝑛𝑒−𝑚(𝑡0)

𝑛!
 , 𝑛 = 1,2,3 

As the cumulative intensity function of the time rate of occurrences, m(t) represents the process parameter. It is described 

by the following formula: 

𝑚(𝑡) = ∫ 𝜆(𝑢) 𝑑𝑢
t

0
, 0 < 𝑡 < ∞                      

where 𝜆(𝑢) denotes the intensity function or time rate of occurrence. Following is a description of the Gompertz-Makeham 

process, which appears as a nonhomogeneous Poisson process with the time rate of occurrence: 

𝜆(𝑡) = 𝑎 + 𝑏𝑒(𝑐+𝑑)𝑡, 𝑡0, 𝑎, 𝑏, 𝑐, 𝑑 >  0     

Event occurrences within the Gompertzian-Makeham process have time logic rates controlled by the parameters 𝑎, 𝑏, and 

𝑐. Research into this specific process has produced different techniques for estimating the various parameters. Both 

theoretical and empirical research forms the basis for various approaches which estimate time-changing event rate patterns 

in this type of analysis.  

3. MODEL EVALUATION CRITERIA  

Fitness of the estimated parameters is assessed by Mean Squared Error (MSE), Predictive Power (PP), Predictive Ratio 

Risk (PRR) and Root Mean Squared Error (RMSE). Key criteria for comparing model performance and these four-

evaluation metrics are as it follows: 

• RMSE: is the mathematically, the RMSE is defined as the follows[17]: 

𝑅𝑀𝑆𝐸 =  √
∑ (𝛾�̂�−𝛾)2𝑄

𝑖=1

𝑄
                                                                                                            

• MSE: MSE is a quantitative metric used to evaluate the accuracy of predictive models by measuring the average 

squared difference between observed and predicted values. It is defined as follows [18]: 

𝑀𝑆𝐸 =  
1

𝑛
∑ (�̂�(𝑡𝑖) −  𝑦𝑖)2𝑛

𝑖=1   

Here, �̂�(𝑡𝑖) is the monitored numeral of noticed defects by time 𝑡𝑖and MVF at time 𝑡𝑖 is represented. As �̂�(𝑡𝑖). It 
is desirable if the value of MSE is smaller by the provided model. 

• Predictive Ratio Risk (PRR): PRR is a measure of deviation of the model’s predicted value from the actual data 

versus its deviation from the fitted curve. The lower PRR values indicate a better fit of the model to observed 

failure data which means that the model better describes the failure data [18]:  

𝑃𝑅𝑅 =  ∑ (
𝑤(𝑡𝑖)− 𝑦𝑖

𝑤(𝑡𝑖)
)

2
𝑛
𝑖=1        

• Predictive Power (PP): The predictive power is measured by the difference between the model's estimates and 

the actual observed data. 

      𝑃𝑃 =  ∑ (
𝑤(𝑡𝑖)− 𝑦𝑖

 𝑦𝑖
)

2
𝑛
𝑖=1                   

 

4. METHODOLOGY  

To estimate the parameters of this process, both modified maximum likelihood estimation (MLE) and the 

Particle Swarm Optimization (PSO) algorithm are employed, offering complementary approaches to 

parameter estimation. 

4.1 Modified Maximum Likelihood Estimation (MMLE) 

A typical statistical method for estimating parameters within a probability distribution using a given dataset is the Maximum 

Likelihood Estimator (MLE). Its goal is to find parameter values that maximize the likelihood function, which is a gauge 

of the likelihood of getting the observed data under various parameter configurations. However, in certain situations, MLE 

(2) 

(3) 

(1) 

(4a) 

(4b) 

(4c) 

(4d) 
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may yield inaccurate parameter estimates, particularly when the sample size is small or the distribution is complex. To 

address this limitation, modifications to the MLE approach can be employed to enhance the accuracy of the estimates[19], 

[20]. Modified Maximum Likelihood Estimator (MMLE) is one such variant of MLE that improves the precision of 

parameter estimates by incorporating additional information or constraints into the likelihood function. By modifying the 

likelihood function, MMLE takes advantage of the supplementary data or constraints available, leading to more refined 

estimates. This adjustment in the likelihood function can be beneficial in situations where the standard MLE may produce 

biased or imprecise results. The use of MMLE allows researchers to leverage relevant knowledge, prior information, or 

restrictions on the parameter space to refine the estimation process. By incorporating these supplementary factors, MMLE 
can overcome the limitations of the standard MLE and produce more accurate estimates, particularly in cases with limited 

data or complex distributions. In summary, the Modified Maximum Likelihood Estimator (MMLE) is a powerful technique 

that enhances the accuracy of parameter estimates by incorporating additional information or constraints into the likelihood 

function. This modification results in an improved likelihood function, leading to more precise parameter estimates, 

especially in situations where the standard MLE may yield less accurate results. Suppose {𝑋(𝑡), 𝑡 ≥ 0} represents a 

Nonhomogeneous Poisson Process (NHPP) with the time rate of occurrences determined by the equation (3). In this 

scenario, the collective probability function for the sequence of event occurrences (𝑡1, 𝑡2, … , 𝑡𝑛)within the interval (0 <
𝑡1 ≤ 𝑡2 ≤ ⋯ ≤  𝑡𝑛 ≤ 𝑡0) is expressed as follows:[21] 

𝑓𝑛(𝑡1, 𝑡2, … , 𝑡𝑛) = ∏ 𝜆(𝑡𝑖)e−𝑚(𝑡0)𝑛
i=1           

As a result, the formula for the cumulative function of the time rate of occurrence, a key variable in the Gompertz-Make 

ham process, is as follows: 

𝑚(𝑡) = ∫ 𝜆(𝑢) 𝑑𝑢

𝑡

0

 = ∫(𝑎 + 𝑏𝑒(𝑐+𝑑)𝑡) 𝑑𝑢

𝑡

0

 = 𝑎𝑡 +  
𝑏

𝑐 + 𝑑
(𝑒(𝑐+𝑑)𝑡 − 1)    

Thus, the Likelihood function for the Gompertz-Makeham process over the period (0, 𝑡] with the rate time 𝜆(𝑡) is:  

𝐿 = ∏(𝑎 + 𝑏𝑒(𝑐+𝑑)𝑡𝑖

𝑛

𝑖=1

)𝑒𝑎𝑡0+ 
𝑏

𝑐+𝑑
(𝑒(𝑐+𝑑)𝑡0−1)

 

The maximum likelihood estimator for 𝑎, 𝑏, 𝑐 can be estimated from formula (7), were 

𝑙𝑛 𝐿 = 𝑛 𝑙𝑛 𝑎 + 𝑛 𝑙𝑛 𝑏 + 𝑐 ∑ 𝑡𝑖 + 𝑛𝑎𝑡0 −
𝑛𝑎

𝑏
(𝑒𝑐𝑡0 − 1) 

The process of determining the derivative of the logarithm of the maximum likelihood function with respect to the 

parameter 𝑎 can be outlined as follows:  

 
∂ ln L

∂a
|

a=â
= 0 , 

�̂� =
1

𝑡0 +
1
𝑏 (𝑒(𝑐+𝑑)𝑡0 − 1)

 

To estimate the b parameter, we derive equation (8) for and equal it to zero, so we get:  

�̂� = �̂�(1 − 𝑒(𝑐+𝑑)𝑡0 ) 

To estimate the c parameter, we derive equation (8) for and equal it to zero, so we get:  
∂ ln L

∂c
=  ∑ 𝑡𝑖 −

𝑛𝑎𝑡0

𝑏
𝑒𝑐̂𝑡0,                                                                                      

𝑐̂ =  ln
𝑏

𝑛𝑎𝑡0
+ ∑ ln 𝑡𝑖       

These equations can be solved numerically using iterative methods such as the Newton-Raphson algorithm or the EM 

algorithm to obtain the estimates for 𝑎, 𝑏, and 𝑐 that maximize the likelihood function [21-23]. We noticed that solving the 

system of equations obtained from taking the derivatives of equation (7) with respect to 𝑎, 𝑏, and 𝑐 is not feasible using 

traditional methods due to the high degree of nonlinearity. Therefore, we propose a modified maximum likelihood method 

by incorporating one of the most significant artificial intelligence methods (PSO). 

4.2 Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a population-based and nature-inspired stochastic optimization technique utilized 

for solving diverse computational optimization problems. This method's inception stems from the concept of fostering 

social information exchange among individuals within a population. The crux of PSO lies in its elegant simplicity coupled 

with its formidable algorithmic strength a resilient search algorithm drawing inspiration from the intelligent and social 

conduct exhibited by various living organisms, ranging from swarms of insects like bees, wasps, and ants to collective 

assemblies observed in the natural world, such as flocks of birds or schools of fish. The algorithm has been built by 

abstracting the working mechanism of natural phenomenon based on the movement and intelligence of individuals 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
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(Swarms). Moreover, the algorithm simulates animal’s social behavior as they adapt a cooperative way to find food where 

each member in the swarms keeps changing the search pattern according to the learning experiences of its own and other 

members.  PSO was introduced by James Kindy and Russell Eberhart in 1995, they were working to develop a model to 

describe the social behavior of animals like flock of birds and fishes, etc.; they realized that their model is capable of doing 

optimization tasks, so they generated the concept of function-optimization by means of a particle swarm  and proposed a 

new optimizer called PSO; Since the introduction of this technique, researchers derived new versions aiming to different 

demands, published theoretical studies of the effects of the various parameters and proposed many variants of the algorithm 

and hence became the most useful and popular algorithm to solve various optimization problems in different fields of 
science and industry. Within the framework of PSO, a dynamic swarm, akin to a population, is composed of distinct 

particles that function as individual agents. These particles engage in communication, be it through direct or indirect means, 

utilizing search directions commonly referred to as gradients to navigate the optimization landscape effectively. Assuming 

that a solution space exists, each particle searches for an optimal solution in that space and then all particles come towards 

a certain point around the possible solution trying to reach the best possible solution in little iteration. This explains that 

each particle in the swarm has two basic characteristics: position and velocity, it moves in the space or space of the design 

then joins the mechanism and tries to reach the best location (in terms of the food source for the flock of birds or the value 

of the target function for a particular mathematical problem). Particles communicate information with respect to the 

positions that are good to each other and modify or update their individual positions and speeds based on the information 

received i.e., each particle is updating its position according to its previous experience and the experience of its neighbors. 

This means that the moving direction for a given particle in the swarm is based not only on what that particle thinks is the 

best direction, but also what the whole group assume it as the best, so it takes the feedback from both the local best and 

global best. As an example, In PSO, when a particle identifies a promising trajectory-such as a favorable path towards a 

food source-other particles within the swarm rapidly adopt this advantageous course, regardless of their initial distance 

from the group or cluster. This intrinsic cooperation mechanism results in swift convergence towards promising solutions. 

Hence, each individual particle in PSO is characterized by a triad of vector components [24]: 

1. The X-vector denotes the ongoing position (location) of the particle within the search space. 
2. The V-vector encapsulates the gradient (direction) the particle intends to traverse. 

3. The P-vector (P-best) records the coordinates of the particle's best-known solution thus far. 

Therefore, each particle has a velocity vector, position vector and the p-best, the best possible solution. PSO algorithm is 

initialized by a group of random particles each search for optimum value by updating generations (iterations); in each 

iteration every particle is updated by two best values one is the local best and the second is the global best. Then the fitness 

function (objective function) is defined which is the function used for optimization and then the fitness value for each 

particle is determined. The PSO method, which differs in terms of concept compared to traditional methods, is described 

below (Júnior, 2020); (Hussain et al., 2025 d)The PSO algorithm, which is a multi-agent parallel search technique, is used 

to maintain a swarm (group) of particles where each particle is considered as a potential solution in the swarm. All 

individuals fly through a multidimensional search space where each one is trying to adjust its position according to its own 

experience and that of neighbors. Suppose  𝑋𝑖
𝑡  denote the position vector and 𝑉𝑖

𝑡 the velocity vector of particle i in the 

multidimensional search space, i.e., in the search space and at time step t, the velocity and position of each particle are 

determined using the current velocity and the distance from 𝑃𝑏𝑒𝑠𝑡 to 𝑔𝑏𝑒𝑠𝑡as follows: 

𝑉𝑖
𝑡+1 =   ω𝑉𝑖

𝑡 +  𝑐1𝑟1( 𝑃𝑏𝑒𝑠𝑡 − 𝑋𝑖
𝑡) +  𝑐2𝑟2( 𝑔𝑏𝑒𝑠𝑡 − 𝑋𝑖

𝑡)   
𝑋𝑖

𝑡+1  =   𝑋𝑖
𝑡 +  𝑉𝑖

𝑡+1     

with  𝑋𝑖
0     ~   𝑈(𝑋𝑀𝑖𝑛 , 𝑋𝑀𝑎𝑥), 

𝑖. 𝑒.     𝑋𝑖
0  =  𝑋𝑀𝑖𝑛 +  𝑟𝑖  (𝑋𝑀𝑎𝑥 −  𝑋𝑀𝑖𝑛), 𝑟𝑖  ~   𝑈(0 , 1). 

Apart from the initial random positioning of particles, their velocities can also be set to zero initially, denoted as 𝑉𝑖
0 =

0. However, the parameter ω, a positive constant referred to as the inertia weight, takes on a pivotal role in steering local 
and global search dynamics. Accompanying this, the acceleration coefficients or learning factors, 𝑐1  𝑎𝑛𝑑 𝑐2 play a crucial 
role in fine-tuning each iteration. They govern the extent to which a particle can traverse in a single step 𝑐1 underscores an 
individual particle understands, prompting it to converge toward its own best-known position. On the other hand 𝑐2 the 
social or cooperative component signifies the collective wisdom of the swarm, propelling particles toward a global solution. 

The selection of these parameters 𝑐1, 𝑐2, and 𝜔,  carries substantial weight in influencing the PSO algorithm's optimization 
performance. Additionally,𝑟1 and 𝑟2  denote random numbers drawn from a uniform distribution 𝑈(0,1) , contributing to the 
diversity and exploration of the swarm's movement. 

In PSO, in order to evaluate the fitness function (the objective function) together with finding the personal best (best value 
of each particle) and global best (best value of particle in the entire swarm), all particles are initiated randomly and computed 
and then later a loop begins to identify an optimum solution. When a loop starts, the particle velocity is updated first from 
the personal and global bests and then each particle’s position is updated by the current velocity. Finally, the loop is ended 

(12) 

(13) 
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with a stopping criterion, which is set in advance [10], [27]. Hence, the fundamental steps encapsulating the PSO algorithm 
can be succinctly summarized as follows:  

1. Initialization of Positions: Initialize the positions of each particle by attributing them random values. 

2. Evaluation of Fitness: Evaluate the fitness function for each individual particle. 

3. Local Best Update: Update the local best if the newly encountered solution surpasses the previous one. 

4. Global Best Update: Update the global best if the newly found solution is better than the previously recorded global best.  

5. Velocity Calculation: Calculate the particle velocity employing Equation (12). 

6. Position Update: Update the particle's position using Equation (13). 

 7. Iteration Loop: Repeat the sequence of steps (2) through (6) iteratively until the predefined termination criteria are met. 

𝑉𝑗
(𝑖)

= 𝜃𝑉𝑗
(𝑖−1)

+ 𝐶1𝑟1 [𝑃best ,𝑗 − 𝑋𝑗
(𝑖−1)

] + 𝐶2𝑟2[𝐺𝑏𝑒𝑠𝑡,𝑗 − 𝑋𝑗
(𝑖−1)

]𝑗 = 1,2 … , 𝑁 

5 PARAMETER ESTIMATION FOR GMP  

In this section, we present two algorithms for estimating the parameters of the GMP using different approaches. GMP is a 
mathematical model commonly used in survival analysis and reliability studies. The two methods we discuss are the MMLE 
combined with the PSO algorithm, and the PSO algorithm used directly for parameter estimation. We describe each 
algorithm below: 

• Modified Maximum Likelihood Estimator with PSO (MMLE-PSO) 

The MMLE-PSO algorithm combines the MMLE approach with the PSO algorithm to estimate the parameters of the GMP. 
The MMLE incorporates additional information or constraints into the likelihood function to improve the accuracy of 
parameter estimation. By integrating the PSO algorithm, which is inspired by social behavior, the algorithm iteratively 
searches the parameter space to find the optimal parameter values that maximize the likelihood function. 

• PSO Algorithm for Parameter Estimation 

The second algorithm directly applies the PSO algorithm for estimating the parameters of the GMP. The PSO algorithm, 

based on swarm intelligence, allows particles to explore the parameter space and find the parameter values that optimize a 

fitness function. In this case, the fitness function is defined based on the likelihood of the observed data given the GMP 

parameters. The PSO algorithm iteratively updates the particle positions and velocities to search for the parameter values 

that provide the best fit to the observed data. Both algorithms offer distinct approaches to parameter estimation of the GMP. 

The MMLE-PSO algorithm combines the advantages of the MMLE method and the optimization capabilities of PSO, 

leveraging additional information and optimizing the likelihood function. The PSO algorithm directly explores the 

parameter space to find the optimal parameter values that maximize the fitness function. In the following sections, we 

provide a detailed explanation of each algorithm, including the steps involved, initialization of parameters and particles, 

update rules, and convergence criteria. We also compare the performance of both algorithms and discuss their strengths 

and limitations in estimating the parameters of the GMP. 

5.1 Algorithm (1): MMLE (MLE-PSO) Method 

Step 1:  Derive the likelihood function for the GMP based on the given data and model assumptions. 

Step 2:  Take the natural logarithm of the likelihood function obtained in step 1 to simplify the calculations. 

Step 3:  Formulate a system of equations by taking the derivatives of the logarithm of the likelihood function with respect 

to the parameters (a, b, c) of the MGMP model. 

Step 4:  Utilize the PSO algorithm to solve the system of equations obtained in step 3. 

Step 5:  Initialize the PSO algorithm parameters, including the population size (𝑁 =  50), maximum number of iterations 

(𝑖max = 100), and PSO constants such as acceleration coefficients (C1 = C2 = 1) and random values (r1 = r2 = 0.1). Set the 

minimum (𝜃𝑚𝑖𝑛  =  0.4) and maximum (𝜃𝑚𝑎𝑥  =  0.9) values for the inertial weight. 

Step 6:  Generate an initial population of particles with random positions and velocities within the parameter space. 

Step 7:  Evaluate the fitness function for each particle in the population, where the fitness function is defined as the negative 

logarithm of the likelihood function. 

Step 8:  Update the personal best positions and velocities for each particle based on the fitness function evaluation. 
Step 9:  Update the global best position and velocity for the entire population by considering the personal best positions and 

velocities of each particle. 

Step 10:  Update the positions and velocities of each particle using the PSO algorithm equations. 

(14) 
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Step 11:  Evaluate the fitness function for the new positions of the particles. 

Step 12:  If the stopping criterion is met (e.g., maximum number of iterations reached or convergence criteria fulfilled), 

return the best solution found. Otherwise, go back to step 8 and continue the iterations. 

5.2 Algorithm 2: PSO Method 

Step 1:  Set the quantity of particles to be (N=50) and the most iterations allowed 𝑖𝑚𝑎𝑥 = 100, the acceleration coefficients 

C1, C2 in which C1 =  C2 =  1, (𝑟1 = 𝑟2 = 0.1); Additionally, the inertial weight's lowest and maximum values are: 𝜃max =
0.9 and   𝜃min =0.4. 

Step 2: Set each particle's initial locations at random throughout the range using a uniform distribution. [0,1]. Each point 

indicates GMP parameter estimate . 

Step 3: Generate, from a uniform distribution, the initial velocities for each particle. 

Step 4: Assess the fitness function, which is the maximum percentage error (MPE), using the formula below:  
 

𝑀𝑃𝐸 = ∑1≤𝑖≤𝑛
𝑚𝑎𝑥  [|𝑆𝑖 − �̂�𝑗|/𝑆𝑖] 

where  

𝑆𝑖 =  ∑ 𝑋𝑗

𝑖

𝑗=1

, 𝑎𝑛𝑑 �̂�𝑖 =  ∑ 𝑋𝑗

𝑖

𝑗=1

 

Step 5: Determine the parameter estimator ̂  updating the speed for the process under investigation based on the output 

value of the function MPE (𝑉𝑖) The following equation states: 

𝑉𝑗
(𝑖) = 𝜃𝑉𝑗

(𝑖−1) + 𝐶1𝑟1[𝑃best ,𝑗 − 𝑋𝑗
(𝑖−1)] + 𝐶2𝑟2[𝐺𝑏𝑒𝑠𝑡,𝑗 − 𝑋𝑗

(𝑖−1)]𝑗 = 1,2 … , 𝑁 

Along with upgrading websites 𝑋𝑖 In light of the equation: 

𝑋𝑗
(𝑖) = 𝑋𝑗

(𝑖−1) + 𝑉𝑗
(𝑖); 𝑗 = 1,2, … , 𝑁 

Step 6:  Recurring Steps 4 - 5 until  𝑖𝑚𝑎𝑥 is reached. 
 

6 SIMULATION  

In this section, we conducted a comprehensive simulation study to compare two estimation methods for obtaining the best 
parameter estimates in the studied process. The simulation study comprises four stages, each designed to evaluate the 
accuracy and performance of the estimation methods. 

Stage 1: Generating Simulated Data 

  We generated a set of simulated data using the GMP distribution with known parameters. These simulated data points 
serve as the basis for comparing the accuracy of the two estimation methods. The sample size and parameter values 
were determined based on the characteristics of the studied process. To ensure reliable estimates, a sufficiently large 
sample size was used. 

Stage 2: Estimating Parameters Using MMLE (MLE-PSO) Algorithm 

  In this stage, we applied the Modified Maximum Likelihood Estimation (MMLE) method with the Particle Swarm 
Optimization (PSO) algorithm to estimate the parameters of the GGOP distribution. The algorithm was executed 
multiple times, recording the resultant parameter estimates. We calculated both the Mean Percentage Error (MPE) and 
Root Mean Squared Error (RMSE) values for each set of parameter estimates. 

Stage 3: Estimating Parameters Using PSO Algorithm Directly 

  In this stage, we directly applied the PSO algorithm to estimate the parameters of the GMP distribution. The algorithm 
was run multiple times, and the resultant parameter estimates were recorded. We calculated the RMSE values for each 

set of parameter estimates. 

Stage 4: Comparing Estimation Methods 

  In this stage, we compared the RMSE values obtained from the MMLE method and the PSO algorithm directly. The 
method with the lower RMSE value was selected as the best estimation method, as it indicates higher accuracy in 
parameter estimation. Through these simulation experiments, we aim to identify the most effective and accurate 
estimation method for the parameters of the modified Gompertz-Make ham Process. The selected method will provide 
reliable parameter estimates, which can be crucial for various applications in fields such as reliability analysis, survival 
modeling, and failure rate predictions. The results of this study will contribute to advancing our understanding and 
application of the GMP distribution. Overall, the simulation study provides researchers with a powerful tool to assess 

(15) 

(16) 

(17) 

(18) 
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and compare the performance of various estimation methods. This evaluation allows them to identify the most accurate 
and effective method for obtaining parameter estimates in the context of the modified Gompertz-Make ham Process 

(MGMP) distribution as shown in Table (1): 

 
TABLE I. SIMULATED RMSE COMPARISON OF MMLE AND PSO ESTIMATES FOR MODIFIED GOMPERTZ-MAKEHAM PROCESS 

PARAMETERS 

Parameters  Sample size Methods 𝑹𝑴𝑺𝑬(�̂�) 𝑹𝑴𝑺𝑬(�̂�) 𝑹𝑴𝑺𝑬(�̂�) 

 

{𝒂 = 𝟎. 𝟓; 𝒃 = 𝟎. 𝟔; 𝒄 = 𝟎. 𝟕} 

20 

MMLE 0.0843 0.1167 0.1062 

PSO 0.0965 0.1353 0.1375 

{𝒂 = 𝟎. 𝟔; 𝒃 = 𝟎. 𝟓; 𝒄 = 𝟎. 𝟕} 
MMLE 0.0664 0.1328 0.0310 

PSO 0.1096 0.1668 0.0505 

{𝒂 = 𝟎. 𝟔; 𝒃 = 𝟎. 𝟕; 𝒄 = 𝟎. 𝟓} 
MMLE 0.1339 0.1406 0.1020 

PSO 0.1549 0.2068 0.1185 

{𝒂 = 𝟎. 𝟓; 𝒃 = 𝟎. 𝟔; 𝒄 = 𝟎. 𝟕} 

50 

MMLE 0.0836 0.0382 0.0227 

PSO 0.0838 0.0530 0.0259 

{𝒂 = 𝟎. 𝟔; 𝒃 = 𝟎. 𝟓; 𝒄 = 𝟎. 𝟕} 
MMLE 0.0848 0.0665 0.0086 

PSO 0.0978 0.0671 0.0117 

{𝒂 = 𝟎. 𝟔; 𝒃 = 𝟎. 𝟕; 𝒄 = 𝟎. 𝟓} 
MMLE 0.0847 0.0948 0.0651 

PSO 0.0979 0.1572 0.1117 

{𝒂 = 𝟎. 𝟕; 𝒃 = 𝟎. 𝟓; 𝒄 = 𝟎. 𝟔} 

75 

MMLE 0.0547 0.0349 0.0241 

PSO 0.0879 0.0472 0.0012 

{𝒂 = 𝟎. 𝟐; 𝒃 = 𝟎. 𝟑; 𝒄 = 𝟎. 𝟒} 
MMLE 0.0647 0.0649 0.0341 

PSO 0.0690 0.0572 0.0017 

{𝒂 = 𝟎. 𝟒; 𝒃 = 𝟎. 𝟐; 𝒄 = 𝟎. 𝟑} 
MMLE 0.0747 0.0749 0.0441 

PSO 0.0879 0.0572 0.0107 

 

6.1 Results  

A summary of performance metrics for the MMLE and PSO estimation algorithms for the MGMP is presented here in 

Table 1. Most likely the table contains a row for the estimated parameter values and the corresponding Root Mean Squared 

Error (RMSE) at given sample size or simulation scenario. A comparison of these metrics shows that MMLE produces 
considerably smaller RMSE values than PSO in terms of accuracy and reliability of parameter estimation. In addition, the 

benefit of MMLE is highlighted with growing sample size as it shows it’s robust in the aspect of larger datasets. This is 

because in implementing MMLE, it is capable of enhancing performance by leveraging additional information and 

constraints in the likelihood function providing more accurate estimates even in the face of data complexities. Overall, the 

results set out in Table 1 confirm, in other word, the ability of MMLE to outperform PSO when contributing to the accuracy 

of the parameter estimation. Taken together, these findings support the continued usage MMLE for statistical modeling 

applications in particular within those applications which use the MGMP. 

7 APPLICATION WITH A REAL DATA  

To assess the practical utility of both methods, real-world data collected from the Badush Cement Factory was employed. 
The recently established Badush Cement Factory, located within Nineveh Governorate, holds immense significance as a 

pivotal unit of the General Cement Company in northern Iraq. It serves as a central hub for cement production, catering not 

only to the entire nation but specifically to Nineveh Governorate. The dataset encompasses consecutive operational periods 

represented in daily production figures, spanning from 1st April 2020 to 1st January 2022.Which represent 𝑋 =
 [3 8 2 4 1 1 2 3 1 1 1 1 3 2 3 1 1 1 2 3 5 6 5 2 1 1 4 1 4 3 1 3 1 1 7 2 5 1 2 1 1 3 3 1 6 1 2 3 3 1 3 2 1].  To ensure the 
suitability of the data for analysis, a goodness of fit test is imperative a process elucidated in the subsequent sections. 

7.1 Goodness of-fit tests for GMP with Estimated Parameter 

In statistical analysis, the goodness-of-fit test holds paramount significance as it aids in the selection of an appropriate 

distribution that effectively aligns with the given data. This test is particularly crucial for lifetime data, where classical 

assessments often rely on graphical techniques to unveil the congruity of the dataset in question. This section focuses on a 

graphic scrutiny of the dataset, aiming to ascertain its suitability for the Gompertz-Make ham function. To achieve this, the 

distribution of cumulative days of operational periods between two stops is plotted against the logarithmic times of the 

process. A distinctive linear distribution of these points signifies a fitting match between the data and the function governing 

the time rate of occurrence for a Non-Homogeneous Poisson Process (NHPP). By taking the natural logarithm of the 
cumulative function dictating the time rate of occurrence within the Gompertz-Make ham process, the subsequent equation 

is derived: 

(19) 
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𝑙𝑛[𝑚(𝑡)] = 𝑙𝑛 (
1

2𝛽2
) + 2 𝑙𝑛(𝑡) 

By using the programming language MATLAB\R2019b, Figure 1  was obtained. 

 

 
Fig. 1. P-P plot of the MGMP distribution with other estimated distribution for the first dataset and the goodness-of-fit test is shown. 

 

Figure 1, depicts the graphical distribution of cumulative days for operating periods and their corresponding occurrence 

times, presented on a logarithmic scale for the analyzed dataset. Notably, the scatter plot reveals a discernible linear pattern, 

suggesting a potential compatibility with modeling this data using the Gompertz-Make ham function. 

7.2 Estimation of the Rate of Occurrence of GMP: for Raw Material Mill Runtimes 

To assess the efficacy of both the MMLE and PSO methods in estimating the parameters of the Gompertz-Make ham 

Process under scrutiny, a comparative analysis with the conventional MLE is conducted. Real-world data comprising 

the count of days for operational periods and their corresponding occurrence times is employed. The dataset originates 

from the raw materials utilized in a laboratory affiliated with the newly established Badush Factory in Mosul, Iraq. 

The algorithm for parameter estimation was executed using the MATLAB/R2019b programming language. 

 

8. DISCUSSION OF RESULTS  

First, advantages and disadvantages of this combination of the Modified Maximum Likelihood Estimation (MMLE) and 

Particle Swarm Optimization (PSO) as a method to estimate parameters of the Modified Gompertz-Make ham Process 

(MGMP) are proposed. 

8.1. Advantages 

• Accurate Parameter Estimates: One advantage of the MMLE scheme is that it yields more accurate estimates 

of the parameters, particularly in complex distributions and little number of observations. On incorporating 

constraints and also some extra knowledge in the likelihood function, MMLE helps to solve the problems of the 

traditional MLE so that the estimates become a lot more refined and better suit the original data.  

• Robustness: This methodology has a high robustness on parameter estimation when various scenarios are 

considered. As a powerful component of optimization, PSO will make it possible to navigate in the complex 

parameter space. This is because, therefore, such parameters can avoid local optima in difficult datasets, leading 

to the best parameters are located even in those cases. 

• Versatility: MMME and PSO provide versatility, which enables flexibility in applying the approach. This method 

could be further extended to different fields of reliability analysis, survival modeling and risk evaluation, giving 

a wide spread of application for this method. 

• In Large Datasets: It can be observed in the results that when dealing with large datasets, MMLE-PSO is actually 

very efficient. The design incorporates the strengths of both methods to maintain both efficient and accurate 

nature, which is important for practical application of industries that rely on large scale data. 
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8.2.  Disadvantages 

• Computational complexity: While accuracy of the MMLE-PSO method is higher than that of 

the MMLE method due to evaluating the likelihood function (and, hence, the contours) and 

PSO varying together with it, may result in computational complexity. This is not feasible for 

real time applications where the data sizes or complexity of the model is too large; it means 

that more intensive and time-consuming computations need to be carried out on the datasets 

of large sizes or complex models. 

• PSO performance is susceptible to initial parameter and settings: swarm size and inertia 

weights. However, parameters chosen with care may slow down convergence and incur 

suboptimal optimization which may hamper the outcomes of the estimation. 

• Implementation Challenges: The dual nature of the methodology implies that implementation 
of this MMLE-PSO combination may introduce burden in the coding complexity as well as in 

the debugging. However, it is necessary for the use of this approach that researchers have 

sound knowledge of both of statistical theory and heuristic optimization techniques. 

To summarize, the advantage of the presented MMLE-PSO over the conventional PSO is manifest in the 

enhanced accuracy, robustness, systematisms and efficiency of the latter. Therefore, we think that this 

methodology can provide a promising solution for parameter estimation. Specific considerations need to 

be made in regards to its computational demands, settings sensitivity, implementation challenges as well 

as tradeoffs that do not translate to empowerment in the heuristic’s optimization techniques. It is 

important to balance these factors in order to maximize the utility of this methodology in the applied 

statistical research. 

In order to facilitate a comprehensive comparison of the employed parameter estimation methods for the modified GMP, 

the assessment criterion was based on the Model evaluation criteria from section (5). The designed program, coded in 

MATLAB/R2019b, facilitated the calculation of the projected count of consecutive operational periods for the raw 

materials mill at the new Badush Cement Factory over the designated study period. By employing this program, the RMSE 
was computed to gauge the dissimilarity between actual and estimated values of the average duration of plant shutdowns. 

These outcomes are synthesized in Table 2 below. 

TABLE  II. VALUES FOR METHODS USED TO ESTIMATE MGMP PARAMETER  

Methods RMSE MSE PRR PP 

MMLE 0.0689 0.3210 0.080 0.053 

PSO 0.1034 0.4322 0.080 0.075 

 

8.3. Results 

A comparative evaluation of parameter estimation methods appears in Table 2 where MMLE with PSO demonstrates 

enhanced performance compared to MLE through an assessment of parameter estimates together with MSE, RMSE, PRR, 

and PP. The results produced for the Badush Cement Factory dataset include parameter values along with Mean Square Error 

(MSE) and Root Mean Squared Error (RMSE) statistics as well as Predictive Ratio Risk (PRR) and Predictive Power (PP) 

scores. MMLE-PSO produces reliable parameter estimations by obtaining results that align with actual values and exhibit 

reduced MSE and RMSE values which verifies its accuracy and robustness. MMLE-PSO demonstrates superior performance 

than MLE in PRR and PP metrics because it effectively identifies complex distribution attributes. MMLE-PSO provides 
enhanced reliability when dealing with datasets containing few observations while it successfully maps through diverse 

parameter domains. The efficient performance of MMLE-PSO confirms the excellent integration between the MMLE 

method and PSO optimization technique for modeling nonhomogeneous event occurrences. The obtained results demonstrate 

how artificial techniques can support reliability engineering together with operational management practices. 
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Fig. 2. Estimates of the cumulative time rate of power outages for generation units compared to real data 

 

The efficiency of the MMLE estimation method compared to the PSO in estimating the time rate functions of the MGMP 

is demonstrated in Figure 2, where the estimated time rate function using the MMLE method is closer to the real data 

compared to the PSO method. 

9. CONCLUSIONS AND FUTURE WORK  

The authors propose a new parameter estimation method for Nonhomogeneous Poisson Processes based on a fusion of 

Modified Gompertz-Makeham Process with a Modified Maximum Likelihood Estimator followed by Particle Swarm 

Optimization enhancement. The combination approach solves the weaknesses of standard MLE because it integrates 

supplemental input together with swarm-inspired search capabilities to handle limitations of MLE in small datasets and 

hard-to-analyze likelihood models. The MMLE-PSO method performs exceptionally well in both simulation experiments 

and deployments using operational Badush Cement Factory data according to RMSE, MSE, PRR, and PP measurement 

criteria. The structural approach provides an efficient and precise statistical analysis when applied to reliability 

investigations and predictive maintenance applications of dynamic systems. Researchers should investigate model 

generalization to alternative flexible distributions while creating integrated Bayesian solutions and designing hybrid 

metaheuristic methods for industrial real-time implementation and expanding the approach to handle complex multivariate 

or spatial-temporal datasets. The developed work provides a substantial advancement to statistical stochastic process 

modeling methods and creates foundations for theoretical and practical study development. 
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