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A B S T R A C T  
 

This study is concerned with reviewing the different expansions of the two parameters Weibull 
distribution families, which are considered popular probability distributions used in many fields, such 
as reliability analysis, systems engineering, and fault studies. The research aims to provide a 
comprehensive review of the scientific literature related to these expansions, focusing on the theoretical 
frameworks, practical applications, and limitations facing each type of these expansions. The main 
points of this study are summarized in a mathematical review of methods by which the expansions 
were developed to improve their suitability to various data and discussing the improvements that were 
added to address the problems that arise when applying the traditional version of the distribution. 
Integrating these expansions with the exponential distribution as a baseline to discuss the performance 
of each expansion, a Monte Carlo simulation was presented for each expansion and choose the best 
expansion using some criteria this is to calculate the efficient of estimating parameters for each 
expansion. As for the practical application on real data, these expansions were applied to real data  to 
decide the issues of performance accuracy in practical application, and compare the performance 
between different expansions using measures such as statistical accuracy and ease of interpretation. 

 

 

 

1. INTRODUCTION 

Two parameter Weibull distribution is one the most important probability distributions used applied statistics, due to its 

great flexibility and ability to represent many natural and industrial phenomena. This distribution characterized by its 

ability to describe data related to failure time, reliability analysis, and failure modeling, which makes it of great value in 

fields such as engineering, medicine, and the environment. However, the traditional version of this distribution may face 

limitations in representing data with complex or multiple patterns. 

Over the past decades, many extensions to the Weibull distribution have been developed to improve its flexibility and 

ability to handle divers data. These extensions focus on introducing additional or combining it with other distributions to 

achieve a better fit. This review aims to comprehensively review these extensions, highlight the most important theoretical 

and practical contributions, and analyze p previous literature to understand the strengths and weaknesses of each extension. 

The CDF and PDF functions express the two parameter Weibull distribution respectively as forms [1]: 

 

𝑓(𝑥, 𝛼, 𝛽) = 𝛼𝛽𝑥𝛽−1𝑒−𝛼𝑥𝛽
                                                                                (1) 

𝑓(𝑥, 𝛼, 𝛽) = 𝛼𝛽𝑥𝛽−1𝑒−𝛼𝑥𝛽
                                                                                (2) 

These function are shown in the following figures: 
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(a) 

 

(b) 
Fig. 1. plot (a) PDF and (b) CDF functions for Weibull distribution with different values for 𝛼, and 𝛽 

And the survival function for Weibull distribution has a form [2]: 

𝑆(𝑥, 𝛼, 𝛽) = 1 − 𝐹(𝑥, 𝛼, 𝛽) = 𝑒−𝛼𝑥𝛽
                                                                         (3) 

While the hazard function for Weibull distribution has a form [3]:  

ℎ(𝑥, 𝛼, 𝛽) =
𝑓(𝑥, 𝛼, 𝛽)

𝑆(𝑥, 𝛼, 𝛽)
= 𝛼𝛽𝑥𝛽−1                                                                             (4) 

These function (survival and hazard) are shown in the following figures: 

 

(a) 
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(b) 
Fig. 2. plot (a) survival and (b) hazard functions for Weibull distribution with different values for 𝛼, and 𝛽 

Despite the great advances in expansions, there are clear gaps that can be highlighted: 

• Many expansions add additional parameters, which increases the complexity of models and makes it 
difficult to estimate the parameters in practice. 

• Most studies focus on theoretical aspects without providing practical applications that demonstrate the 
performance of the expansions on real world data. 

• Complex expansions make it difficult to interpret statistical parameters and their meanings in in real 
world contexts. 

• There is lack of application of these expansions in new fields such as climate change analysis or 
biological sciences. 

Where a large number of extensions based on Weibull distribution were presented or considered as a baseline, which can 

be viewed in the sources [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], 

[23], [24], [25], [26].  

This study highlights the importance of continuous expansion of Weibull distributions to keep pace with developments in 

data analysis. It also highlights how these expansions can address the shortcomings of traditional distribution, making 

them powerful tools modern statistical analysis. 

2. SOME FAMILIES BASED ON WEIBULL DISTRIBUTION  

2.1 Weibull-X family 

This family was presented by Alzaatreh in 2014 [9], who relied on T-X method in methodology to find it [27]. This 

family has the CDF and PDF functions, respectively, as shown in the following form: 

𝐹(𝑥, 𝛼, 𝛽, 𝜀) = 1 − 𝑒
−{− log(

1−𝐹(𝑥,𝜀)

𝛼
)}

𝛽

                                                                         (5) 

𝑓(𝑥, 𝛼, 𝛽, 𝜀) =
𝛽𝑓(𝑥, 𝜀)

𝛼{1 − 𝐹(𝑥, 𝜀)}
{− log (

1 − 𝐹(𝑥, 𝜀)

𝛼
)}

𝛽−1

𝑒
−{− log(

1−𝐹(𝑥,𝜀)

𝛼
)}

𝛽

                                          (6) 

Where 𝐹(𝑥, 𝜀) and 𝑓(𝑥, 𝜀) are CDF and PDF for any baseline distribution 

For ease of reference, this family will be called Weibull-Type1(WT1). This family is characterized by flexibility in 

application, so to know flexibility and efficiency of WT1, the exponential distribution is replaced as a search direction for 

the family namely (WT1E) distribution as follows:  

𝐹𝑊𝑇1𝐸 (𝑥, 𝛼, 𝛽, 𝜆) = 1 − 𝑒
−{− log(

𝑒−𝜆𝑥

𝛼
)}

𝛽

                                                                            (7) 

𝑓
𝑊𝑇1𝐸

(𝑥, 𝛼, 𝛽, 𝜆) =
𝛽𝜆

𝛼
{− log (

𝑒−𝜆𝑥

𝛼
)}

𝛽−1

𝑒
−{− log(

𝑒−𝜆𝑥

𝛼
)}

𝛽

                                                            (8) 

These function are shown in the following figures: 
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Fig..3. plot CDF and PDF functions for WT1E distribution with different values for 𝛼, 𝛽, and 𝜆  

2.2 Weibull-G family 

This family was presented by Bourguignon et al. in 2014 [17], who relied on T-X method by same way in WT1 family 

but with different upper limitation for integral. This family has the CDF and PDF functions, respectively, as shown in the 

following form: 
 

𝐹(𝑥, 𝛼, 𝛽, 𝜀) = 1 − 𝑒
−𝛼{

𝐹(𝑥,𝜀)
1−𝐹(𝑥,𝜀)

}
𝛽

 
(1) 

 
𝑓(𝑥, 𝛼, 𝛽, 𝜀) =

𝛼𝛽𝑓(𝑥, 𝜀)𝐹𝛽−1(𝑥, 𝜀)

{1 − 𝐹(𝑥, 𝜀)}𝛽+1
𝑒

−{− log(
1−𝐹(𝑥,𝜀)

𝛼
)}

𝛽

 (2) 

Where 𝐹(𝑥, 𝜀) and 𝑓(𝑥, 𝜀) are CDF and PDF for any baseline distribution 
For ease of reference, this family will be called Weibull-Type2 (WT2) family. The main motivation for generating WT2 

family in hope that they will yield better "t" in certain practical applications. Many statistical properties of WT2 have 
been studied, the exponential distribution is replaced as a search direction for the family namely (WT2E) distribution as 

follows:  

𝐹𝑊𝑇2𝐸(𝑥, 𝛼, 𝛽, 𝜆) = 1 − 𝑒−𝛼{𝑒𝜆𝑥−1}
𝛽

                                                                          (11) 

𝑓
𝑊𝑇2𝐸

(𝑥, 𝛼, 𝛽, 𝜆) =
𝛼𝛽𝜆(1 − 𝑒−𝜆𝑥)𝛽−1

𝑒−𝛽𝜆𝑥
𝑒−𝛼{𝑒𝜆𝑥−1}

𝛽

                                                            (12) 

These function are shown in the following figures: 
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Fig.4.  plot CDF and PDF functions for WT2E distribution with different values for 𝛼, 𝛽, and 𝜆 

  

2.3 Generalized Weibull (GW) family 

This family was presented by Cordeiro et al. in 2015 [13], who relied on T-X method by same way in WT1 family but 

with upper limitation is 𝑊(𝐺) = − log(1 − 𝐹(𝑥, 𝜀)) for integral. This family has the CDF and PDF functions, 

respectively, as shown in the following form: 

𝐹(𝑥, 𝛼, 𝛽, 𝜀) = 1 − 𝑒−𝛼{− log(1−𝐹(𝑥,𝜀))}
𝛽

                                                             (13) 

𝑓(𝑥, 𝛼, 𝛽, 𝜀) =
𝛼𝛽𝑓(𝑥, 𝜀)

1 − 𝐹(𝑥, 𝜀)
{− log(1 − 𝐹(𝑥, 𝜀))}

𝛽−1
𝑒−𝛼{− log(1−𝐹(𝑥,𝜀))}

𝛽

                                           (14) 

Where 𝐹(𝑥, 𝜀) and 𝑓(𝑥, 𝜀) are CDF and PDF for any baseline distribution 

For ease of reference, this family will be called Weibull-Type3 (WT3) family. The main motivation for generating WT3 

family is to provide a comprehensive treatment of general mathematical properties including quantum and generating 

functions, ordinary and incomplete moments, and other properties. The family also ensure that more continuous 

distribution are provided, the exponential distribution is replaced as a search direction for the family namely (WT3E) 

distribution as follows:  

𝐹𝑊𝑇3𝐸(𝑥, 𝛼, 𝛽, 𝜆) = 1 − 𝑒−𝛼{− log(𝑒−𝜆𝑥)}
𝛽

                                                                     (15) 

𝑓𝑊𝑇3𝐸 (𝑥, 𝛼, 𝛽, 𝜆) = 𝛼𝛽𝜆{− log(𝑒−𝜆𝑥)}
𝛽−1

𝑒−𝛼{− log(𝑒−𝜆𝑥)}
𝛽

                                                      (16) 

These function are shown in the following figures: 

 

 

Fig..5. plot CDF and PDF functions for WT3E distribution with different values for 𝛼, 𝛽, and 𝜆 
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2.4 New Weibull-G (NWG) family 

This family was presented by Tahir et al. in 2015 [13], who relied on T-X method by same way in WT3 family but with 

upper limitation is 𝑊(𝐺) = − log(𝐹(𝑥, 𝜀)) for integral and modification of the basic function for the Weibull 

distribution. This family has the CDF and PDF functions, respectively, as shown in the following form:\ 

𝐹(𝑥, 𝛼, 𝛽, 𝜀) = 𝑒−𝛼{− log(𝐹(𝑥,𝜀))}
𝛽

                                                                        (17) 

𝑓(𝑥, 𝛼, 𝛽, 𝜀) =
𝛼𝛽𝑓(𝑥, 𝜀)

𝐹(𝑥, 𝜀)
{− log(𝐹(𝑥, 𝜀))}

𝛽−1
𝑒−𝛼{− log(𝐹(𝑥,𝜀))}

𝛽

                                                 (18) 

Where 𝐹(𝑥, 𝜀) and 𝑓(𝑥, 𝜀) are CDF and PDF for any baseline distribution 
For ease of reference, this family will be called Weibull-Type4 (WT4) family. The family's density function is 

symmetrical, left-skewed, right-skewed, bathtub-shaped, or inverted J-shaped, and has increasing and decreasing risk 

rate, the exponential distribution is replaced as a search direction for the family namely (WT4E) distribution as follows:  

𝐹𝑊𝑇4𝐸 (𝑥, 𝛼, 𝛽, 𝜆) = 1 − 𝑒−𝛼{− log(1−𝑒−𝜆𝑥)}
𝛽

                                                                (19) 

𝑓𝑊𝑇4𝐸 (𝑥, 𝛼, 𝛽, 𝜆) =
𝛼𝛽𝜆𝑒−𝜆𝑥

1 − 𝑒−𝜆𝑥
{− log(1 − 𝑒−𝜆𝑥)}

𝛽−1
𝑒−𝛼{− log(1−𝑒−𝜆𝑥)}

𝛽

                                             (20) 

These function are shown in the following figures: 

 

 

Fig..6. plot CDF and PDF functions for WT4E distribution with different values for 𝛼, 𝛽, and 𝜆 

  

2.5 New Weibull-G (NWG) family 

This family was presented by BILAL et al. [10], who relied on T-X method by same upper limitation in WT3 family but 

and modification of parameter 𝛼. This family has the CDF and PDF functions, respectively, as shown in the following 

form: 

𝐹(𝑥, 𝛼, 𝛽, 𝜀) = 1 − 𝑒−𝛼−𝛽{− log(1−𝐹(𝑥,𝜀))}
𝛽

                                                              (21) 

𝑓(𝑥, 𝛼, 𝛽, 𝜀) =
𝛼−𝛽𝛽𝑓(𝑥, 𝜀)

1 − 𝐹(𝑥, 𝜀)
{− log(1 − 𝐹(𝑥, 𝜀))}

𝛽−1
𝑒−𝛼−𝛽{− log(1−𝐹(𝑥,𝜀))}

𝛽

                                      (22) 

Where 𝐹(𝑥, 𝜀) and 𝑓(𝑥, 𝜀) are CDF and PDF for any baseline distribution 

For ease of reference, this family will be called Weibull-Type5 (WT5) family. The introduction of WT5 is justified the 

compatibility of the newly developed class with its application in the field of quality control, the modified thing about the 

WT3 is addition of inverse power of 𝛽 to the parameter 𝛼, which in turn more flexibility to WT5, the exponential 

distribution is replaced as a search direction for the family namely (WT6E) distribution as follows:  



 

 

67 Noori et al, Babylonian Journal of Mathematics Vol. 2025, 61–87 

𝐹𝑊𝑇5𝐸 (𝑥, 𝛼, 𝛽, 𝜆) = 1 − 𝑒−𝛼−𝛽{− log(𝑒−𝜆𝑥)}
𝛽

                                                                  (23) 

𝑓𝑊𝑇5𝐸 (𝑥, 𝛼, 𝛽, 𝜆) = 𝛼−𝛽𝛽𝜆{− log(𝑒−𝜆𝑥)}
𝛽−1

𝑒−𝛼−𝛽{− log(𝑒−𝜆𝑥)}
𝛽

                                            (24) 
These function are shown in the following figures: 

 

 

Fig.7. plot CDF and PDF functions for WT5E distribution with different values for 𝛼, 𝛽, and 𝜆  

2.6 Truncated Weibull-G(TWG) family 

This family was presented by Najarzadegan et al. in 2017 [15], who relied on truncated Weibull-G family by Weibull 

inserting the truncated Weibull distribution with support [0,1] . This family has the CDF and PDF functions, respectively, 

as shown in the following form: 

𝐹(𝑥, 𝛼, 𝛽, 𝜀) =
1 − 𝑒−𝛼{𝐹(𝑥,𝜀)}𝛽

1 − 𝑒−𝛼
                                                                              (25) 

𝑓(𝑥, 𝛼, 𝛽, 𝜀) =
𝛼. 𝛽. 𝑓(𝑥, 𝜀). {𝐹(𝑥, 𝜀)}𝛽−1. 𝑒−𝛼{𝐹(𝑥,𝜀)}𝛽

1 − 𝑒−𝛼
                                                        (26) 

Where 𝐹(𝑥, 𝜀) and 𝑓(𝑥, 𝜀) are CDF and PDF for any baseline distribution 

For ease of reference, this family will be called Weibull-Type6 (WT6) family. The motivation for WT6 to introduce a 

new family of distribution as an alternative  to Beta-G distribution with a flexible risk profile and greater reliability, the 

exponential distribution is replaced as a search direction for the family namely (WT6E) distribution as follows:  

𝐹𝑊𝑇6𝐸(𝑥, 𝛼, 𝛽, 𝜆) =
1 − 𝑒−𝛼{1−𝑒−𝜆𝑥}

𝛽

1 − 𝑒−𝛼
                                                                         (27) 

𝑓𝑊𝑇6𝐸 (𝑥, 𝛼, 𝛽, 𝜆) =
𝛼. 𝛽. 𝜆𝑒−𝜆𝑥 . {1 − 𝑒−𝜆𝑥}

𝛽−1
. 𝑒−𝛼{1−𝑒−𝜆𝑥}

𝛽

1 − 𝑒−𝛼
                                                           (28) 

These function are shown in the following figures: 
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Fig.8. plot CDF and PDF functions for WT6E distribution with different values for 𝛼, 𝛽, and 𝜆  

2.7 Inverse Weibull-G (IWG) family 

This family was presented by Hassan and Nassr in 2018 [8], who relied on Inverse Weibull distribution, T-X method and 

odd function for upper limitation for integral 𝑊(𝐺) =
𝐹(𝑥,𝜀)

1−𝐹(𝑥,𝜀)
 . This family has the CDF and PDF functions, 

respectively, as shown in the following form: 

𝐹(𝑥, 𝛼, 𝛽, 𝜀) = 𝑒
−𝛼𝛽{

𝐹(𝑥,𝜀)

1−𝐹(𝑥,𝜀)
}
−𝛽

                                                                            (29) 

𝑓(𝑥, 𝛼, 𝛽, 𝜀) =
𝛼𝛽 . 𝛽. 𝑓(𝑥, 𝜀). {𝐹(𝑥, 𝜀)}−𝛽−1

{1 − 𝐹(𝑥, 𝜀)}−𝛽+1
𝑒

−𝛼𝛽{
𝐹(𝑥,𝜀)

1−𝐹(𝑥,𝜀)
}
−𝛽

                                                (30) 

Where 𝐹(𝑥, 𝜀) and 𝑓(𝑥, 𝜀) are CDF and PDF for any baseline distribution 

For ease of reference, this family will be called Weibull-Type7 (WT7) family. The motivation for WT7 with that it will 

attract a wider application in some area, the exponential distribution is replaced as a search direction for the family 

namely (WT7E) distribution as follows:  

𝐹𝑊𝑇7𝐸(𝑥, 𝛼, 𝛽, 𝜆) = 𝑒
−𝛼𝛽{

1−𝑒−𝜆𝑥

𝑒−𝜆𝑥
}

−𝛽

                                                                  (31) 

𝑓𝑊𝑇7𝐸 (𝑥, 𝛼, 𝛽, 𝜆) =
𝛼𝛽 . 𝛽. 𝜆. {1 − 𝑒−𝜆𝑥}

−𝛽−1

𝑒𝛽𝜆𝑥
𝑒

−𝛼𝛽{
1−𝑒−𝜆𝑥

𝑒−𝜆𝑥
}

−𝛽

                                               (32) 

These function are shown in the following figures: 
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FIGURE.9  plot CDF and PDF functions for WT7E distribution with different values for 𝛼, 𝛽, and 𝜆 

  

2.8 Extended odd Weibull-G (ExOW) family 

This family was presented by Alizadah et al. in 2019 [19], who relied on Weibull distribution, T-X method and odd 

function for upper limitation for integral 𝑊(𝐺) =
𝐹(𝑥,𝜀)

1−𝐹(𝑥,𝜀)
 . This family has the CDF and PDF functions, respectively, as 

shown in the following form: 

𝐹(𝑥, 𝛼, 𝛽, 𝜀) = 1 − {1 + 𝛽 {
𝐹(𝑥, 𝜀)

1 − 𝐹(𝑥, 𝜀)
}

𝛼

}

−
1
𝛽

                                                                  (33) 

𝑓(𝑥, 𝛼, 𝛽, 𝜀) =
𝛼𝑓(𝑥, 𝜀). {𝐹(𝑥, 𝜀)}𝛼−1

{1 − 𝐹(𝑥, 𝜀)}𝛼+1
{1 + 𝛽 {

𝐹(𝑥, 𝜀)

1 − 𝐹(𝑥, 𝜀)
}

𝛼

}

−
1
𝛽

−1

                                                  (34) 

 

Where 𝐹(𝑥, 𝜀) and 𝑓(𝑥, 𝜀) are CDF and PDF for any baseline distribution 

For ease of reference, this family will be called Weibull-Type8 (WT8) family. The motivation for WT8 is that the 

generated method will benefit from the flexibility of the underling distribution for data modeling and it's also motivated 
by its ability to model data with increasing and decreasing failure rates, single model and bimodal, the exponential 

distribution is replaced as a search direction for the family namely (WT8E) distribution as follows:  

𝐹𝑊𝑇8𝐸(𝑥, 𝛼, 𝛽, 𝜆) = 1 − {1 + 𝛽 {
1 − 𝑒−𝜆𝑥

𝑒−𝜆𝑥
}

𝛼

}

−
1
𝛽

                                                             (35) 

𝑓𝑊𝑇8𝐸 (𝑥, 𝛼, 𝛽, 𝜆) =
𝛼𝜆. {1 − 𝑒−𝜆𝑥}

𝛼−1

𝑒−𝛼𝜆𝑥
{1 + 𝛽 {

1 − 𝑒−𝜆𝑥

𝑒−𝜆𝑥
}

𝛼

}

−
1
𝛽

−1

                                            (36) 

These function are shown in the following figures: 
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Fig.10. plot CDF and PDF functions for WT8E distribution with different values for 𝛼, 𝛽, and 𝜆  

2.9 Nasir Weibull Generalized family (NW-G) family 

This family was presented by Farrukh and Nasir in 2019 [28], who relied on Weibull distribution, T-X method and odd 

function for upper limitation for integral 𝑊(𝐺) =
− log 𝐹(𝑥,𝜀)

𝐹(𝑥,𝜀)
 . This family has the CDF and PDF functions, respectively, 

as shown in the following form: 

𝐹(𝑥, 𝛼, 𝛽, 𝜀) = 1 − 𝑒
−𝛼{

− log 𝐹(𝑥,𝜀)

𝐹(𝑥,𝜀)
}
𝛽

                                                                                   (37) 

𝑓(𝑥, 𝛼, 𝛽, 𝜀) =
𝛼𝛽𝑓(𝑥, 𝜀). {− log 𝐹(𝑥, 𝜀)}𝛽−1

{𝐹(𝑥, 𝜀)}𝛽+1
𝑒

−𝛼{
− log 𝐹(𝑥,𝜀)

𝐹(𝑥,𝜀)
}
𝛽−1

[1 − log 𝐹(𝑥, 𝜀)]                                            (38) 

Where 𝐹(𝑥, 𝜀) and 𝑓(𝑥, 𝜀) are CDF and PDF for any baseline distribution 

For ease of reference, this family will be called Weibull-Type9 (WT9) family. The motivation for WT9 to more 

flexibility to modeling data, the exponential distribution is replaced as a search direction for the family namely (WT9E) 

distribution as follows:  

𝐹𝑊𝑇9𝐸 (𝑥, 𝛼, 𝛽, 𝜆) = 1 − 𝑒
−𝛼{

− log[1−𝑒−𝜆𝑥]

1−𝑒−𝜆𝑥
}

𝛽

                                                               (39) 

𝑓𝑊𝑇9𝐸 (𝑥, 𝛼, 𝛽, 𝜆) =
𝛼𝛽𝜆𝑒−𝜆𝑥 . {− log[1 − 𝑒−𝜆𝑥]}

𝛽−1

{1 − 𝑒−𝜆𝑥}𝛽+1
𝑒

−𝛼{
− log[1−𝑒−𝜆𝑥]

1−𝑒−𝜆𝑥
}

𝛽−1

[1 − log[1 − 𝑒−𝜆𝑥]]                           (40) 

These function are shown in the following figures: 

 

 

Fig.11. plot CDF and PDF functions for WT9E distribution with different values for 𝛼, 𝛽, and 𝜆 
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2.10 Exponentiated Truncated Inverse Weibull Generated family (ETIW-G) family 

This family was presented by M. Almarashi et al. in 2020 [5], who relied on inverse Weibull distribution, and truncated 

method. This family has the CDF and PDF functions, respectively, as shown in the following form: 

𝐹(𝑥, 𝛼, 𝛽, 𝜀) = (1 − 𝑒1−{1−𝐹(𝑥,𝜀)}−𝛽
)

𝛼

                                                                     (41) 

𝑓(𝑥, 𝛼, 𝛽, 𝜀) = 𝛼𝛽𝑓(𝑥, 𝜀). {1 − 𝐹(𝑥, 𝜀)}−𝛽−1𝑒1−{1−𝐹(𝑥,𝜀)}−𝛽
(1 − 𝑒1−{1−𝐹(𝑥,𝜀)}−𝛽

)
𝛼−1

                             (42) 

Where 𝐹(𝑥, 𝜀) and 𝑓(𝑥, 𝜀) are CDF and PDF for any baseline distribution 

For ease of reference, this family will be called Weibull-Type10 (WT10) family. The motivation for create WT10 using 

inverse distribution or truncated distribution as key generators is to exploit some of their specific properties to create 

original and flexible distributions, such as their simplicity of use, their economy of transactions, their inverted bathtub 

risk ratio properties, and their ability to produce heavy tails, the exponential distribution is replaced as a search direction 

for the family namely (WT10E) distribution as follows:  

𝐹𝑊𝑇10𝐸 (𝑥, 𝛼, 𝛽, 𝜆) = (1 − 𝑒1−{𝑒−𝜆𝑥}
−𝛽

)
𝛼

                                                            (43) 

𝑓𝑊𝑇10𝐸 (𝑥, 𝛼, 𝛽, 𝜆) = 𝛼𝛽𝜆𝑒−𝜆𝑥 . {𝑒−𝜆𝑥}
−𝛽−1

𝑒1−{𝑒−𝜆𝑥}
−𝛽

(1 − 𝑒1−{𝑒−𝜆𝑥}
−𝛽

)
𝛼−1

                                 (44) 

These function are shown in the following figures: 

 

 

Fig.12. plot CDF and PDF functions for WT10E distribution with different values for 𝛼, 𝛽, and 𝜆 

  

2.11 Odd Inverse Weibull Generated family (IW-G) family 

This family was presented by Yassmen et al. in 2024 [25], who relied on inverse Weibull distribution, and T-X method 

with upper limitation for integral 𝑊(𝐺) =
𝐹(𝑥,𝜀)𝛼

[1−𝐹(𝑥,𝜀)]𝛼. This family has the CDF and PDF functions, respectively, as 

shown in the following form: 

𝐹(𝑥, 𝛼, 𝛽, 𝜀) = 𝑒
−{

𝐹(𝑥,𝜀)𝛼

[1−𝐹(𝑥,𝜀)]𝛼}
−𝛽

                                                                       (45) 
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𝑓(𝑥, 𝛼, 𝛽, 𝜀) =
𝛼𝛽𝑓(𝑥, 𝜀). {[1 − 𝐹(𝑥, 𝜀)]𝛼}𝛽−1

{𝐹(𝑥, 𝜀)}𝛼𝛽+1
𝑒

−{
𝐹(𝑥,𝜀)𝛼

[1−𝐹(𝑥,𝜀)]𝛼}
−𝛽

                                                     (46) 

Where 𝐹(𝑥, 𝜀) and 𝑓(𝑥, 𝜀) are CDF and PDF for any baseline distribution 

For ease of reference, this family will be called Weibull-Type11 (WT11) family. The WT11 is considered a 

generalization of WT7 if a new integral term is introduced by raising the singularity function to a power, which seems to 

give more flexibility than WT7 family, the exponential distribution is replaced as a search direction for the family namely 

(WT11E) distribution as follows:  

𝐹𝑊𝑇11𝐸 (𝑥, 𝛼, 𝛽, 𝜆) = 𝑒
−{

(1−𝑒−𝜆𝑥)
𝛼

[𝑒−𝜆𝑥]
𝛼 }

−𝛽

                                                                            (47) 

𝑓𝑊𝑇11𝐸 (𝑥, 𝛼, 𝛽, 𝜆) =
𝛼𝛽𝜆𝑒−𝜆𝑥 . {[𝑒−𝜆𝑥]

𝛼
}

𝛽−1

{1 − 𝑒−𝜆𝑥}𝛼𝛽+1
𝑒

−{
(1−𝑒−𝜆𝑥)

𝛼

[𝑒−𝜆𝑥]
𝛼 }

−𝛽

                                                         (48) 

These function are shown in the following figures: 

 

 

Fig.13. plot CDF and PDF functions for WT11E distribution with different values for 𝛼, 𝛽, and 𝜆 

  

2.12 Hybrid Weibull-G (HWG) family 

This family was presented by Noori and khaleel in 2024 [21], who relied on Weibull distribution, and T-X method with 

upper limitation for integral 𝑊(𝐺) = −𝐹(𝑥, 𝜀)𝑙𝑜𝑔 [1 −  𝐹(𝑥, 𝜀). This family has the CDF and PDF functions, 

respectively, as shown in the following form: 

𝐹(𝑥, 𝛼, 𝛽, 𝜀) = 1 − 𝑒−𝛼[−𝐹(𝑥,𝜀) log[1− 𝐹(𝑥,𝜀)]]𝛽
                                                              (49) 

𝑓(𝑥, 𝛼, 𝛽, 𝜀) = 𝛼𝛽 𝑓(𝑥, 𝜀) [
𝐹(𝑥, 𝜀)

1 − 𝐹(𝑥, 𝜀)
− log(1 − 𝐹(𝑥, 𝜀))] × [−𝐹(𝑥, 𝜀)𝑙𝑜𝑔 [1 −  𝐹(𝑥, 𝜀)]]𝛽−1𝑒−𝛼[−𝐹(𝑥,𝜀)𝑙𝑜𝑔 [1− 𝐹(𝑥,𝜀)]]𝛽

       (50) 

Where 𝐹(𝑥, 𝜀) and 𝑓(𝑥, 𝜀) are CDF and PDF for any baseline distribution 

For ease of reference, this family will be called Weibull-Type12 (WT12) family. The WT12,  by virtue of its integration 

of two limits of the formation of continuous families, combine the strength of these function to add more flexibility in 
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practical applications, the exponential distribution is replaced as a search direction for the family namely (WT12E) 

distribution as follows:  

𝐹𝑊𝑇12𝐸 (𝑥, 𝛼, 𝛽, 𝜆) = 1 − 𝑒−𝛼[−(1−𝑒−𝜆𝑥) log[𝑒−𝜆𝑥]]
𝛽

                                                          (51) 

𝑓𝑊𝑇12𝐸 (𝑥, 𝛼, 𝛽, 𝜆) = 𝛼𝛽 𝜆𝑒−𝜆𝑥 [
1 − 𝑒−𝜆𝑥

𝑒−𝜆𝑥
− log(𝑒−𝜆𝑥)] × [−(1 − 𝑒−𝜆𝑥)𝑙𝑜𝑔 [𝑒−𝜆𝑥]]

𝛽−1
𝑒−𝛼[−(1−𝑒−𝜆𝑥)𝑙𝑜𝑔 [𝑒−𝜆𝑥]]

𝛽

  (52) 

These function are shown in the following figures: 

 

 

Fig.14. plot CDF and PDF functions for WT12E distribution with different values for 𝛼, 𝛽, and 𝜆 

3. SIMULATION  
To determine the efficiency of each of the models (WT1E,…,WT12E) which was presented in previous section, Monte 

Carlo simulation were conducted for three methods: Maximal likelihood estimation (MLE) [29], Least squares estimation 

(LSE) [30], and Weighted Least squares estimation (WLSE) [31]. The generated sample sizes were based on n=50, 100, 

150 and 200 to 1000. To evaluate the performance, the mean square error (MSE) [22], root mean square error (RMSE) 

[32], and bias in the estimated parameters were calculated [33],  

 The algorithm for applied a Monte Carlo simulation to determine the best expansion based on statistical accuracy 

criteria: 

1. Choose the statistical model distribution, and determine the actual parameters to be estimated. 

2. List the different estimation technique . 

3. Select multiple sample sizes (n=50, 100, 150 and 200) to test the effect of sample size. Then, generate N 

iteration (e.g., 1000 samples) using a random number generator based on chosen distribution. 

4. Apply the estimation technique to each sample. Parameters estimates are calculate using all the selected 

estimation techniques . 

5. Compute the statistical accuracy criteria for each technique across all iterations, and then the values are 

compared between techniques to determine the best performer  . 

6. Rank techniques based on their performance according to three statistical criteria. Then, identify the technique 

with the lowest values as a measure of performance advantage 

The results shown in tables 1 to 12 respectively. 
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TABLE I.  MONTE CARLO SIMULATIONS FOR THE WTIE  

𝜶 = 𝟐. 𝟒, 𝜷 = 𝟑. 𝟓, 𝝀 = 𝟏. 𝟕 

N Est. 
Ess. 

Par. 
MLE LSE WLSE N MLE LSE WLSE 

5
0
 

M
e
a

n
 

�̂� 2.46011 2.44792 2.44912 

1
0

0
 

2.45719 2.449145 2.443552 

�̂� 3.60296 3.49601 3.52150 3.54789 3.492562 3.51549 

�̂� 1.74359 1.72983 1.73272 1.74194 1.734413 1.731481 

M
S

E
 

�̂� 0.01403 0.01629 0.01452 0.006765 0.008018 0.006451 

�̂� 0.17135 0.23067 0.19532 0.07974 0.117829 0.09599 

�̂� 0.00896 0.01014 0.00933 0.00469 0.005085 0.004224 

R
M

S

E
 

�̂� 0.11845 0.12766 0.12050 0.08225 0.089546 0.080324 

�̂� 0.41394 0.48028 0.44196 0.28239 0.343263 0.30982 

�̂� 0.09465 0.10070 0.09659 0.06854 0.071310 0.064998 

B
ia

s 

�̂� 0.06011 0.04792 0.04912 0.057196 0.049145 0.043552 

�̂� 0.10296 0.00398 0.02150 0.04789 0.007437 0.01549 

�̂� 0.04359 0.02983 0.03272 0.04194 0.034413 0.031481 

N Est.  MLE LSE WLSE N MLE LSE WLSE 

1
5
0
 

M
e
a

n
 

�̂� 2.45802 2.44342 2.44777 
2
0
0
 

2.455070 2.441467 2.446793 

�̂� 3.53065 3.49834 3.51234 3.508713 3.477412 3.490347 

�̂� 1.74083 1.72913 1.73276 1.742833 1.731428 1.736122 

M
S

E
 

�̂� 0.005892 0.005783 0.00496 0.004779 0.003679 0.003979 

�̂� 0.053418 0.07779 0.063777 0.037458 0.051184 0.041774 

�̂� 0.003676 0.003754 0.003285 0.003284 0.002519 0.002883 

R
M

S

E
 

�̂� 0.076765 0.076048 0.070433 0.069135 0.060661 0.063082 

�̂� 0.231125 0.27891 0.25254 0.193543 0.226240 0.204387 

�̂� 0.060631 0.061277 0.057316 0.057310 0.050193 0.053696 

B
ia

s 

�̂� 0.058026 0.043429 0.047779 0.055070 0.041467 0.046793 

�̂� 0.030653 0.001655 0.012341 0.008713 0.02258 0.009652 

�̂� 0.040832 0.029133 0.032762 0.042833 0.031428 0.036122 

 
TABLE II. MONTE CARLO SIMULATIONS FOR THE WT2E  

𝜶 = 𝟐. 𝟒, 𝜷 = 𝟑. 𝟓, 𝝀 = 𝟏. 𝟕 

N Est. 
Ess. 

Par. 
MLE LSE WLSE N MLE LSE WLSE 

5
0
 

M
e
a

n
 

�̂� 2.50843 2.49461 2.48295 

1
0
0

 

2.524882 2.492312 2.496614 

�̂� 3.58035 3.459142 3.49251 3.554078 3.507087 3.527307 

�̂� 1.688911 1.67488 1.68367 1.682361 1.683105 1.684941 

M
S

E
 

�̂� 0.049799 0.11247 0.091375 0.035290 0.067612 0.051490 

�̂� 0.15483 0.215610 0.177541 0.082108 0.118400 0.098640 

�̂� 0.007211 0.013859 0.012078 0.0036022 0.006367 0.004887 

R
M

S

E
 

�̂� 0.22315 0.33537 0.30228 0.187856 0.260024 0.226915 

�̂� 0.393489 0.46433 0.421357 0.286545 0.3440932 0.314070 

�̂� 0.084922 0.117727 0.109901 0.0600186 0.07979 0.0699089 

B
ia

s 

�̂� 0.108438 0.094614 0.082953 0.124882 0.092312 0.096614 

�̂� 0.08035 0.040857 0.007481 0.054078 0.007087 0.027307 

�̂� 0.011088 0.025116 0.016329 0.0176381 0.016894 0.015058 

N Est.  MLE LSE WLSE N MLE LSE WLSE 

1
5
0

 

M
e
a

n
 

�̂� 2.523791 2.51318 2.50248 

2
0
0

 

2.520207 2.499802 2.500697 

�̂� 3.533923 3.502811 3.51633 3.531456 3.51035 3.519757 

�̂� 1.678408 1.676117 1.680372 1.6785363 1.6793800 1.680796 

M
S

E
 

�̂� 0.029432 0.060633 0.045075 0.024416 0.047830 0.03709 

�̂� 0.050548 0.074878 0.060896 0.040650 0.05675 0.04734 

�̂� 0.002773 0.004581 0.003363 0.001874 0.002872 0.002309 

R
M

S

E
 

�̂� 0.171557 0.24623 0.21231 0.156258 0.218701 0.192593 

�̂� 0.22483 0.273638 0.24677 0.201619 0.238240 0.217593 

�̂� 0.052663 0.067688 0.057998 0.043291 0.053592 0.0480545 

B
ia

s 

�̂� 0.123791 0.113181 0.10248 0.120207 0.099802 0.100697 

�̂� 0.033923 0.002811 0.016335 0.031456 0.010352 0.019757 

�̂� 0.021591 0.023882 0.019627 0.0214636 0.0206199 0.0192033 
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TABLE III. MONTE CARLO SIMULATIONS FOR THE WT3E  

𝜶 = 𝟐. 𝟒, 𝜷 = 𝟑. 𝟓, 𝝀 = 𝟏. 𝟕 

N Est. 
Ess. 

Par. 
MLE LSE WLSE N MLE LSE WLSE 

5
0

 

M
e
a

n
 

�̂� 2.475599 2.51420 2.50999 

1
0

0
 

2.441321 2.452803 2.447863 

�̂� 3.79394 3.63379 3.65450 3.66554 3.56362 3.594077 

�̂� 1.749902 1.683292 1.699722 1.730050 1.696211 1.710845 

M
S

E
 

�̂� 0.163272 0.238326 0.25206 0.074457 0.105603 0.099695 

�̂� 1.15334 1.62944 1.31499 0.46465 0.632601 0.508314 

�̂� 0.211703 0.249320 0.236307 0.094006 0.110949 0.119210 

R
M

S

E
 

�̂� 0.404069 0.488186 0.50205 0.272869 0.324967 0.315745 

�̂� 1.073940 1.276495 1.146734 0.681653 0.795362 0.712962 

�̂� 0.460112 0.499320 0.486114 0.306605 0.333090 0.345268 

B
ia

s 

�̂� 0.075599 0.114202 0.109999 0.041321 0.052803 0.047863 

�̂� 0.293948 0.133794 0.15450 0.16554 0.063624 0.094077 

�̂� 0.049902 0.016707 0.000277 0.030050 0.0037884 0.010845 

N Est.  MLE LSE WLSE N MLE LSE WLSE 

1
5
0

 

M
e
a

n
 

�̂� 2.456008 2.46565 2.448453 
2
0
0

 
2.446910 2.457797 2.456373 

�̂� 3.60428 3.540402 3.561646 3.576044 3.524846 3.544304 

�̂� 1.698107 1.678119 1.690860 1.688718 1.670582 1.673141 

M
S

E
 

�̂� 0.047032 0.079099 0.051348 0.032393 0.067221 0.045531 

�̂� 0.26687 0.400179 0.318741 0.200118 0.290980 0.229266 

�̂� 0.056207 0.077619 0.057426 0.040159 0.049309 0.035642 

R
M

S

E
 

�̂� 0.216870 0.281246 0.226601 0.179980 0.259271 0.213381 

�̂� 0.51660 0.632597 0.564572 0.447345 0.539426 0.478817 

�̂� 0.237080 0.278602 0.239638 0.200399 0.222058 0.188792 

B
ia

s 

�̂� 0.056008 0.065650 0.048453 0.046910 0.057797 0.056373 

�̂� 0.104286 0.040402 0.061646 0.076044 0.024846 0.044304 

�̂� 0.001892 0.021880 0.009139 0.011281 0.029417 0.026858 

 
TABLE IV.  MONTE CARLO SIMULATIONS FOR THE WT4E  

𝜶 = 𝟐. 𝟒, 𝜷 = 𝟑. 𝟓, 𝝀 = 𝟏. 𝟕 

N Est. 
Ess. 

Par. 
MLE LSE WLSE N MLE LSE WLSE 

5
0

 

M
e
a

n
 

�̂� 2.466868 2.384677 2.407680 

1
0
0

 

2.434884 2.3983360 2.411491 

�̂� 3.595104 3.605006 3.597582 3.594910 3.588923 3.589182 

�̂� 1.747088 1.744442 1.743636 1.7470359 1.7413005 1.7423942 

M
S

E
 

�̂� 0.083771 0.109081 0.092288 0.042393 0.0579207 0.049078 

�̂� 0.025645 0.033218 0.027665 0.016626 0.017852 0.016583 

�̂� 0.010630 0.010857 0.010396 0.0069918 0.0064195 0.0062093 

R
M

S

E
 

�̂� 0.289433 0.330274 0.303790 0.205896 0.2406673 0.221536 

�̂� 0.160142 0.182260 0.166328 0.128942 0.133613 0.1287758 

�̂� 0.103102 0.104199 0.101962 0.0836170 0.0801219 0.0787991 

B
ia

s 

�̂� 0.066868 0.015322 0.007680 0.034884 0.0016639 0.011491 

�̂� 0.095104 0.105006 0.097582 0.094910 0.088923 0.089182 

�̂� 0.047088 0.044442 0.043636 0.0470359 0.0413005 0.0423942 

N Est.  MLE LSE WLSE N MLE LSE WLSE 

1
5

0
 

M
e
a

n
 

�̂� 2.435869 2.415422 2.423689 

2
0

0
 

2.420547 2.4085510 2.412654 

�̂� 3.586388 3.579744 3.576966 3.587847 3.578616 3.580756 

�̂� 1.744332 1.740082 1.739339 1.7433171 1.7366070 1.7384875 

M
S

E
 

�̂� 0.025920 0.036903 0.030203 0.018904 0.0281324 0.022670 

�̂� 0.012484 0.012887 0.011181 0.011684 0.010898 0.010753 

�̂� 0.004968 0.004748 0.004277 0.0041827 0.0036094 0.0036977 

R
M

S

E
 

�̂� 0.160998 0.192101 0.173791 0.1374943 0.1677273 0.150567 

�̂� 0.111735 0.113521 0.105743 0.108094 0.1043967 0.1037006 

�̂� 0.070486 0.068907 0.065406 0.0646738 0.0600783 0.0608088 

B
ia

s 

�̂� 0.035869 0.015422 0.023689 0.0205477 0.0085510 0.0126548 

�̂� 0.086388 0.079744 0.076966 0.087847 0.0786166 0.0807563 

�̂� 0.044332 0.040082 0.039339 0.0433171 0.0366070 0.0384875 
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TABLE V. MONTE CARLO SIMULATIONS FOR THE WT5E 

𝜶 = 𝟐. 𝟒, 𝜷 = 𝟑. 𝟓, 𝝀 = 𝟏. 𝟕 

N Est. 
Ess. 

Par. 
MLE LSE WLSE N MLE LSE WLSE 

5
0

 

M
e
a

n
 

�̂� 2.461023 2.443411 2.443550 

1
0

0
 

2.4549728 2.441562 2.4474951 

�̂� 3.573021 3.494195 3.517642 3.539111 3.4982267 3.514487 

�̂� 1.747069 1.731565 1.732979 1.7440804 1.7330376 1.7378170 

M
S

E
 

�̂� 0.010835 0.020051 0.013745 0.0061696 0.006099 0.0063319 

�̂� 0.145244 0.201701 0.169355 0.068994 0.0927433 0.078097 

�̂� 0.008069 0.012800 0.009373 0.0042202 0.0044963 0.0044036 

R
M

S

E
 

�̂� 0.104094 0.141601 0.117243 0.0785473 0.078099 0.0795735 

�̂� 0.381109 0.449112 0.411528 0.262668 0.304537 0.279459 

�̂� 0.089828 0.113141 0.096816 0.0649630 0.0670547 0.0663601 

B
ia

s 

�̂� 0.061023 0.043411 0.043550 0.0549728 0.041562 0.0474951 

�̂� 0.073021 0.005804 0.017642 0.039111 0.0017732 0.014487 

�̂� 0.047069 0.031565 0.032979 0.0440804 0.0330376 0.0378170 

N Est.  MLE LSE WLSE N MLE LSE WLSE 

1
5
0

 

M
e
a

n
 

�̂� 2.456446 2.440770 2.445676 
2
0
0

 
2.4565282 2.4406970 2.4456678 

�̂� 3.519232 3.489731 3.501626 3.514400 3.486704 3.4997339 

�̂� 1.741641 1.729639 1.733615 1.7416867 1.7288745 1.7332505 

M
S

E
 

�̂� 0.005195 0.004474 0.004404 0.0049965 0.0035919 0.0040484 

�̂� 0.046931 0.068878 0.056204 0.034643 0.048708 0.0397317 

�̂� 0.003584 0.003052 0.003088 0.0031888 0.0023793 0.0027674 

R
M

S

E
 

�̂� 0.072077 0.066893 0.066366 0.0706865 0.0599332 0.0636272 

�̂� 0.216637 0.262446 0.237074 0.186127 0.220699 0.1993283 

�̂� 0.059870 0.055246 0.055575 0.0564694 0.0487789 0.0526068 

B
ia

s 

�̂� 0.056446 0.040770 0.045676 0.0565282 0.0406970 0.0456678 

�̂� 0.019232 0.010268 0.001626 0.014400 0.013295 0.0002660 

�̂� 0.041641 0.029639 0.033615 0.0416867 0.028874 0.0332505 

 
 

TABLE VI. MONTE CARLO SIMULATIONS FOR THE WT6E 

𝜶 = 𝟐. 𝟒, 𝜷 = 𝟑. 𝟓, 𝝀 = 𝟏. 𝟕 

N Est. 
Ess. 

Par. 
MLE LSE WLSE N MLE LSE WLSE 

5
0

 

M
e
a

n
 

�̂� 2.454624 2.456688 2.451447 

1
0
0

 

2.4586612 2.4435422 2.441039 

�̂� 3.630686 3.492248 3.527694 3.564998 3.519760 3.538074 

�̂� 1.744410 1.739544 1.738138 1.7439088 1.7312234 1.7305331 

M
S

E
 

�̂� 0.018311 0.023232 0.020556 0.0078340 0.0087219 0.011174 

�̂� 0.226517 0.281715 0.245636 0.097075 0.137016 0.115214 

�̂� 0.011309 0.013348 0.012473 0.0053007 0.0058356 0.0073551 

R
M

S

E
 

�̂� 0.135319 0.152423 0.143376 0.0885104 0.0933915 0.105711 

�̂� 0.47593 0.530769 0.495617 0.311569 0.370157 0.339433 

�̂� 0.106344 0.115534 0.111683 0.0728060 0.0763911 0.0857624 

B
ia

s 

�̂� 0.054624 0.056688 0.051447 0.0586612 0.0435422 0.041039 

�̂� 0.130686 0.007751 0.027694 0.064998 0.019760 0.038074 

�̂� 0.044410 0.039544 0.038138 0.0439088 0.0312234 0.0305331 

N Est.  MLE LSE WLSE N MLE LSE WLSE 

1
5

0
 

M
e
a

n
 

�̂� 2.454241 2.441826 2.443571 

2
0

0
 

2.4554112 2.4416693 2.4467630 

�̂� 3.546014 3.507132 3.521989 3.518086 3.493963 3.5052263 

�̂� 1.740693 1.730296 1.732213 1.7408544 1.730058 1.734258 

M
S

E
 

�̂� 0.005726 0.006164 0.005835 0.0050189 0.0040316 0.0042625 

�̂� 0.061135 0.087888 0.072386 0.040129 0.059473 0.0472860 

�̂� 0.003594 0.003829 0.003454 0.0030825 0.002362 0.002650 

R
M

S

E
 

�̂� 0.075671 0.078516 0.076389 0.0708443 0.0634953 0.0652880 

�̂� 0.247256 0.296459 0.269047 0.200323 0.243870 0.2174534 

�̂� 0.059953 0.061881 0.058778 0.0555202 0.048609 0.051483 

B
ia

s 

�̂� 0.054241 0.041826 0.043571 0.0554112 0.0416693 0.0467630 

�̂� 0.046014 0.007132 0.021989 0.018086 0.006036 0.0052263 

�̂� 0.040693 0.030296 0.032213 0.0408544 0.030058 0.034258 
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TABLE VII. MONTE CARLO SIMULATIONS FOR THE WT7E 

𝜶 = 𝟐. 𝟒, 𝜷 = 𝟑. 𝟓, 𝝀 = 𝟏. 𝟕 

N Est. 
Ess. 

Par. 
MLE LSE WLSE N MLE LSE WLSE 

5
0

 

M
e
a

n
 

�̂� 2.508692 2.489909 2.480260 

1
0

0
 

2.515150 2.481503 2.49142 

�̂� 3.61137 3.492497 3.522203 3.561452 3.511073 3.528659 

�̂� 1.693780 1.681322 1.688716 1.683553 1.6836987 1.6847023 

M
S

E
 

�̂� 0.069011 0.150355 0.105481 0.037069 0.060109 0.192533 

�̂� 0.22484 0.284088 0.246636 0.093463 0.108228 0.108228 

�̂� 0.010262 0.018574 0.014769 0.0074763 0.0063336 0.0063336 

R
M

S

E
 

�̂� 0.262700 0.387757 0.324779 0.192533 0.268595 0.245172 

�̂� 0.474175 0.532999 0.496624 0.305718 0.362882 0.328980 

�̂� 0.101303 0.136286 0.121529 0.067329 0.0864657 0.0795841 

B
ia

s 

�̂� 0.108692 0.089909 0.080260 0.115150 0.081503 0.091428 

�̂� 0.11137 0.007502 0.022203 0.061452 0.011073 0.0286596 

�̂� 0.006219 0.018677 0.011283 0.016446 0.0163012 0.0152976 

N Est.  MLE LSE WLSE N MLE LSE WLSE 

1
5
0

 

M
e
a

n
 

�̂� 2.533397 2.503079 2.504083 
2
0
0

 
2.521522 2.507171 2.495622 

�̂� 3.530690 3.499410 3.512302 3.531115 3.5009787 3.513974 

�̂� 1.679426 1.680779 1.682712 1.6797045 1.6790027 1.683089 

M
S

E
 

�̂� 0.034851 0.058090 0.044633 0.0257668 0.052068 0.039078 

�̂� 0.062387 0.089372 0.073177 0.0432339 0.0605698 0.049939 

�̂� .0029671 0.004417 0.003771 0.0021092 0.003396 0.0027723 

R
M

S

E
 

�̂� 0.186684 0.241020 0.211267 0.160520 0.228185 0.197683 

�̂� 0.249775 0.298952 0.270513 0.2079278 0.2461093 0.223470 

�̂� 0.054471 0.066463 0.061414 0.0459270 0.0582765 0.0526529 

B
ia

s 

�̂� 0.133397 0.103079 0.104083 0.1215228 0.107171 0.095622 

�̂� 0.030690 0.000589 0.012302 0.031115 0.0009787 0.0139747 

�̂� 0.020573 0.019220 0.017287 0.0202954 0.0209972 0.0169100 

 

TABLE VIII. MONTE CARLO SIMULATIONS FOR THE WT8E 

𝜶 = 𝟐. 𝟒, 𝜷 = 𝟑. 𝟓, 𝝀 = 𝟏. 𝟕 

N Est. 
Ess. 

Par. 
MLE LSE WLSE N MLE LSE WLSE 

5
0

 

M
e
a

n
 

�̂� 2.503315 2.475502 2.477565 

1
0
0

 

2.5148698 2.506437 2.492875 

�̂� 3.60398 3.517358 3.542295 3.559619 3.515364 3.532012 

�̂� 1.692690 1.687538 1.690212 1.6849794 1.6814544 1.6859073 
M

S
E

 

�̂� 0.049524 0.104801 0.081518 0.033642 0.087541 0.050178 

�̂� 0.155618 0.196372 0.169073 0.076943 0.119106 0.095685 

�̂� 0.006708 0.01242 0.009600 0.003297 0.007777 0.0044941 

R
M

S

E
 

�̂� 0.222541 0.323731 0.285514 0.183419 0.295874 0.224006 

�̂� 0.39448 0.44313 0.411185 0.277387 0.345118 0.309331 

�̂� 0.081902 0.111454 0.097983 0.0574212 0.0881881 0.0670383 

B
ia

s 

�̂� 0.103315 0.075502 0.077565 0.114869 0.106437 0.0928754 

�̂� 0.103984 0.017358 0.042295 0.059619 0.015364 0.032012 

�̂� 0.007309 0.012461 0.009787 0.0150205 0.0185455 0.0140926 

N Est.  MLE LSE WLSE N MLE LSE WLSE 

1
5

0
 

M
e
a

n
 

�̂� 2.523738 2.494273 2.491734 

2
0

0
 

2.520862 2.489233 2.487219 

�̂� 3.533023 3.500844 3.514667 3.523894 3.495341 3.5066150 

�̂� 1.679874 1.681940 1.684135 1.6780629 1.680127 1.6824232 

M
S

E
 

�̂� 0.026782 0.055322 0.035907 0.024681 0.041544 0.033436 

�̂� 0.047115 0.070244 0.056088 0.036307 0.0515160 0.041475 

�̂� 0.002309 0.004076 0.002758 0.0019043 0.0027459 0.0022589 

R
M

S

E
 

�̂� 0.163652 0.235208 0.189493 0.157103 0.2038249 0.182856 

�̂� 0.217061 0.265037 0.236830 0.190544 0.2269713 0.2036551 

�̂� 0.048052 0.063847 0.052523 0.0436387 0.0524021 0.0475287 

B
ia

s 

�̂� 0.123738 0.094273 0.091734 0.120862 0.089233 0.087219 

�̂� 0.033023 0.000844 0.014667 0.023894 0.0046584 0.0066150 

�̂� 0.020125 0.018059 0.015864 0.0219370 0.0198729 0.0175767 
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TABLE IX. MONTE CARLO SIMULATIONS FOR THE WT9E 

𝜶 = 𝟐. 𝟒, 𝜷 = 𝟑. 𝟓, 𝝀 = 𝟏. 𝟕 

N Est. 
Ess. 

Par. 
MLE LSE WLSE N MLE LSE WLSE 

5
0
 

M
e
a

n
 

�̂� 2.54654 2.430426 2.456984 

1
0

0
 

2.465826 2.410965 2.428094 

�̂� 3.570760 3.61371 3.596977 3.581856 3.60127 3.583586 

�̂� 1.718860 1.670530 1.683317 1.680969 1.662679 1.670948 

M
S

E
 

�̂� 0.28925 0.356476 0.311426 0.103087 0.131695 0.110336 

�̂� 0.091178 0.21673 0.151585 0.032471 0.10425 0.057513 

�̂� 0.065133 0.078923 0.070780 0.015339 0.029773 0.015996 

R
M

S

E
 

�̂� 0.53782 0.597056 0.558056 0.321072 0.362898 0.332169 

�̂� 0.301958 0.46554 0.389340 0.180199 0.32288 0.239820 

�̂� 0.255212 0.280933 0.266046 0.123852 0.172550 0.126476 

B
ia

s 

�̂� 0.14654 0.030426 0.056984 0.065826 0.010965 0.028094 

�̂� 0.070760 0.11371 0.096977 0.081856 0.10127 0.083586 

�̂� 0.018860 0.029469 0.016682 0.019030 0.037320 0.029051 

N Est.  MLE LSE WLSE N MLE LSE WLSE 

1
5
0
 

M
e
a

n
 

�̂� 2.432108 2.401409 2.415905 
2
0
0
 

2.425611 2.4021267 2.411788 

�̂� 3.587455 3.587473 3.579200 3.580285 3.564859 3.570938 

�̂� 1.668765 1.662081 1.668523 1.6676108 1.669332 1.668753 

M
S

E
 

�̂� 0.067838 0.094030 0.076228 0.056395 0.0790682 0.065613 

�̂� 0.025795 0.065706 0.041437 0.023903 0.043885 0.035337 

�̂� 0.009634 0.016152 0.010661 0.0078478 0.014714 0.010303 

R
M

S

E
 

�̂� 0.260458 0.306644 0.276095 0.237478 0.2811907 0.256151 

�̂� 0.160610 0.256332 0.203561 0.154608 0.209488 0.187982 

�̂� 0.098157 0.127092 0.103253 0.0885878 0.121304 0.101508 

B
ia

s 

�̂� 0.032108 0.001409 0.015905 0.025611 0.0021267 0.011788 

�̂� 0.087455 0.087473 0.079200 0.080285 0.064859 0.070938 

�̂� 0.031234 0.037918 0.031476 0.0323891 0.030667 0.031246 

 

TABLE X. MONTE CARLO SIMULATIONS FOR THE WT10E 

𝜶 = 𝟐. 𝟒, 𝜷 = 𝟑. 𝟓, 𝝀 = 𝟏. 𝟕 

N Est. 
Ess. 

Par. 
MLE LSE WLSE N MLE LSE WLSE 

5
0

 

M
e
a

n
 

�̂� 2.56169 2.43575 2.470037 

1
0
0

 

2.4678520 2.421388 2.435439 

�̂� 3.566134 3.61186 3.600474 3.589869 3.596119 3.591859 

�̂� 1.718334 1.663964 1.674867 1.677871 1.666898 1.669373 

M
S

E
 

�̂� 0.26863 0.31937 0.276456 0.1172377 0.156708 0.130038 

�̂� 0.085390 0.199515 0.138450 0.04073 0.111363 0.065536 

�̂� 0.058353 0.069144 0.051894 0.020295 0.034366 0.024108 

R
M

S

E
 

�̂� 0.518296 0.565129 0.525791 0.342400 0.395863 0.360608 

�̂� 0.292216 0.44667 0.372089 0.20181 0.333712 0.256000 

�̂� 0.241563 0.262953 0.227804 0.142463 0.185382 0.155268 

B
ia

s 

�̂� 0.161696 0.03575 0.070037 0.067852 0.021388 0.035439 

�̂� 0.066134 0.111863 0.10047 0.08986 0.096119 0.091859 

�̂� 0.018334 0.036035 0.025132 0.022128 0.033101 0.030626 

N Est.  MLE LSE WLSE N MLE LSE WLSE 

1
5

0
 

M
e
a

n
 

�̂� 2.443062 2.413015 2.425092 

2
0

0
 

2.417214 2.3908361 2.4008811 

�̂� 3.584717 3.589792 3.576343 3.582335 3.585214 3.577797 

�̂� 1.671255 1.662509 1.669996 1.668373 1.660333 1.6660111 

M
S

E
 

�̂� 0.072969 0.095717 0.079686 0.047897 0.0685325 0.0548017 

�̂� 0.029814 0.077951 0.042268 0.024880 0.050875 0.036844 

�̂� 0.012857 0.017067 0.011918 0.009251 0.011211 0.0079173 

R
M

S

E
 

�̂� 0.270128 0.309383 0.282287 0.218855 0.2617871 0.2340978 

�̂� 0.172668 0.279198 0.205593 0.157735 0.225556 0.191948 

�̂� 0.113390 0.130642 0.109172 0.096183 0.105885 0.0889795 

B
ia

s 

�̂� 0.043062 0.013015 0.025092 0.017214 0.0091638 0.0008811 

�̂� 0.084717 0.089792 0.076343 0.082335 0.085214 0.077797 

�̂� 0.028744 0.037490 0.030003 0.031626 0.039666 0.0339888 
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TABLE XI. MONTE CARLO SIMULATIONS FOR THE WT11E 

𝜶 = 𝟐. 𝟒, 𝜷 = 𝟑. 𝟓, 𝝀 = 𝟏. 𝟕 

N Est. 
Ess. 

Par. 
MLE LSE WLSE N MLE LSE WLSE 

5
0
 

M
e
a

n
 

�̂� 2.364539 2.735233 2.598566 

1
0

0
 

2.408658 2.59669 2.524323 

�̂� 3.649153 3.430030 3.497050 3.66746 3.538035 3.580815 

�̂� 1.747772 1.666009 1.694930 1.692662 1.6533659 1.6708908 

M
S

E
 

�̂� 0.565000 1.64324 1.045475 0.3028497 0.688192 0.5381097 

�̂� 0.536360 1.091212 0.937202 0.284689 0.4735789 0.3538143 

�̂� 0.052416 0.10719 0.085919 0.0219164 0.0564526 0.0412849 

R
M

S

E
 

�̂� 0.751665 1.28189 1.02248 0.550317 0.82957 0.733559 

�̂� 0.732366 1.044611 0.968092 0.533562 0.688170 0.594822 

�̂� 0.228945 0.32740 0.293120 0.148042 0.237597 0.203186 

B
ia

s 

�̂� 0.035460 0.335233 0.198566 0.008658 0.196691 0.124323 

�̂� 0.149153 0.069969 0.002949 0.16746 0.038035 0.080815 

�̂� 0.047772 0.03399 0.005069 0.007337 0.046634 0.029109 

N Est.  MLE LSE WLSE N MLE LSE WLSE 

1
5
0
 

M
e
a

n
 

�̂� 2.442790 2.567411 2.515603 
2
0
0
 

2.441836 2.52982 2.502283 

�̂� 3.645084 3.551368 3.584229 3.65198 3.559541 3.60918 

�̂� 1.673407 1.648710 1.661589 1.669717 1.653683 1.656051 

M
S

E
 

�̂� 0.207443 0.459532 0.336705 0.174382 0.309730 0.25928 

�̂� 0.202795 0.323247 0.242720 0.16738 0.269025 0.19271 

�̂� 0.016210 0.034194 0.030018 0.012600 0.024341 0.020411 

R
M

S

E
 

�̂� 0.455459 0.67788 0.58026 0.417591 0.55653 0.509201 

�̂� 0.45032 0.568548 0.492666 0.409122 0.518676 0.438988 

�̂� 0.127321 0.184918 0.173259 0.112252 0.156018 0.142867 

B
ia

s 

�̂� 0.042790 0.167411 0.115603 0.041836 0.12982 0.102283 

�̂� 0.14508 0.051368 0.084229 0.151985 0.059541 0.109188 

�̂� 0.026592 0.051289 0.038410 0.030283 0.046316 0.043948 

 
TABLE XII. MONTE CARLO SIMULATIONS FOR THE WT12E 

𝜶 = 𝟐. 𝟒, 𝜷 = 𝟑. 𝟓, 𝝀 = 𝟏. 𝟕 

N Est. 
Ess. 

Par. 
MLE LSE WLSE N MLE LSE WLSE 

5
0
 

M
e
a

n
 

�̂� 2.468524 2.409045 2.424433 

1
0
0

 

2.448050 2.4070865 2.422152 

�̂� 3.590128 3.62374 3.60595 3.590072 3.586244 3.584410 

�̂� 1.678225 1.650366 1.660701 1.666596 1.657445 1.663770 

M
S

E
 

�̂� 0.136800 0.190506 0.155590 0.083765 0.1167711 0.094510 

�̂� 0.058579 0.175432 0.10913 0.034075 0.071091 0.063649 

�̂� 0.034395 0.040849 0.034262 0.013857 0.019240 0.017949 

R
M

S

E
 

�̂� 0.369865 0.436470 0.394449 0.289422 0.3417179 0.307424 

�̂� 0.242031 0.41884 0.33034 0.184594 0.266630 0.252288 

�̂� 0.185460 0.202112 0.185101 0.117718 0.138708 0.133974 

B
ia

s 

�̂� 0.068524 0.009045 0.024433 0.048050 0.0070865 0.022152 

�̂� 0.090128 0.12374 0.10595 0.090072 0.086244 0.084410 

�̂� 0.021774 0.049633 0.039298 0.033403 0.042554 0.036229 

N Est.  MLE LSE WLSE N MLE LSE WLSE 

1
5
0

 

M
e
a

n
 

�̂� 2.440417 2.413413 2.423993 

2
0
0

 

2.439461 2.417458 2.429093 

�̂� 3.580046 3.579031 3.570454 3.574830 3.568870 3.555546 

�̂� 1.673421 1.668179 1.673515 1.6735221 1.670772 1.6796654 

M
S

E
 

�̂� 0.057218 0.082153 0.066426 0.046165 0.063081 0.053728 

�̂� 0.023212 0.060548 0.036166 0.018797 0.039146 0.027414 

�̂� 0.009826 0.014029 0.008865 0.0064154 0.012428 0.0069665 

R
M

S

E
 

�̂� 0.239203 0.286624 0.257733 0.214860 0.251161 0.231793 

�̂� 0.152357 0.246065 0.190174 0.137105 0.197855 0.165573 

�̂� 0.099130 0.118445 0.094158 0.0800967 0.111483 0.0834660 

B
ia

s 

�̂� 0.040417 0.013413 0.023993 0.039461 0.017458 0.029093 

�̂� 0.080046 0.079031 0.070454 .074830 0.068870 0.055546 

�̂� 0.026578 0.031820 0.026484 0.0264778 0.029227 0.0203345 
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4. APPLICATION  
To determine the efficiency of the previously presented distributions, a practical applications is conducted on real data 

represented by recovery times (in months) for a random sample of 128 bladder cancer patients reported in Lee and Wang 

(2003) [21], where comparison is conducted using four information criteria which are (AIC [34] [35], CAIC [29] [36], 

BIC [37] [38], and HQIC [39] [40]) in addition to four statistical measures, which are: Kolmogorov-Smirnov (KS) [41] 

[42], Anderson- Darling (A) [43], Cramér-von Mises (W) [44] [45], and p-value [23], [2]. 
Table 13 shows the value of the informatics criteria for different distributions, while table 14 shows the values of the 
statistical measures for the different distributions, while table 15 shows the parameters estimator by MLE for the different 

distributions. 
TABLE XII. INFORMATICS CRITERIA FOR DIFFERENT DISTRIBUTIONS 

Dist. -Log (L) AIC CAIC BIC HQIC 

WT1E 410.5979 827.1958 827.3893 835.7518 830.6721 

WT2E 408.9357 823.8715 823.9032 826.7235 825.0303 

WT3E 408.0775 822.155 822.3485 830.7111 825.6314 

WT4E 410.5979 827.1958 827.3893 835.7519 830.6722 

WT5E 412.2369 830.4738 830.6674 839.0299 833.9502 

WT6E 409.5265 825.0581 825.2516 833.6141 828.5344 

WT7E 413.4038 832.8104 833.004 841.3665 836.2868 

WT8E 408.6789 823.3637 823.5573 831.9198 826.8401 

WT9E 413.6026 833.2084 833.402 841.7645 836.6848 

WT10E 435.2738 876.5476 876.7411 885.1037 880.024 

WT11E 413.7953 833.636 833.8295 842.1921 837.1124 

WT12E 406.0376 818.0751 818.2687 826.6312 821.5515 

 

TABLE XIV. STATISTICAL MEASURES FOR THE DIFFERENT DISTRIBUTIONS 

Dist. W A K-S p-value 

WT1E 0.1410266 0.8607159 0.07160868 0.5277046 

WT2E 0.1410655 0.8609474 0.0715582 0.5286236 

WT3E 0.1270024 0.7770797 0.9995304 0 

WT4E 0.141083 0.861052 0.07166681 0.5266472 

WT5E 0.170906 1.041197 0.07782965 0.4201514 

WT6E 0.1204754 0.7379188 0.06915452 0.5730348 

WT7E 0.2017909 1.246293 0.08132049 0.3656726 

WT8E 0.09979402 0.6123915 0.06767212 0.6009415 

WT9E 38.86583 252.302 0.9999012 0 

WT10E 0.6057257 3.577908 0.2063557 3.687338e-05 

WT11E 38.74645 252.1637 0.9999402 0 

WT12E 0.03192105 0.2037036 0.03723675 0.9943027 

 

TABLE XV.  PARAMETERS ESTIMATOR BY MLE FOR THE DIFFERENT DISTRIBUTIONS 

Dist. �̂� �̂� �̂� 

WT1E 1.0773631 1.0552710 0.1153875 

WT2E 4.01100346 1.05537765 0.02872513 

WT3E 0.58869240 1.50503242 0.06323829 

WT4E 1.05549023 0.11395114 0.01220293 

WT5E 15.779281210 0.994822351 0.006348757 

WT6E 0.0170908 1.1744118 0.1217004 

WT7E 1.5882521 0.5045123 0.2329852 

WT8E 1.0462806 1.1757085 0.1055157 

WT9E 1.5226857 0.3598340 0.3572202 

WT10E 0.6190966 0.1915228 0.5235674 

WT11E 1.3366383 0.2149499 0.1096531 

WT12E 1.1796094 0.7292086 0.1365605 

 



 

 

81 Noori et al, Babylonian Journal of Mathematics Vol. 2025, 61–87 

  

Fig. 15. Fitted density and CDF for WT1E with Data set 

  

Fig. 16. Fitted density and CDF for WT2E with Data set 

  

Fig. 17. Fitted density and CDF for WT3E with Data set 

 

 

Fig. 18. Fitted density and CDF for WT4E with Data set 

 

 

Fig. 19. Fitted density and CDF for WT5E with Data set 
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Fig. 20. Fitted density and CDF for WT6E with Data set 

  

Fig. 21. Fitted density and CDF for WT7E with Data set 

  

Fig. 22. Fitted density and CDF for WT8E with Data set 

  

Fig. 23. Fitted density and CDF for WT9E with Data set 

 

 

Fig. 24. Fitted density and CDF for WT10E with Data set 
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Fig. 25. Fitted density and CDF for WT11E with Data set 

 

 

Fig. 26. Fitted density and CDF for WT12E with Data set 

5. RESULTS AND DISCUSSION  
The results obtained in this study were divided into three parts: structural of family, simulation, and practical application, 

as shown below: 
1. WT1 

• structural of family: relatively simple with basic equations. Easley implementable using conventional 

estimation techniques. 

• Simulation accuracy: shows moderate MSE and RMSE values, indicating average simulation 

performance. 

• Practical application: shows good results in K-S and A tests with moderate results in information 

criteria (AIC, BIC). 

2. WT2 

• structural of family: similar to WT1 but has some modifications that add additional flexibility.  

• Simulation accuracy: similar performance to WT1 with slight improvement in error reduction.  

• Practical application: achieved slightly better rustles in information criteria, making it relatively more 

efficient in some applications. 

3. WT3 

• structural of family: complex due to reliance on multiple integrals and increased number of 

parameters.  

• Simulation accuracy: shows higher values of variance and albedo , which reduces its accuracy with 

small samples. 

• Practical application: it didn’t perform well in the fit tests (K-S, and A) and the AIC and BIC values 

were high. 

4. WT4 

• structural of family: it relies on minor improvements compared to WT1, which improves its adaptive 

ability.  

• Simulation accuracy: it showed acceptable results in error values, bit it was not the best. 

• Practical application: results similar to WT1 with a slight advantage in the fit tests. 
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5. WT5 

• structural of family: complex due to addition of new parameters that increase flexibility.  

• Simulation accuracy: it showed good results with large samples but was less stable with small 

samples. 

• Practical application: it showed modest performance in the fit tests with relatively good results in the 

information criteria. 

6. WT6 

• structural of family: balanced between simplicity and flexibility.  

• Simulation accuracy: it showed the lowest error values (MSE, RMSE), reflecting high simulation 

accuracy. 

• Practical application: it achieved excellent performance in all fit tests and information criteria, 

making it one of the most efficient. 

7. WT7 

• structural of family: complex due to reliance on inverse functions.  

• Simulation accuracy: it showed relatively high error values with high variance.  

• Practical application: it  performed poorly in fit tests and information criteria, which reduces its 

effectiveness.  

8. WT8 

• structural of family: relatively simple with sufficient flexibility. 

• Simulation accuracy: it showed stable results and low error values.  . 

• Practical application: it  performed very well in the fit tests (K-S, and A), with good results in  

information criteria. 

9. WT9 

• structural of family: relatively complex with the addition of new parameters. 

• Simulation accuracy: it showed high error values, especially with small samples. 

• Practical application: it didn’t achieve good results in fit tests and the AIC and BIC values were high. 

10. WT10 

• structural of family: most complex due to the use the inverse and modified functions. 

• Simulation accuracy: it showed the highest error values, making it the least efficient in simulation. 

• Practical application: very poor performance in fit tests and information criteria.  

11. WT11 

• structural of family: very complex due to reliance on new mathematical additions.  

• Simulation accuracy: it showed modest results with higher values of variance. 

• Practical application: relatively poor performance in fit tests and the AIC and BIC values were high. 

12. WT12 

• structural of family: balanced between complexity and flexibility. 

• Simulation accuracy: it showed the lowest error values and was the best in terms of stability. 

• Practical application: it achieved the best performance in all tests and criteria, making it the most 

efficient.  

6. COMPARISION 
1. Structural comparison: 

• Structural complexity: the twelve families vary in the complexity of their equations; families such as 

WT3 and WT5 have equations with high mathematical complexity due to the introduction of additional 

factors such as integral or inverse Structures. While families such as WT1 and WT2 are relatively 

simple in their Structural Structure. 
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• Computational difficulties: the difficulty of estimation increases with the increase in the number of 

parameters and integral constraints. The WT11 family is considered the most complex, requiring 

greater computational resources. 

2. Simulation accuracy: 

• Error measures: the tables indicated that families WT6 and WT12 showed the lowest values for error 

measures such as MSE and RMSE, indicating the ability of these families to simulate data more 

accurately. 

• Variance low albedo: the WT3 family suffered from high variance and relatively low albedo, making it 

not ideal for use with small samples. 

• Estimation Efficiency: according to the three estimation methods, families such as WT8 showed 

relative stability with all sample size. 

3. Practical application efficiency:  

• Fitness tests: the WT12 family achieved the best results in the K-S, A, and w tests, making it the most 

suitable for real data applications. 

• Information criteria: the WT12 family obtained the lowest values in AIC, BIC, and HQIC, indicating 

its ability to provide more efficient and simple models without sacrificing accuracy. 

• Practical applications: data extracted from bladder cancer patients showed a high agreement with 

WT12 and WT6, reflecting the efficiency of these families in real applications compared to others. 

At the best end in terms of simulation are WT6, WT12, while the weakest are WT10, WT7. While the efficiency of 

practical application the best are WT12 and WT6, while the weakest is WT10 and WT11. 

7. CONCLUSIONS 

The most efficient families are WT12 and WT6 have the best balance between structural simplicity, simulation accuracy, 

and practical application efficiency. The medium families are WT1, WT2, and WT8 are suitable for applications that 

require simplicity with reasonable accuracy. The weaker families are WT10 and WT11 suffer from increased complexity 

without offering significant applications that require high performance with real data, and the WT6 is used as a balance 
between flexibility and accuracy. 
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