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A B S T R A C T  
 

Malware or malicious software represents one of the most significant cybersecurity threats, 
compromising the integrity, confidentiality, and availability of computer systems and networks. 
Traditional malware detection methods seek to locate specific malware samples and families to recognize 
harmful code, and can be located using traditional signature- and rule-based detection methods. The study 
aims at the creation of malware detectors based on deep learning and optimization algorithms. The 
present study will propose a more advanced malware detection system that employs deep learning models 
and the Grey Wolf Optimization (GWO) algorithm to select essential features. This model used data 
balancing Synthetic Minority Oversampling Technique (SMOTE), and the models were tested on the 
CICMalDroid2020 dataset. Using two different models were tested: Convolutional Neural Network 
(CNN) and Long Short-Term Memory (LSTM) with Grey Wolf Optimization. The experimental findings 
indicate that the CNN-GWO model has an model achieves 93% accuracy, 92% precision, and 92% recall, 
and the LSTM-GWO model has an 90% accuracy, 90% precision, and 90% recall, respectively. These 
findings show that both models can be effective in detecting and classifying malware, but CNN has a 
few higher performance rates. The novelty of this method is the independent application of GWO-based 
feature selection to CNN and LSTM architectures, enhancing the detection accuracy and efficiency of 

these architectures in comparison to the latest research. 

 

1. INTRODUCTION  

Malware, or malicious software, is intentionally written to damage digital devices. It is known by numerous other names 

such as Trojan horses, worms, viruses, bots and botnets, ransomware, adware, and spyware. Malicious users not only target 

individual computers and networks but also exploit security loopholes. The primary concerns of legitimate users are privacy 

and the leakage of personal information. Losses resulting from cyber fraud have continued to increase, reaching nearly 

twice those of conventional fraud [1][2]. 

Malware defense solutions are becoming more advanced as malware diversity increases. Previously, malware was written 

using primitive code that was easily identified. However, modern malware distributors tend to increase code complexity, 

making even sophisticated detection methods ineffective. A major challenge is next-generation malware designed to 

execute at the kernel level. Such malware can evade various security mechanisms such as firewalls and antivirus systems. 

It can remain permanently within a system or network, create multiple extensions, and attack targeted users. 

Malware detection approaches vary and include several baseline techniques such as signature-based detection, heuristic-

based detection, machine-learning-based detection, and deep-learning-based detection. Therefore, conventional methods 

such as pattern-matching techniques are no longer sufficient for malware detection. Malicious attacks on networks can 
severely disrupt services and operations, highlighting the need for intelligent detection systems capable of recognizing both 

known and unknown threats. Consequently, it becomes essential for security providers and end users to deploy complex 

security measures [3][4]. 

More novel methods have also been proposed based on different characteristics such as heuristics and model checking. 

These technologies incorporate specialized data-mining and deep-learning algorithms to identify malware. Innovative 
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technologies are generally more efficient than traditional approaches, and new methods have been designed to detect 

malicious software on mobile devices and computer networks, thereby preventing potential damage. This development 

responds to the growing and virulent nature of malware attacks. More recently, machine-learning (ML) and deep-learning 

(DL)-based research has been widely used to identify and analyze malware [5]. 

Optimization methods play a crucial role in increasing convergence speed and improving solution quality. Previous 

research has shown that combining Harmony Search and the Meerkat Clan Algorithm improves local search capacity and 

solution quality in complex scheduling problems. In line with such studies emphasizing the effectiveness of hybrid 

optimization techniques, this paper adopts the Grey Wolf Optimization (GWO) algorithm to optimize feature selection for 
malware detection. Optimization techniques are essential in various fields such as engineering, data science, and artificial 

intelligence. These algorithms aim to balance exploration of the search space with exploitation of promising solutions to 

accelerate convergence and achieve better outcomes [6][7]. 

This paper aims to develop an effective, efficient, and computationally less complex malware detection system for the 

Android environment using two deep-learning techniques, CNN and LSTM, to learn spatial and sequential patterns. 

Because the dataset initially contained a large number of features, direct training would have been computationally 

expensive and time-consuming due to redundancy and irrelevant information. To address this issue, feature selection was 

performed using the GWO algorithm, which minimizes the feature space while preserving the most meaningful attributes, 

thereby enhancing training efficiency and model generalization. In addition, data imbalance was addressed using the 

Synthetic Minority Oversampling Technique (SMOTE). The CNN and LSTM models were trained and tested on the 

CICMalDroid2020 dataset, a comprehensive benchmark comprising 17,341 samples of Android applications. 

The remainder of this paper is organized as follows: Section 2 presents related work on malware detection. Section 3 

describes the methodology, including dataset collection, data preprocessing, feature selection, and classification. Section 4 

presents the results and discussion, and Section 5 concludes the paper. 

2. RELATED WORK 

In this section, related studies that have used deep-learning methods for malware detection are summarized. Progress in 

malware detection over the past few years has been based on the principles of machine learning (ML) and deep learning 

(DL), which have significantly improved prediction performance and accuracy in malware identification. Previously, many 

approaches relied on handcrafted features with statistical classifiers for detection and diagnosis; however, they often failed 

to capture complex patterns. In recent years, the use of Convolutional Neural Networks (CNNs) has increased considerably. 
According to [8], Android malware detection was addressed using a CNN-based deep-learning model built on static 

analysis of APK permissions. The authors extracted permission features from the AndroidManifest.xml file, converted them 

into a 10×20 pixel feature map, and applied an improved version of the LeNet-5 model. They utilized datasets from 

CICMalDroid2020, CIC-InvesMal2017, and CIC-InvesAndMal2019, totaling over 17,000 samples. The proposed CNN 

model achieved an accuracy of 90.07%, demonstrating strong efficiency and effectiveness in detecting unknown malware 

and showing suitability for Android-based mobile devices. 

In [9], the authors presented an Android malware detection approach using a hybrid deep-learning model that combines 

static and dynamic analysis. The study employed two datasets: a static dataset derived from Drebin (15,031 samples with 

215 features) and a dynamic dataset from CICMalDroid2020 (11,598 samples with 470 features). Both models were built 

using LSTM networks. The final static model achieved an accuracy of 92.94%, indicating strong performance and 

highlighting the advantage of hybrid modeling over standalone approaches. 

In addition, [10] focused on analyzing mobile applications for malware detection by introducing a methodology that 

emphasizes the application design level rather than the code level. Reverse-engineering techniques were used to generate 

UML class diagrams of APK files, which were later transformed into OWL ontologies. Using SPARQL queries, specific 

malware types such as Data_Send_Trojan were identified. The authors relied on a dataset of 600 malicious Android 

applications from CICMalDroid2020. The proposed model achieved a precision of 92% and a recall of 91%, providing 

strong evidence of the effectiveness of modern code-analysis methods. 
In [11], a hybrid malware detection method for Android applications was proposed by combining CNN techniques. Two 

datasets were used: Drebin and CICMalDroid2020, with benign samples collected from the Google Play Store. The 

proposed model achieved 92% accuracy and a 92.01% F1-score on the Drebin dataset, and 94.6% accuracy with a 94.6% 

F1-score on CICMalDroid2020, outperforming traditional machine-learning and fuzzy-logic-based methods while 

maintaining low computational complexity and parameter count. 

In [12], a dynamic Android malware detection method based on analyzing system-call sequences was presented. The 

approach combines n-gram-based grouping of system calls with local TF-IDF weighting to capture both sequential 

relationships and feature importance. These features were then fed into a deep-learning model for classification. The system 

was evaluated on the CICMalDroid2020 dataset, achieving 91.06% accuracy and a 91.02% F1-score for multi-class 
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classification. Additionally, it demonstrated strong generalization capability, achieving 81.74% accuracy on the unseen 

2019 Androzoo dataset. 

In [13] targeted Android Operating System in malware detection and related information extraction using ViT Attention 

Mechanism. They employed AndroZoo and CICMalDroid2020 datasets in detecting malwares. It utilized the methodology 

of the ViT model (Vision Transformer and considered the attention mechanism to transform the DEX files into pictures 

and analyze them as images to recognize the malicious activity. although used the same dataset, their representation is 

image-based, whereas our model uses encoded features. This difference in representation may influence performance, so 

the comparison should be interpreted with caution. The accuracy of the proposed model was 80.27%, with an F1-score of 
0.77, which proves the effectiveness of the approach compared with other methods in the same field. 

In [14], the study focused on Android malware detection and classification using a hybrid deep-learning approach based 

on static features, system calls, and network flows from the CICMalDroid2020 dataset. For multi-class classification, the 

best-performing model based on static features using MLP achieved 94% accuracy, precision, recall, and F1-score. 

Meanwhile, the multi-view model combining system calls, network flows, and static features using Bi-LSTM + MLP + 

MLP and Bi-GRU + MLP + MLP achieved 83% accuracy, 83% recall, and up to 84% precision and F1-score. Further 

improvements could be made to multi-class categorization. 

In [15], the authors presented an Android malware detection method by visualizing static features and classifying them 

using a CNN model. They used the CICMalDroid2020 dataset consisting of 17,341 applications and extracted static 

features such as permissions, intents, receivers, and services using AndroPyTool. These features were transformed into 

embedding vectors using BERT and then combined into 157×45-pixel images. The CNN model classified these images 

into benign or malware classes. The proposed approach achieved 91% accuracy, an F1-score of 89%, and a recall of 91%, 

demonstrating effective performance compared with several other CNN-based and vision-transformer models in the same 

domain. 

Another study [16] proposed MAPAS, an Android malware detection system that leverages CNN to analyze API call 

graphs and extract common behavioral patterns in malicious applications. MAPAS outperforms the state-of-the-art 

MaMaDroid by classifying applications 145.8% faster while using ten times less memory. It also achieves 91.27% accuracy 
in detecting unknown malware, compared with MaMaDroid’s 84.99%. 
 
In [17] proposed a better Transformer-based malware detection model of Android in Internet-of-Vehicles environments. The 
proposed system combines an improved Transformer encoder with a recurrent neural network (RNN) and uses  Grey Wolf 
GWO in the selection of the features and Snake Optimizer Algorithm (SOA) to optimize the hyperparameters. This hybrid 
structure can effectively be used to detect more complicated semantic and sequence patterns in malicious programs and 
hence be used to classify them more accurately. The dataset in the study was a collection of Android applications (APK files) 
consisting of benign and malicious applications, where behavioral and API-call features were extracted from the APKs to 
build the feature set for classification. Nonetheless, the paper observed that the computational cost and training overhead of 
the model are still issues that make the model difficult in real-time implementation.  
In [18] introduced a framework of malware detection based on call-graphs was  where a Hierarchical Attention Pooling 
Graph Neural Network is utilized to enhance the coverage of structural and semantic relationships in Android applications. 
The framework improves the identification of malicious activity-related behavioral patterns by modeling each app as a call 
graph and using multi-level attention mechanisms. The study used  the Microsoft Malware Classification Challenge (BIG 
2015) dataset from Kaggle  contains nine well-known malware families and they collected 3368 unpacked malware samples 
from VirusShare and combined them with 6809 benign Windows 10 executables to form a binary detection dataset. The 
research established that hierarchical attention is a more effective way of enabling GNN models to distinguish between 
malicious and benign applications. 
 Another study [19]  proposed a dynamic malware detection framework based on Dynamic Graph Neural Networks 
(DGNNs) which model API call sequences as evolving graphs to capture both temporal and structural behavioral patterns. 
They used the dataset consisting  42,797 malware samples and 1,079 goodware samples. The DGNN-based models achieved 
high accuracy, outperforming traditional machine-learning classifiers.  
New study [20] focused on Android malware classification using a multimodal deep learning approach that combines image 
and graph representations.  The technique fused predictions from CNNs and Graph Neural Networks (GNNs) using a late 
fusion strategy with a meta-classifier (MLP). The best-performing model, combining DenseNet121 and GIN, achieved an 
accuracy of 90.6%, an F1 score of 90.6%, and a recall of 90.6%, outperforming unimodal and earlier fusion models in terms 
of effectiveness and robustness for multi-class malware classification. TABLE I illustrates the summary of  the related studies 
from study goal, dataset used, and limitation. 

The reviewed studies can be grouped into two main categories based on their relation to the architecture proposed in this 

study:  (A) the studies using models that are closer to the CNN -LSTM -Attention framework that is discussed in this paper 

and (B) the ones using different deep learning architectures. A number of studies have used the models of deep learning in 

line with our strategy. The analysis and visualization of features using CNN and neural networks was discussed in [8] and 
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[15] and DNN and hybrid models were presented in [9], [11] and [14]. Research such as [12] and [16] trained deep learning 

on sequences of system-calls or single feature descriptions. In other research works, different architectures are used 

fundamentally differently. Systems based on ViT- and Transformer-based and graph-based methods with the help of GNNs 

were introduced in [13] and [17], [18] and [19], respectively. Broader reviews including Transformer and GNN discussions 

[1], [3] also fall into this category. 

TABLE I . THE SUMMARY OF THE RELATED STUDIES. 

Author(s)/Years Methods/Techniques Brief Description Limitations 

Tang et al. (2021) [8] CNN Modified LeNet-5 A CNN-based approach that 

detects Android malware using 

static analysis of app 

permissions extracted from APK 

files and classified via a 

modified LeNet-5 model. 

lacks evaluation on large-scale 

real-time data or broader 

malware classes. 

Wakhare (2021) [9] LSTM (Static + Dynamic 

Models) 

A hybrid Android malware 

detection approach using LSTM 

for both static (permissions, 

API, intents) and dynamic 

(system calls) features. 

lacks evaluation against real-

time unknown malware. 

Aboshady et al. (2022) [10] Ontological Semantic 

Environment 

The study proposed a novel 

method for detecting malware in 

Android applications before the 

coding stage. APK files were 

reverse-engineered to UML 

models, converted into OWL 

ontologies, and analyzed using 

SPARQL to identify the 

malware. 

Limited scalability and 

generalizability due to semi-

manual process and focus on a 

single malware type 

Atacak k et al. (2022) [11] Hybrid CNN + ANFIS Proposed a hybrid model that 

combines convolutional neural 

networks for feature extraction 

and ANFIS (Adaptive Neuro-

Fuzzy Inference System) for 

classification, using permission 

information from Android APK 

files to detect malware 

Limited to permission-based 

static analysis; lacks real-world 

deployment or integration with 

dynamic analysis. 

Hung et al. (2022) [12] TF-IDF + Deep Learning A dynamic malware detection 

approach that analyzes Android 

system call sequences by 

extracting behavioral patterns 

using n-gram and TF-IDF, then 

classifies them using a deep 

neural network to distinguish 

between benign and malicious 

applications. 

untested on real-time detection 

or larger-scale heterogeneous 

environments 

Jo et al. (2023) [13] ViT Attention Mechanism The study developed multiple 

models, including Vision 

Transformers and deep learning 

approaches, for Android 

malware detection, with the ViT 

Attention Mechanism 

outperforming others in 

accuracy. 

The study lacked comparison 

with other existing models for 

malware detection 

Prayoga et al. (2023) [14] Bi-LSTM + Bi-GRU + MLP 

(Multi-view DL) 

The system employs a multi-

view architecture combining Bi-

LSTM or Bi-GRU with MLP 

networks to enhance multi-class 

Android malware classification 

performance through feature-

level fusion. 

Lower performance in multi-

class tasks; high model 

complexity 
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Kiraz and Doğru (2024) [15] CNN + BERT embeddings  A CNN-based Android malware 

detection approach using static 

features (permissions, intents, 

receivers, services), embedded 

with BERT and converted into 

images. 

 

Relies only on static features, 

lacks evaluation in real-world 

environments and limited 

dataset scope 

Kim et al. (2022) [16] Deep Learning CNN the study proposed a malware 

detection system using CNN 

model and static analysis of API 

call graphs extracted from 

benign and malicious Android 

apps 

limited by static analysis 

constraints. 

 

Almakayeel (2024) [17] 

 

Improved Transformer + RNN, 

BGWO (Binary Grey Wolf 

Optimization), SOA (Snake 

Optimizer Algorithm) 

 

Proposed an enhanced hybrid 

Transformer–RNN model for 

Android malware detection in 

IoV environments. The 

technique employs Grey Wolf 

Optimization in feature 

selection and Snake Optimizer 

Algorithm in hyperparameter 

optimization, resulting in high 

accuracy and better 

classification. 

The model is very 

computationally intensive and 

might not be able to support 

real-time application in 

resource constrained systems. 

Guo et al., (2025) [ 81 ] Hierarchical Attention Pooling 

Graph Neural Network 

(HAPGNN)  

 

Introduced the MalHAPGNN 

model that constructs and 

processes Android call graphs 

with hierarchical attention 

pooling to learn structural and 

semantic malware patterns in a 

more effectively. Obtained 

better detection rates than 

traditional GNN. 

Computational expensiveness 

of graph construction and GNN 

training, and needs a lot of 

preprocessing and labeled data 

of high quality. 

Kulkarni et al. (2025) [19] Dynamic Graph Neural 

Networks (DGNNs)  

Developed a DGNN-based 

framework to model temporal 

and structural API-call 

relationships to detect malware 

achieving high accuracy and F1-

score. 

Very expensive to compute, not 

scalable to real-time, relies on 

labeled data and cannot be 

easily understood. 

Arrowsmith et al. (2025) [20] DenseNet121 + GIN a multimodal Android malware 

classification method combining 

binary image analysis using 

CNNs (e.g., DenseNet121) and 

function call graph (FCG) 

analysis using GNNs. 

Limited to a small curated 

dataset; some misclassification 

remains for obfuscated malware 

 

TABLE I illustrates the summary of  the related studies from study goal, dataset used, and limitation. Based on the analysis 
of the related studies a number of limitations were identified: the reliance on static features, lack of powerful feature selection 
mechanisms and the limited generalization of the models to the datasets. In response to these challenges the proposed study 
suggests the use of two deep learning frameworks CNN and LSTM with each being used separately to identify the spatial 
and temporal patterns of malware data.  
In addition, the GWO was incorporated to solve the inefficiency and redundancy of high-dimensional features and minimize 
the training time and enhance the generalization. Using the given methods on the CICMalDroid2020 dataset which offers a 
large and heterogeneous sample of Android malware the proposed system will mitigate the limitations of the previous studies 
and can provide more robust scalable and accurate malware detection. 

3. METHODOLOGY 

The method proposed in this study for Android malware classification involves a series of structured steps. First, steps such 
as giving class labels using encodings and scaling numerical features to prepare the data for learning. Following that a feature 
selection process is conducted using the enhanced GWO algorithm to identify the most informative subset of features and 
reduce computational complexity.  



 

 

 

6 Musa et al, Babylonian Journal of Machine Learning Vol.2026, 1–22 

SMOTE is used on the selected features to balance the training data which has an imbalance class distribution. These 
enhanced and equally important characteristics are given as input to two deep learning models, a CNN and an LSTM to 
perform classification. Finally, Modes of evaluation applied to the prepared models are accuracy, precision, recall value, F1-
score and time used for processing each test case. These stages are discussed in the relevant subchapters. Figure 1 shows 
how the whole pipeline works including preprocessing, feature selection and classification. 

 

 

Fig. 1 . The proposed system for Android malware classification 

3.1  Dataset Description 

The CICMalDroid2020 dataset contains a wide range of Android malware and was developed by the Canadian Institute for 
Cybersecurity. can download from  link https://www.unb.ca/cic/datasets/maldroid-2020.html Its consists a total of 17,341 
Android application samples collected from multiple sources between December 2017 and December 2018. After dynamic 
analysis using the Copper Droid framework, 11,598 samples were successfully analyzed and labeled into five categories: 
Adware, Banking malware, SMS malware, Riskware, and Benign as show in figure 2. For each APK 470 static and dynamic 
behavioral features were extracted, including system calls, binder calls, and composite behaviors. In addition to the main 
feature set. the dataset also includes multiple CSV file formats: one with 470 features another with 139 features focusing 
solely on system calls and an extended version with 50,621 features capturing detailed static attributes such as permissions, 
intent actions, APIs, services and more [ 12 , 22 ]. Each malware category is briefly described as follows in Figure 2. 

 

 

Fig. 2   Categories of groups comprising the Dataset CICMalDroid 2020 

https://www.unb.ca/cic/datasets/maldroid-2020.html
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TABLE II . CICMALDROID 2020 DATASET DESCRIPTION 

Families No. of Apps Description 
Adware 1,253 hides in legitimate apps to repeatedly display unwanted ads, and may steal personal data 
Banking 2,100 Authenticates their internet banking services to steal sensitive data. 
Riskware 2,546 any legitimate app that, if exploited, can cause harm. 
SMS 3,904 Conducts cyber-attacks uses the SMS service to send, intercept, or steal messages 
Benign 1,795 non-malicious applications verify by Virus Total 

 

Further information regarding the dataset presented  TABLE II .it refers to the number of samples that were successfully 
analyzed using the Copper Droid framework, with their features extracted and documented in CSV files. These samples are 
considered usable for training and testing in machine learning and deep learning techniques experiments. 

3.2 Preprocessing 

Preprocessing forms an essential part of every intelligent system using machine learning or deep learning techniques. It 

aspires to clean up data to become more ready for training, which ensures achieving more effective and accurate results. 

This stage includes next steps, the encoding categorical variable and scaling features. The dataset was divided into two 

subsets 80% was used in training and the remainder 20% was used in testing. (SMOTE) method was also implemented on 

the training subset only to solve the problem of class imbalances and test subsets integrity. In addition to this split, there 

was a (3-fold stratified cross-validation) procedure that was applied to the feature selecting and model optimization steps. 
Cross-validation was only carried out based on the 80 % of the training subset to make a solid estimate of model 

performance and also to ensure there is no over-fitting to a particular split. The independent 20% test set was never used 

during training, feature selection, SMOTE oversampling, or cross-validation. This methodology will avoid information 

leakage and ensure generality of the model. 

A. Encoding Categorical Variables 
Data Encoding is important to perform Data Encoding before starting to build your Deep and machine learning 

model. Without this step, algorithms may not be able to deal with textual data correctly. his process to do this 

means turning data from text or categories into numbers so that algorithms have a way to access it. Because few 

learning algorithms understand text or non-numerical labels, changing them to numbers allows them to work 

together better. In addition, it contributes to reducing model complexity and reduces the time needed for training 

the model. This stage consists of two steps: 

1. An integer is associated with each distinct malware type (Adware, Trojan,etc.) As an example, Adware 

= 0, Riskware = 1, Banking = 2. This step formulates a one-to-one correspondence between string labels 

and integers that the labels can be comprehended in the model. 

2. Once the encoding has taken place, the mapping between each original class name to its resultant integer 

value are shown. Also, the size of the unique encoded classes is verified and all types are represented 

properly. 

B. Scale Features 

In order to make features contribute equally to learning process and to fasten the convergence of the model. the 

feature scaling was used by using the Standardization method. This does play a crucial role in deep learning and 

machine learning algorithms where the values of features matter.  Standardization approach also does the same by 

putting the means of each feature in the dataset to zero and the standard deviations to one. Hence, all the values 

will be between [0,1].  All feature values undergo the process of scaling. Except for the column with the labels of 

the classes is not changed. 
The standardization is done as follows: standardization of each feature converts them all to a mean of 0 and a 

standard deviation of 1 as of (1): 

                  𝑍 =
(𝑥 − 𝜇)

𝜎
                                                                                               (1) 

Where: 

x is the original feature value 
μ is the mean of the feature in the training set 

σ is the standard deviation of the feature in the training set 

Z is the standardized value 

3.3 Feature Selection by GWO Algorithm 

In malware detection tasks, datasets can have a very large number of features, many of which are redundant or irrelevant. 
Direct use of all of these features not only exponentially increases the computational cost and training time, but also the 
probability of overfitting, since the model can be taught noise rather than meaningful patterns. In overcoming this difficulty, 



 

 

 

8 Musa et al, Babylonian Journal of Machine Learning Vol.2026, 1–22 

feature selection is used to decrease the number of dimensions of the data set keeping the most informative elements. This 
paper was conducted using GWO algorithm, to choose the best subset of features of the CICMalDroid2020 dataset in order 
to optimize the malware performance. as show in Figure 3 The following steps illustrates the proposed feature selection 
process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  Flowchart for proposed GWO algorithm 

The GWO algorithm for feature selection focuses on nature and follows the nature hierarchy as well as leadership mechanism 
of the grey wolves in nature. Within the scope of the present research the GWO algorithm is used to identify an optimum 
subset of features that would help increase publication accuracy and reduce redundancy. The feature selection process in this 
study was implemented using the GWO . can be described in the following steps: 
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1. First, the algorithm simulates the hunting behavior of grey wolves in that it produces a wide range of candidate 
feature subsets.  

2. Fitness Evaluation: Fitness function defines how well the selected feature subset is chosen. The evaluation of these 
subsets relies on a fitness function which is an evaluation of a balance between classification and feature 
compactness by cross-validation using stratification on a lightweight Random Forest classifier. The following 
procedure is executed for each candidate: 

A  lightweight Random Forest classifier that is implemented to analyze the capacity of the selected features to 

predict. 

Cross-Validation Based Performance Evaluation. The cross-validation approach (Stratified K-Fold Cross-
Validation (K=3)) is used so that the estimation of performance can be reliable. This is trained in one of the folds 
with two parts and the other part used to test the model. In each fold, the model is trained on two parts and tested 

on the third. Fitness Score Computation Then,  is computed in (2): 

  𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑚𝑒𝑎𝑛(𝐹1 − 𝑠𝑐𝑜𝑟𝑒)  − 𝑝𝑒𝑛𝑎𝑙𝑡𝑦                                                  (2) 

where: 

mean(F1-score): refer this represents the average performance of the classification model when using the features 
selected by the current wolf. It is calculated with a very light Random Forest classifier and Stratified k-fold cross-
validation to promote robust assessment. 

Penalty: This term serves as a regularization factor. The objective is to minimize the fitness score in a case when 
the wolf had a considerable number of chosen features. Thus, a penalty is imposed on the fitness function which is 

reduced as the number of features increases. 

3. The optimizer also examines a change in the best fitness score at the conclusion of every iteration. In case there is 
no improvement after 3 consecutive runs (early stopping = 3) the algorithm stops   to prevent unnecessary 
calculation. The control parameter a initially begins with a = 2 and decreases in a linear manner to = 0 during 15 
iterations. The optimizer involves eight wolves (n wolves = 8 ) and trains each subset of features on the weighted 
F1-score with 3-fold cross-validation. 

4. Once the fitness of all the wolves has been evaluated the top three solutions are designated as α, β and δ representing 
the best, second best and third best solutions respectively. In the event that a new wolf has a better fitness the leader 
positions are revised accordingly and the optimal fitness value is stored to be compared later. 

5. In this step Algorithms will keep track of the progress by comparing the current best-fitness and the previous best-
fitness. In case no improvement is made the (no improved) counter is increased. At the same time the control 

parameter (a) is reduced linearly between 2 to 0 with respect to the number of iterations. 

6. In this step Each wolf updates its position (feature subset) by referencing the three leaders. For each feature 
dimension, three directional vectors (X₁, X₂, X₃) are computed based on α, β and δ. The new position is determined 
as a weighted combination in (3) : 

                                      𝑋𝑛𝑒𝑤 =  𝑤𝛼 ⋅  𝑋₁ +  𝑤𝛽 ⋅  𝑋₂ +  𝑤𝛿 ⋅  𝑋₃                                                      (3) 
where: 

          𝑤𝛼, 𝑤𝛽 , 𝑤𝛿  the weights are computed based on the fitness scores of  

𝑋₁ , 𝑋₂, 𝑋₃ represent the suggested positions for a given feature. 

7. Once the position is updated each of the fitness values of all the wolves is recalculated using the new feature subsets. 
The α, β and δ positions update  again in the event that better solutions have been found during this step. 

8. Finally, the optimal feature subset is extracted from the (α) wolf, which represents the best-performing solution. 
This procedure will make sure that the most pertinent and non-redundant features are chosen and this will enhance 
training efficiency and model generalization. 

3.4 Class Imbalance 

Class imbalance is one of the main issues that have to be dealt with during the malware classification tasks when the 

samples are unequally distributed among the target classes. The number of benign applications in CIC-MalDroid2020 is 
by far larger than any malicious category (SMS malware or Riskware). Such an imbalance can cause biased training of the 

model, such that the classifiers prefer the dominant class and ignore the minority cases, which will diminish the detection 

performance on minority malware types. 
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In order to deal with this problem, we used Technique (SMOTE), which was used to oversample the minority classes by 

creating random samples of these classes. finding their nearest neighbors, and then new samples are created that lies on the 

dividing line between the selected sample and its nearest neighbors, as illustrated in Figure 4. 

 

 

 
 

Fig. 4. class distribution before and after SMOTE 

The synthetic samples are produced based on SMOTE algorithm, The newly synthesized instance Xnew is computed as: 

• For each minority class sample xi, select one or more of its k-nearest neighbors 𝑥𝑧𝑖. 

• Create a synthetic sample 𝑥𝑛𝑒𝑤 as of (4)  :  
 

                       𝑥𝑛𝑒𝑤 =  𝑥𝑖 +  𝛿 ⋅  (𝑥𝑧𝑖 −  𝑥𝑖)                                                               (4)       

Where: 

𝑥𝑖 is a sample from the minority class. 

𝑥𝑧𝑖 is one of its nearest neighbors. 

δ is a random value between 0 and 1. 

3.5 Classification Modeling 

During this phase, various scenarios of the DL will be used as experimental set-ups to produce the best results in terms of 

accuracy and efficiency. Although CNN has shown to be effective in modeling spatial interrelationships among features, 

LSTM is good at modeling temporal or sequence dependencies. These will be detailed before delving into the proposed 

model, where satisfactory results were achieved, as explained in subsequent sections. 

A. The Proposed CNN-GWO model 

In this paper, the developed a CNN model in its one-dimensional reduced form   (1D-CNN) to distinguish between malware 

samples and categorize them into the corresponding category depending on the extracted features. This CNN architecture 

was particularly selected because of its ability to automatically learn high dimensional deep and hierarchical representations 

on input features, which plays a critical role in identifying malware since, in this case, patterns are usually complex and 

non-linear. The model was utilized in two circumstances: one was performed on the raw feature set, whereas the second 

one was considering a feature selection (FS) mechanism that reduces the dimensionality by minimizing the negative impact 

on the performance. The suggested 1D CNN structure built up of a hierarchy of convolutional block systems that aim at 

obtaining more abstract features of the input vectors. Reshape layer reorganizes the input into a one-dimensional format 

appropriate to use with convolutional layers.  
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Fig. 5. The Architecture of the Proposed CNN-GWO Model 

 

The Figure 5 as show the architecture of proposed 1D CNN model in malware classification. The proposed CNN-GWO 

architecture as show Figure 5, The model begins with an input layer that stipulates the structure of the data and three 

convolutional blocks that extract hierarchical features. Every convolutional block uses a series of Conv1D, ReLU activation 

and Batch Normalization layers to stabilize the learning then MaxPooling and Dropout layers to decrease the dimensions 

and avoid overfitting. This third block further enlarges the size of the filter to further establish spatial correlations among 

the data. Following the convolutional steps, the resulting output is flattened and taken to fully connected layers, which 

sharpen the learned representations. The last Dense layer that has a SoftMax activation function generates the probability 

of the classes of five different malware types. The proposed architecture represents a further combination of the CNN 

model with the GWO algorithm, which improves the detection rate and reduces excess and model convergence time  The 

architecture of proposed CNN-GWO model architecture model in malware classification is given in the algorithm 1. 

 
Algorithm (1): CNN -GWO Architecture for Malware Classification 

Input: Feature vector of shape (64, 1) 

Output: Class prediction (5 classes) 

1. Input Layer: 

   - Define input layer with shape (features, 1) . 

2. Initial Convolutional Block: 

- Apply two Conv1D layers with (64 filters, kernel size 3, ReLU, same padding) 

- Each Conv1D layer is followed by Batch Normalization. 

- Apply MaxPooling1D (size = 2). 

- Apply Dropout (rate = 0.2). 

2. second Convolutional Block: 

- Apply two Conv1D layers with (128 filters, kernel size 3, ReLU, same padding) 

- Each Conv1D layer is followed by Batch Normalization. 
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- Apply MaxPooling1D (size = 2). 

- Apply Dropout (rate = 0.3). 

2. Third Convolutional Block: 

- Apply one Conv1D layer with (256 filters, kernel size = 3, ReLU activation, same padding). 

- Followed by Batch Normalization, MaxPooling1D (pool size = 2), and Dropout (rate = 0.4). 

3. Fully connected layer: 

- Flatten the output. 

- Apply Dense layer (512, ReLU) followed by Batch Normalization and Dropout (0.5). 

- Apply Dense layer (256, ReLU) followed by Batch Normalization and Dropout (0.5). 

- Apply the final Dense layer with 5 units and SoftMax activation for classification. 

End 

 

B. The proposed LSTM-GWO model 

LSTMs are significantly more effective in modeling such dependencies, even non-linearity or subtle dependencies which 

makes the approach highly effective at identifying highly evasive forms of malware. The reason why we have chosen the 

LSTM model in this study is that it has been shown as the capable to learn properly with temporal data and to generalize 

sufficiently across malware families. The proposed architecture uses LSTM is provided by reshaping the main input vector 

into the form relatable with the input to LSTM layers, where each feature will represent a single time step.  

The Figure 6 as show the architecture of LSTM model in malware classification. The proposed LSTM-GWO architecture 

as show Figure 6, The model starts with a layer of input that takes the feature or size (64) followed by two sequential LSTM 

layers to capture temporal dependencies in the data. The information is then processed by a Bidirectional LSTM layer to 

process information both forward and backward. Then, the most significant features are brought to the fore by an attention 

mechanism. The output is sent through fully connected layers with ReLU activation, L2 regularization, Batch normalization 

and dropout to improve generalization. Lastly, a SoftMax layer generates the classification output of five classes and the 

GWO optimizes model parameters to achieve the best performance 

 

Fig. 6. The Architecture of the Proposed LSTM-GWO Model 
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The architecture of proposed LSTM-GWO model architecture model in malware classification is given in the algorithm 2. 

 
Algorithm (2): LSTM-GWO Architecture Malware Classification 

Input: Feature vector of shape (64, 1) 

Output: Class prediction (5 classes) 

 Input Layer: 

- Define input layer with shape (64, 1) 

 LSTM Block 1: 

- Apply LSTM layer with 128 units and return_sequences=True 

- Apply Dropout with rate 0.3 

LSTM Block 2: 

- Apply LSTM layer with 256 units and return_sequences=True 

- Apply Dropout with rate 0.3 

Bidirectional LSTM: 

- Apply Bidirectional LSTM layer with 128 units and return_sequences=True 

- Apply Dropout with rate 0.4 

Attention Mechanism: 

- Apply attention layer to focus on the most relevant time  

Fully Connected Layers: 

- Apply Dense layer with 160 units, ReLU activation, and L2 regularization 

- Apply Batch Normalization 

- Apply Dropout with rate 0.5 

- Apply final Dense layer with 5 units and SoftMax activation to predict class probabilities 

End 

 

3.6 Evaluation Metrics Methods 

For the purpose of evaluating every one of the models several measures of the assessment were used such as accuracy, 

precision, F1-score, and recall. The parameters of the confusion matrix were employed in assessing the outcomes of the 

proposed system, in which Figure 7 shows the values of true positive (TP), true negative (TN), false positive (FP), and 

false negative (FN). 

 

Fig.7. the confusion matrix used in the classification process 

Evidence of the proposed system was measured by using four parameters as the following points: 

 

1. Accuracy: The performance measure of accuracy is quite broadly used and it has been described as the division of 

the number of samples that have been correctly classified to an overall number of samples [17]. based on (5). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100%                                                                            (5) 

 
2.  Precision: the has been computed as a proportion between the number of positive results that have been accurately 

predicted and the number of positive predictions [2]. Precision can be computed based on (6). 

                                                                  Precision =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                           (6) 
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3. Recall: The recall may be denoted as a degree of the completeness where measurements are made on the proportion 

of the positive observations that have been accurately predicted with all the observations in actual class. the true 

positive instances divided by the total positive instances [2].  This parameter may be calculated in (7). 

                     𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                               (7) 

 

4. F1 score: in malware classification provides a consistent mean of precision and recall and a balanced indicator of 

the accuracy of the model used in detecting malicious App, this parameter may be calculated in (8). 
 

𝐹1_𝑆𝑐𝑜𝑟𝑒𝑖 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛× 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
                                                                           (8) 

 

4. RESULT AND DISCUSSION 

This section contains the experimental results of the proposed malware detecting models and its analysis. Data preprocessing, 
selection of features by means of QWO algorithm and a CNN , LSTM classification strategy. The CNN and LSTM 
architectures were tested against different measures, which were accuracy, loss, and the confusion matrix. The Google Colab 
platform was used to conduct the experiments with Python 3.12.12 and the TensorFlow 2.19.0 framework According to the 
results the deep learning methods prove to be efficient in recognizing and categorizing various malicious software types with 

a high accuracy. 

4.1 Encoding Categorical Result 

All the categorical labels in the target column (i.e. Class) were converted to numerical codes. The encoding process 

successfully converted the five distinct malware classes into integer labels ranging from 0 to 4. The analysis confirmed that 

all five classes were accurately encoded and preserved without any data loss. The following TABLE IV shows the Encoding 

Categorical Variables for five class.  
TABLE IV . ENCODING CATEGORICAL VARIABLES ERESULT 

Classes Encoded 

Adware 0 

Banking 1 

Benign 2 

Riskware 3 

SMS malware 4 

 

4.2 Scale Features Result 

This preprocessing made each feature have a standard deviation of 1 and a mean of 0. The impact of standardization, the 
scaling effect, was confirmed as the distribution of the features was observed to lie within a normalized range after the 
transformation occurred. This finding greatly enhanced the stability and performance of the training process by making the 
model converge quicker and not bear bias on features that have larger values. The following TABLE V shows the Summary 
of Pre-processing Results. 

TABLE V . SUMMARY OF PRE-PROCESSING RESULT 

Metric Before Pre-processing After Pre-processing 

Total Samples in Dataset (Before Split) 11,598 11,598 

Label Encoding of Target Variable Adware, Banking, Benign, 

Riskware, SMS malware (text) 

0, 1, 2, 3, 4 (numeric) 

Mean of Features (example before 

normalization - first 5 features) 

5.59702522e+01 -6.50960687e-18 

Standard Deviation of Features (example 

before normalization - first 5 features) 

4.28508307e+02 1 

 

4.3 Feature Selection Results 

In this study, the GWO algorithm was used in selecting the features in this study. The overall goal of GWO was to eliminate 
those features that were irrelevant or redundant and hence increase the global performance in the classification and 
achievement in decreasing the complexity of the models. The dataset included 470 features then, by using GWO its feature 
set was minimized to that containing the most informative elements (e.g., 110 features), hence the dimensionality became 
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significantly lower. This led to quicker training of the models, fewer chances of overfitting and better able accuracy of the 
classification. The GWO algorithm was executed with 8 wolves and 15 iterations, optimization reached the end at the 10 
iteration whose best score was fitness 0. 9301.The TABLE VI Summarizes the feature Selection results including the number 
of wolves, total iterations, best score, number of selected features, and execution time (488.62 seconds). 

TABLE VI . THE GWO ALGORITM HYPERPARAMTER  

Item Value 

Number of wolves 8 

Total iteration 15 

Iteration at which best score was achieved 10 

Best fitness score 0.9301 

Number of selected features 110 

Feature Selection Time 488.62 sec. 

 
In addition, the dimensionality reduction effect of GWO can be represented by Figure 8 which indicates a reduction in the 
number of features of 470 to 110. the feature selection process done under the guidance of the GWO algorithm was critical 
in the dimensionality reduction without the performance of the model being spoilt as the model concentrated on the most 
relevant features. This methodology not only improves  accuracy but also provides a faster processing time. 

 

 

 
Fig.8. Number of Selected Features Before and After GOW 

4.4 Classification Result 

After preparing the data and passing through the pre-processing stages, including steps such as data balancing and others. 

Finally, the feature selection technique was implemented. The data is now ready for classification. 

4.4.1  Results of the proposed CNN-GWO model 

The selected features obtained using the GWO algorithm were used to train the CNN model. Figure 9 shows the training 

and validation accuracy and loss graphs of the CNN model across 50 epochs. The model had a fast trajectory of 

improvement as can be observed in the accuracy plot as shown the model took the first epochs to exponentially improve 

with the validation accuracy almost reaching 100% after the first ten epochs. The performance gradually increased and 

stabilized around 96.97%, around later epochs, which is evidence to the fact that the model obtained high generalization 

potential without severe over-fitting. 

Equally, the loss graph shows that the downwards trend is sharp between the initial training phases falling off a scale of 

above 2.0 to below 0.3 between the 1st and 10th epoch. Training and validation losses gradually declined to the values of 

approximately 0.1 during the last epochs. The similarity plot of the training and validation curves in both plots indicates 

the CNN model had a well-balanced learning process, as it managed to achieve the lowest levels of training the loss 

functions without reducing the levels of predictive accuracy during the test. 

These findings point to the stability and robustness of the proposed CNN architecture, once again ascertaining the worth 
of feature selection procedure in dimensionality reduction and performance boosting of the model.  



 

 

 

16 Musa et al, Babylonian Journal of Machine Learning Vol.2026, 1–22 

 
 

Fig. 9.   Model accuracy and loss for proposed CNN-GWO model 

The Figure 9 show the result of training and the test shows that the model has a consistent and predictable performance in 

all training epochs. The classification accuracy of the training and the test data showed an increased rate of increase at the 

initial stages, which points to the fact that the model has a high capacity to learn the important patterns in the data. 

Moreover, the values of the loss continued to drop gradually and to low values, which indicated the performance of 

optimization process and the efficiency of the learning process. The high correspondence between the training and test 

curves is a clear indication that the model is not overfitting, meaning that it has obtained a proper balance between the 

training data and its good generalization to the unseen data. 

 

 

 
Fig .10.     Confusion matrix of proposed CNN-GWO model with five class 

The Figure 10 the performance of the presented model is presented in terms of confusion matrices in absolute count (left) 

and percent (right). The outcomes show good levels of classification accuracy and most of the samples are correctly 

predicted. Percentage-based matrix on the right shows that the model has a high level of discrimination capacity since the 
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accuracy predicting each class is above 90%, which proves the effectiveness of the given approach in providing excellent 

classification results. 

TABLE VII.  DETAILED CLASSIFICATION REPORT FOR CNN AND PROPOSED CNN-GWO MODEL 

 

  CNN       

Class Accuracy Precision recall f1-score    Accuracy Precision recall f1-score    

Adware 83% 70% 83% 76% 92% 83% 94% 89% 

Banking 89% 81% 89% 85% 88% 91% 89% 90% 

SMS 93% 98% 93% 96% 99% 97% 98% 98% 

Riskware 87% 90% 87% 88% 89% 96% 89% 92% 

Benign 84% 90% 84% 87% 89% 90% 90% 90% 

accuracy 88% 88% 88% 88% 93% 93% 93% 93% 

macro avg 86% 87% 86% 86% 92% 91% 92% 92% 

weighted avg 89% 88% 89% 89% 93% 93% 93% 93% 

 

The classification report is shown in TABLE VI, which was carried out after the trained model has been evaluated on its 

independent test set. 
 

TABLE VIII. RESULT FOR CNN AND PROPOSED CNN-GWO MODEL 
 

 

 

 

 

 

  

 
 

 

 

TABLE VIII shows the results of comparing the performance of the model of CNN with and without the feature selection. It 

can be observed that after feature selection all metrics improved significantly with the best metric being the accuracy, 

precision, recall, and F1-score which increased to almost 93% in the results. The training time was reduced by a little extent 

whereas the inference time went down. Such results emphasize that the feature selection process not only increase the 

predictive accuracy of the model but also made it more efficient in inference. 

4.4.2  Results of the proposed LSTM-GWO model 

The features that were selected by means of the GWO algorithm were used to train the LSTM model. The Figure 11 shows 

training and validation accuracy and loss curves of the LSTM model throughout the 80 epochs. An accuracy plot indicates 

a rapid increase of accuracy in the early epochs with the validation accuracy being sharply hiked up even in the first 10 

epochs and nears 90 %. Performance kept improving after each epoch, reaching its optimal level of 96.97 % in the later 

times showing that the model had a good generalization capability with minimum overfitting. Similarly, the loss plot shows 

a steeply decreasing trend during the first stages, with the numbers shifting to the left by more than twofold, and to the 

right by 0.3, by the 10th epoch. Both train and validation losses slowly dropped to about 0.1 at the end epochs.  

The fact that the training and validation curves are co-aligned in terms of accuracy and loss indicates that the LSTM model 

at hand had an accurate and stable learning process. These results reinforce the effectiveness of the model architecture and 

the feature selection process in enhancing performance and reducing dimensionality. 

 
 

 Without grey wolf CNN With grey wolf CNN 

Time train 

Inference Time 
 

234.43 seconds. 

0.9309 seconds 

440.85 seconds 

0.6812 seconds 

Accuracy 88% 93% 

Precision 88% 93% 

Recall 88% 92% 

F1-Score 88% 92% 

Proposed CNN-GWO 
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                                   Fig. 11. Model accuracy and loss for Proposed LSTM-GWO mode 

 Figure 11 show the result of training and the test shows that the model has a consistent and predictable performance in all 

training epochs. The classification accuracy of the training and the test data showed an increased rate of increase at the 

initial stages, which points to the fact that the model has a high capacity to learn the important patterns in the data. 

Moreover, the values of the loss continued to drop gradually and to low values, which indicated the performance of 

optimization process and the efficiency of the learning process. The high correspondence between the training and test 

curves is a clear indication that the model is not overfitting, meaning that it has obtained a proper balance between the 

training data and its good generalization to the unseen data. 

 

 
Fig.12.  Confusion matrix of proposed LSTM-GWO model with five class 
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The Figure 12 shows the absolute count version of a confusion matrix representing the performance of the proposed LSTM 

model. The outcomes show the successful classification accuracy since the majority of the samples are accurately classified 

as per the various classes. The matrix demonstrates that model has a good accuracy in distinguishing among types of 

malwares, with scorers being especially high in such types of malwares as SMS malware and Riskware. These findings 

indicate how empirical the proposed method is in providing trustworthy and valid results when classifying. 
 

TABLE IX.  DETAILED CLASSIFICATION REPORT FOR LSTM AND PROPOSED LSTM-GWO MODEL 

 
         

Class Accuracy Precision recall f1-score    Accuracy Precision recall f1-score    

Adware 84% 78% 84% 81% 82% 77% 82% 79% 

Banking 86% 85% 86% 88% 87% 89% 87% 88% 

SMS 97% 96% 97% 96% 98% 95% 98% 97% 

Riskware 88% 91% 88% 89% 88% 90% 88% 89% 

Benign 80% 86% 80% 83% 79% 84% 79% 81% 

accuracy 89% 89% 89% 89% 90% 90% 90% 90% 

macro avg 87% 87% 87% 87% 87% 87% 87% 87% 

weighted avg 89% 89% 89% 89% 89% 89% 89% 89% 

 

The classification report is shown in TABLE IX, which was carried out after the trained model has been evaluated on 

its independent test set. 

 
TABLE X.  RESULT FOR LSTM AND PROPOSED LSTM-GWO MODEL 

 

 
 

 

 

 

 

TABLE X shows the comparisons of the LSTM model performance with and without the feature selection. One can note 

that following feature selection, the evaluation metrics were all deemed to have improved slightly; the accuracy and 

precision were raised to 90% alongside recall and F1-score. Training time was enhanced by 1050 seconds with the inference 

time rising by 1.438 seconds as well. These result shows that despite the minor increase in the computational expenditure. 

Feature selection activity helped in modifying the model predictive performance and created better classification results. 

 
TABLE XI. RESULTS OF THE PROPOSED MODEL AND OTHER DL MODELS 

 

 

 

 

 

 

TABLE XI. shows the results related to the classification report (accuracy, Precision, and F-score) for all algorithms that were 

conducted.  Experiments have proven that the proposed model outperforms with accuracy, efficiency, and computational 

complexity. 
 

TABLE XII. COMPARISON BETWEEN THE PROPOSED SYSTEM AND THE LITERATURE REVIEW PAPERS  

 Without grey wolf LSTM With grey wolf LSTM 

Time train  

Inference Time 

5604.55 seconds 

4.6959 seconds 

7654.66 seconds 

6.1339 seconds 

Accuracy 89% 90% 

Precision 89% 90% 

Recall 89% 90% 

F1 Score 89% 90% 

Algorithm Accuracy Precision recall f1-score    

CNN 88% 88% 88% 88% 

LSTM 89% 89% 89% 89% 

the Proposed LSTM-GWO model 90% 90% 90% 90% 

the Proposed CNN-GWO model 93% 93% 92% 92% 

Author / Year  Method  Accuracy  F1-score  Precision  Recall  

Tang et al. (2021) [8]  CNN(LeNet-5 based) 90% – – – 

Wakhare (2021) [9] LSTM (Static + Dynamic Models) 94% %96  %98  – 

Aboshady et al. (2022) [10] Ontological Semantic Environment -  -  92% 91% 

Atacak et al. (2022) [11]  CNN + ANFIS      94% 94% 94% 94% 

Hung et al. (2022) [12]  TF-IDF + Deep Learning 91% 91% – 91% 

Jo et al. (2023) [13] ViT Attention Mechanism %68 %78 %78 %68 

Prayoga et al. (2023) [14] Bi-LSTM + Bi-GRU + MLP %83  %83  %83  %83  

Kiraz and Doğru (2024) [15]  CNN 91% 89% 90% 91% 

Arrowsmith et al. (2025) [20]  CNN (DenseNet121) + GNN (GIN) with MLP  90% 90% – 90% 

Proposed system grey wolf +LSTM grey wolf +LSTM 90%     90% 90% 90% 

Proposed system grey wolf +CNN grey wolf +CNN 93% 93% 92% 92% 

LSTM Proposed LSTM-GWO 
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TABLE XII presents an analysis and comparison of earlier research and studies on the topic of Detecting malware attacks 

using various methods and techniques. Findings unequivocally demonstrate that, when compared to alternative approaches 

and comparable research that employ DL techniques for categorical classification using Dataset CICMalDroid 2020, This 

table compares different deep learning and machine learning models based on their performance measures: Accuracy, F1-

score, Precision, and Recall. The table shows methods from studies done between 2022 and 2024. It allows for an easy 

comparison with the new system which uses a CNN design along with GWO algorithm. In addition, Jo et al. [13] utilized 

the same dataset, their study employed an image-based representation, whereas the proposed model relies on encoded 

feature vectors. Such a difference in feature representation can have an effect on the end performance measures. That is 
why the comparison with their work should be considered carefully, considering the possible influence of such varying 

input forms. The experimental findings validate the evident superiority of CNN with GWO as compared to LSTM with 

GWO. The CNN model had a high accuracy of 93% and much lower training time (440.85 seconds) than LSTM which 

attained only 90 % and far longer training time (7654.66 seconds). The results emphasize that CNN with GWO did not 

only improve the precision but also demonstrated superior computational efficiency. It brings to light the fact that CNN 

with GWO is a more stable and efficient method of detecting malware.  

4.5 Statistical Analysis Results 

A statistical analysis was done to determine whether the performance gains achieved by GWO-enhanced models (CNN-

GWO and LSTM-GWO) are statistically significant with reference to the performance of their counterparts who had no 
GWO enhancement. A total of five repeated runs per model were performed using the same training and testing data. Two 

statistics measures have been calculated: 

1. Paired t-test: is employed to find out whether the performance variation between two models is statistically 

significant when the two models are tested on the same repeated runs. It makes the determination as to whether 

there is a greater difference in the means of paired observations than it would be with mere chance. The test 

generates a t-statistic, which is used to measure the strength of the difference, and p-value, which shows whether 

the difference is statistically significant or not. This parameter may be calculated in (9): 

                                                  𝑡 =  
𝑑́

√
𝑛

𝑆𝐷

                                                                                          (9) 

Where: 

               𝑑́: mean of the differences between the two models. 

                 𝑆𝐷 : standard deviation of these differences. 

                  𝑛 : number of paired runs. 

 

2. The confidence interval (CI) : gives the range within which the true population parameter should be within a 

given confidence level, which is usually 95%. It is applied to analyze the consistency of the model work with 

repeated executions and to measure the uncertainties of the estimated measures. The 95 percent confidence 

interval of the mean is calculated by the following in (10): 

                  𝐶𝐼 = 𝑥́  ± 𝑍(
𝜕

√𝑛
)

́
                                                                                         (10) 

Where: 

               𝑥́: the sample mean of the performance metric across repeated runs. 

                      𝜕 : standard deviation of these differences. 

                  𝑧 : standard deviation of these differences. 

                  𝑛 : number of paired runs. 

 

The statistical comparison of the base models (CNN and LSTM) and their GWO-optimized models is summarized in the 

following TABLE XIII: 

TABLE XIII. SUMMARIZED STATISTICAL ANALYSIS RESULT  

Metric  Comparison  T-statistic  P-value  Confidence Interval  

Accuracy 
CNN vs CNN-GWO 

 

LSTM vs LSTM-GWO 

 

 

–7.52 

 

–4.47 

 

 
0.0000 

 

0.0000 

(87%, 89%) vs (92%, 93%)  

(89%, 89%) vs (91%, 91%)  

 

Precision CNN vs CNN-GWO −2.980 0.0000 (87%, 89%) vs (92%, 93%)  
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LSTM vs LSTM-GWO 

 

 

−4.000 
 

 

0.0000 
 

(89%, 89%) vs (91%, 91%)  

 

recall CNN vs CNN-GWO 

 

LSTM vs LSTM-GWO 

 

−5.01 

 

−1.000 

0.0000 

 

0.0000 
 

(88%, 88%) vs (92%, 92%)  

(89%, 89%) vs (92%, 92%)  

 

f1-score    CNN vs CNN-GWO 

 

LSTM vs LSTM-GWO 

−4.743 

 

−4.000 
 

0.0000 

 

0.0000 
 

(88%, 88%) vs (92%, 92%)  

(89%, 89%) vs (92%, 92%) 

 

 

 

All p- values less than 0.05, which means that GWO improves are statistically significant. The confidence intervals have 

made it quite clear that there is a steady increase in the performance following the application of GWO. In metrics where 

each run gave the identical best score (e.g., Precision, Recall, F1 of most models), the variance will be zero, meaning the 

t-test will give a t-test significance ( p = 0.0000 ) and the confidence interval will reduce to a single value, this is normal. 

Statistical analysis proves that the application of GWO to CNN and LSTM models has led to a significant improvement in 
the accuracy, precision, recall, and F1-score. This shows how effective and reliable the proposed method of optimization 

can be. 

5. CONCLUSION 

This paper introduces an efficient and thorough malware classification strategy based on the methodology which involves 

deep learning and feature selection strategy. It was proposed that CNN and LSTM with grey wolf Optimization algorithm 

specifically would be optimized in terms of high accuracy and low computation load. The effectiveness of this model is 

proven by the results of the experiment, which produced high metrics in terms of accuracy, F1-score, precision and recall. 

Notably, the proposed CNN-GWO model achieved a 93% accuracy score because of its implementation with cross-

validation techniques. This method of evaluation on different data subsets reduced overfitting and ensured that new data 

samples would yield results similar to the current data sample that would replicate its ability to reliably differentiate. In 

addition, the feature selection process done under the guidance of the GWO algorithm was critical in the dimensionality 

reduction without the performance of the model being spoilt as the model concentrated on the most relevant features. This 

is more than the accuracy; this methodology offers a faster processing time. Despite its promising results, the study 

acknowledges limitations related to dataset variability and generalizability. Resampling the data set with the SMOTE 

technique led to improved accuracy in the results and the performance of the model. The directions of the future work 

might lie in scaling the approach to larger and more diverse data and trying to trace the potential of detecting things in a 

dynamic environment in real time. 
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