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A B S T R A C T  

 

In this study, Climate Research Unit (CRU) data crossing from 1901 to 2022 was utilized to analyze and 
predict evaporation rates in Almaty, Kazakhstan. The data was prepared utilizing Python, leveraging the 
Random Forest (RF) machine learning Techniques for its capability to handle complex and non-linear 
information. The essential measurements for assessing the model's execution were Cruel Supreme 
Blunder (MAE), Root Cruel Square Mistake (RMSE), and Cruel Squared Mistake (MSE). The Random 
Forest model was utilized in prediction and data examination. This model is recognized by its capacity 
to process non-linear and complex data by making a set of choice trees and joining their comes about to 
get exact and steady predictions. The model is based on arbitrary testing with bootstrap testing, which 
makes a difference decrease change and increment the precision of the demonstrate. 
 

1. INTRODUCTION 

Random Forest (RF) regression may be an effective and flexible machine learning algorithm that has picked up noteworthy 
ubiquity in different areas, counting climate science. It is an gathering learning strategy that builds numerous choice trees 
amid preparing and blends their expectations to move forward precision and anticipate overfitting. This strategy is especially 
compelling in dealing with expansive datasets with various highlights, making it perfect for analyzing complex natural and 
climate-related variables [1], [2]. Within the setting of climate figure analysis, Arbitrary Timberland relapse can be utilized 
to distinguish and get it the connections between different climatic factors and their impact on natural marvels. For 
occurrence, analysts can utilize RF to anticipate temperature, precipitation, or the event of extraordinary climate occasions 
based on authentic climate information [3]. The capacity of Irregular Woodland to handle non-linear intelligent and high-
dimensional information makes it a vigorous apparatus for modeling the perplexing elements of climate frameworks [4]. In 
addition, RF relapse offers bits of knowledge into the significance of diverse climatic variables by assessing their 
commitment to the expectation demonstrate [5]. This include is especially important for recognizing key drivers of climate 
designs and their potential suggestions on common and human frameworks [6]. By leveraging the interpretability and 
prescient control of Random Woodland, researchers can improve their understanding of climate forms, make strides 
estimating models, and educate decision-making for climate adjustment and moderation techniques [7]. The Random Forest 
calculation, presented by Breiman [8], has been broadly received due to its effortlessness and adequacy. In natural science, 
RF has been utilized for different applications, such as foreseeing soil properties [9], assessing woodland biomass [10], and 
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analyzing hydrological data [11]. The adaptability of RF permits it to be connected to different datasets, making it a valuable 
apparatus for climate investigate. Climate alter may be a complex issue impacted by different variables, counting nursery 
gas emanations, arrive utilize changes, and characteristic inconstancy [12]. Exact climate models are basic for understanding 
and predicting these changes. RF relapse makes a difference move forward these models by giving strong expectations and 
recognizing basic factors [13]. For case, ponders have utilized RF to analyze the effect of climate alter on edit yields [14], 
evaluate the hazard of fierce blazes [15], and assess the impacts of climate inconstancy on water assets [16]. Besides, RF can 
handle lost data and exceptions viably, which are common in climate datasets [17]. This capability upgrades the unwavering 
quality of the predictions and the bits of knowledge determined from the examination. The utilize of RF in climate science 
is backed by various considers that illustrate its exactness and interpretability compared to other machine learning strategies 
[18]. 
 

2. RELATED WORK 

The Random Forest (RF) relapse in climate science, especially in analyzing and predicting climate variables such as 

dissipation, has been investigated broadly in later a long time. This segment audits key studies that have utilized RF models 

to analyze climatic factors and predict dissipation rates, highlighting the algorithm's strength and flexibility. 

Vanishing may be a basic component of the hydrological cycle and is affected by different climatic components such as 

temperature, mugginess, wind speed, and sun-oriented radiation [19]. Exact expectation of dissipation is fundamental for 

water asset administration, farming, and understanding climate alter impacts. RF relapse has demonstrated to be an viable 

instrument in this space due to its capacity to handle complex, non-linear connections among different factors. 

A few considers have illustrated the adequacy of RF in predicting vanishing. For occurrence, Feng et al. [20] utilized RF 

to appraise every day evaporation rates in parched districts of China, appearing that RF outflanked conventional 

observational models in terms of accuracy. Essentially, Rahmati et al. [21] utilized RF to predict dish dissipation in Iran, 

joining climatic factors and illustrating the model's prevalent execution compared to different straight relapse models. 

Jiang et al. [22] connected RF to anticipate reference evapotranspiration in China and found that the RF demonstrate given 

more precise and dependable expectations than other machine learning models such as support vector machines and 

manufactured neural systems. This think about underscored RF's capability to handle expansive datasets with various 

climatic factors. 

In another consider, Pourtaheri et al. [23] utilized RF to anticipate monthly vanishing rates in different climatic zones of 

Iran. Their discoveries highlighted RF's strength in capturing the non-linear intuitive between climatic variables and 

dissipation rates, leading to moved forward expectation accuracy. 

The predominance of RF in anticipating dissipation has been highlighted through comparisons with other strategies. For 

case, Mohammadi et al. [24] compared RF with numerous straight relapses, bolster vector relapse, and manufactured neural 

systems for predicting monthly container vanishing in semi-arid locales. The RF demonstrate reliably given superior 

execution measurements, outlining its capability to handle complex intuitive among climatic factors. 

Additionally, Zounemat-Kermani et al. [25 assessed the execution of RF, versatile neuro-fuzzy deduction framework, and 

quality expression programming in predicting daily dish vanishing. Then comes about shown that RF advertised higher 

prediction exactness and strength, particularly in locales with noteworthy climatic inconstancy. 

Joining RF with farther detecting data has assist upgraded its application in climate science. For occasion, Zhao et al. [26] 

combined RF with satellite-derived data to predict evaporation rates over expansive spatial scales within the Yellow 

Waterway bowl. The study demonstrated that RF may successfully utilize high-dimensional remote sensing data to supply 

precise dissipation gauges. 

Besides, Ahmed et al. [27] utilized RF in conjunction with farther detecting data to assess evapotranspiration within the 

Nile Delta. The integration of farther sensing data permitted for nitty gritty spatial and transient analysis, altogether 

progressing the expectation exactness of the RF show. 

RF relapse too gives bits of knowledge into the significance of different climatic components in predicting dissipation. For 

case, Shiri et al. [28] utilized RF to analyze the relative significance of climatic factors such as temperature, humidity, and 

wind speed in anticipating daily vanishing rates in numerous climatic locales. Their findings revealed that temperature and 

humidity were the foremost persuasive factors, consistent with other thinks about [29], [30]. 

Later progresses in RF methods have advance moved forward its application in climate science. For occasion, Li et al. [31] 

created an moved forward RF calculation that consolidates a highlight choice strategy to upgrade the model's prediction 

exactness for every day vanishing rates. This approach diminished the model's complexity and made strides its 

interpretability. 

Moreover, Sun et al. [32] proposed a cross breed demonstrate combining RF with a hereditary calculation to optimize the 

model's parameters for anticipating monthly dissipation rates. The cross-breed show illustrated predominant execution 

compared to standalone RF, highlighting the potential for combining RF with other optimization methods. 
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3. STUDY AREA 

Almaty, the biggest city in Kazakhstan found between 43.2565Â° N and 76.9285Â° E, is arranged within the southeastern 
portion of the nation, close the border with Kyrgyzstan. The city lies within the foothills of the Trans-Ili Alatau mountains, 
portion of the northern Tian Shan Mountain extend. Almaty is known for its assorted climate, extending from cold, cold 
winters to hot, dry summers, making it an perfect area for considering climatic variables and their effect on hydrological 
forms such as evaporation. 

 

Fig. 1. Location map of Study area[33]. 

4. DATA 

In our work, we used Climate Research Unit CRU data. The data is available from 1901 to 2022. The data is extracted and 
loaded automatically, and then converted from 3D to Excel using the MATLAB program to facilitate its processing in Python 
and the use of any model or analysis. The data is characterized by its high accuracy and great reliability. The primary purpose 
of CRU data is to support scientific research and climate modeling. These data are used to assess climate change, analyze 
trends, and predict future climate conditions. They play a key role in understanding the impacts of climate change on 
ecosystems and human activities [34-37]. 

5. RANDOM FOREST 

Random Forest (RF) is a machine learning method that's broadly utilized in expectation and data examination. This 

demonstrate is characterized by its capacity to handle non-linear and complex data. RF is based on making a set of choice 

trees and combining them comes about to get more exact and steady predictions. 
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RF demonstrate comprises of a huge number of choice trees, each of which is prepared on a haphazardly chosen subset of 

data with a return (Bootstrap Sampling). This approach makes a difference to diminish fluctuation and increment the 

accuracy of the demonstrate. 

Gini Index 

The Gini coefficient is utilized to degree the virtue of a node. It is communicated by the condition: 

𝑖
2𝑝𝑖=1

𝐶 ∑ − 1 = Gini⁡(𝑡)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1) 
where 𝑝𝑖 is the proportion of samples of class⁡𝑖 in node 𝑡. 
Entropy 

Entropy is utilized as a degree of immaculateness and is communicated by the condition: 

𝑝𝑖log2⁡(𝑝𝑖)𝑖=1
𝐶 ∑−= Entropy⁡(𝑡)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2) 

where 𝑝𝑖 is the proportion of samples of class 𝑖⁡at node 𝑡. 
 

6. RESULTS  

Evaporation data for each month over the past ten a long time were analyzed and the values of cruel outright blunder 

(MAE), root cruel square error (RMSE) and cruel error (ME) were calculated for each month. The results appeared that the 

prediction accuracy changes between months, with a few months such as July appearing higher values of cruel supreme 

error, root cruel square error and cruel error, demonstrating a more prominent disparity between anticipated and real values. 

In differentiate, a few months such as January appeared lower values these parameters, showing higher prediction accuracy. 

The comes about appear that the prediction accuracy shifts between months, with anticipated and actual values varying 

depending on distinctive climatic variables. Months with tall values of cruel supreme error, root cruel square mistake and 

cruel blunder speak to a more prominent challenge in prediction, requiring advancement of the models utilized and 

expanding their accuracy. 

TABLE I.  THE (MEA), (RMSE) AND (ME) VALUES WERE CALCULATED FOR EACH MONTH 

 

Month ME RMSE MAE 

January 0.479712 0.692612 0.58516 

February 0.740171 0.860332 0.74664 

March 0.614393 0.783833 0.65924 

April 1.19104 1.091348 0.9192 

May 1.180314 1.086423 0.87372 

June 0.701496 0.837554 0.66616 

July 0.60267 0.776318 0.5858 

August 1.001414 1.000707 0.87064 

September 0.638727 0.799204 0.6524 

October 0.800216 0.894548 0.72568 

November 0.517217 0.719178 0.55004 

December 0.458836 0.677374 0.57312 

 

The analysis centered on monthly evaporation data over the past decade. The comes about shifted altogether between 

diverse months: 

January: Lower prediction errors with MAE, RMSE, and MSE values of 0.58516, 0.692612, and 0.479712, separately, 

demonstrating higher prediction accuracy. 

July: Higher forecast errors with values of 0.5858 (MAE), 0.776318 (RMSE), and 0.60267 (MSE), proposing more 

prominent errors between predicted and real values. 

April and May: Outstandingly tall errors with April appearing MAE of 0.9192, RMSE of 1.091348, and MSE of 1.19104. 

May had comparable tall values, demonstrating challenging prediction precision for these months. 

Other Months: The errors for the remaining months were middle of the road, with Eminent and October too appearing 

moderately tall prediction errors. 
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Fig. 2. The prediction evaporation for the period from 2010 to 2022 for January. 

 

 
Fig. 3. The prediction evaporation for the period from 2010 to 2022 for February. 

 
Fig. 4. The prediction evaporation for the period from 2010 to 2022 for March. 
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Fig. 5. The prediction evaporation for the period from 2010 to 2022 for April. 

 
Fig. 6. The prediction evaporation for the period from 2010 to 2022 for May. 

 
Fig. 7. The prediction evaporation for the period from 2010 to 2022 for June. 
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Fig. 8. The prediction evaporation for the period from 2010 to 2022 for July. 

 
Fig. 9. The prediction evaporation for the period from 2010 to 2022 for August. 

 
Fig. 10. The prediction evaporation for the period from 2010 to 2022 for Septmper. 
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Fig. 11. The prediction evaporation for the period from 2010 to 2022 for October. 

 

Fig. 12. The prediction evaporation for the period from 2010 to 2022 for November. 

 

Fig. 13. The prediction evaporation for the period from 2010 to 2022 for December. 
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7. CONCLUSIONS 

This ponder presents a viable demonstrate for utilizing Random Forest to predict evaporation based on precise and long-term 
data from the Climate Research Unit (CRU). The comes about appeared variety in prediction precision between different 
months, highlighting the have to be progress the models utilized to extend their precision. Months such as January were more 
exact in prediction, whereas months such as July showed a huge variety between predicted and real values. Months that 
showed large variety reflect the challenges related with climate forecasts. The seasonal error analysis appears the significance 
of understanding the variables influencing evaporation to make strides models. This inquire about highlights the viability of 
machine learning models in analyzing climate data and giving profitable bits of knowledge into future changes. The think 
about moreover shows the require for encourage research to create more precise models that take under consideration climate 
complexities. These results contribute to supporting scientific research and viable applications within the field of climate 
change, making a difference to create way better choices based on dependable data and exact analyses. In this manner, these 
results call for the proceeded advancement and improvement of climate models to support future research and achieve 
effective practical applications intending to the challenges of climate change. 
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