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A B S T R A C T  
 

Because brain tumors are complex, they must be diagnosed accurately and early. Brain tumor diagnosis 

requires expert radiologists and large datasets of annotated images, which is resource-intensive and 

time-consuming. This study investigates the use of transfer learning techniques to detect and classify 

brain tumors using MRI images. Using transfer learning, pre-trained models can be tuned to perform 

specific medical tasks while reducing the impact of large datasets. AlexNet, GoogleNet, ResNet-50, 

and VGG-16 were compared for classifying gliomas, meningioma’s, and pituitary tumors based on 

transfer learning models. Based on the findings, the proposed hybrid GN-AlexNet model showed 

superior accuracy, sensitivity, specificity, and F1 score when compared with all other models, 

demonstrating its potential for improving brain tumor detection efficiency. The findings of this 

research pave the way for the adoption of transfer learning in clinical settings, providing medical 

professionals with more efficient and accessible solutions. 

1. INTRODUCTION 

A brain tumor's complexity and its nature make accurate diagnosis and classification difficult. The development of artificial 

intelligence and machine learning (ML) is making transfer learning increasingly important in the field of medical imaging[1]. 

It is possible to fine-tune large datasets without extensive labelling to meet specific tasks, resulting in high levels of accuracy 

and cost savings. In the study, researchers investigated whether different transfer learning approaches could be more effective 

at detecting and categorizing brain tumors. An analysis of transfer learning methods for detecting and classifying brain 

tumors. This study aims to gain a better understanding of how to leverage transfer learning in the field of neuro-oncology by 
evaluating different pre-trained models and their adaptability to medical imaging tasks. As a result of these findings, 

improved diagnostic precision and better treatment planning could result in potentially saving lives and reducing healthcare 

costs[2]. 

The term tumor also refers to a neoplasm formed when abnormal cells grow uncontrollably [3]. Brain tumors or cancer are 

abnormal masses of tissues in the brain or spinal canal in which small numbers of cells grow uncontrollably without being 

controlled by normal processes [4]. The skull encloses our brain, which is very rigid. Such a small space allows tumors to 

grow vigorously, which interferes with the brain's natural functions. Inorganic chemicals or genetic disorders can be major 

causes of deadly cancerous cells in the brain. In addition to benign tumors, there are also malignant tumors (cancers) that 

develop in the brain. The pressure inside people's skulls increases when benign or carcinoma tumours grow, causing several 

complications. There is a serious risk of traumatic brain injury and even death as a result of this. Human survival rates can 

be improved greatly by detecting brain tumors at an early stage. Several techniques have been proposed to predict brain 
tumors. Brain cancers can be classified as gliomas, meningiomas, or pituitary tumors [5]. E-healthcare has become 

increasingly dependent on medical imaging technology in today's environment[6]. Medical experts struggle to identify 

deadly brain tumor cells due to many obstacles. As the tenth most common disease, brain tumors must be diagnosed early 

as they pose a major threat to health. It is possible to develop a cancerous tumor of the brain in a number of different locations 

and at varying sizes and dimensions. 
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For medical image analysis, various techniques are used to obtain images of the soft tissue of the human body. An MRI 

image is one of the images that medical experts use[7]. Using this technique, the patient's condition can be determined 

accurately based on the image data analysis of human brain tumors [8]. Since it normalizes tissue contrast and enhances 

image quality, it has a wide range of applications. MRI images can reveal brain abnormalities by providing genetic, 

physiological, chemistry, and biological information [9]. Depending on where they come from and how they behave, tumors 
can be classified into different types. A primary brain tumor originates in the central hemisphere of a vertebrate, while a 

secondary brain tumor originates in other organs in humans. 

A glioma usually arises from a brain cell inside (gluey). (This cell is referred to as the glial cell and plays a significant role 

in brain cell function. World Health Organization (WHO) guidelines define grade II-III gliomas as non-glioblastic and grade 

IV gliomas as glioblastic [10]. Normally, tumor-producing glial cells come in three forms [11]. 

Since the brain and spinal cord are two of the most important control centers in the human body, any damage to them is 

extremely concerning. Tumors can develop anywhere on the body, and they come in many different types [12]. Today's most 

advanced treatments include surgery, chemotherapy, radiation, and combinations of these treatments. There is a high 

likelihood that patients will not survive more than 14 months, even under the most intensive medical supervision. Using 

these techniques, medical professionals are able to view the body in detail, giving them an in-depth understanding of 

symptoms and their locations. The early detection and classification of BT can enable medical professionals to plan 

appropriate treatment using imaging modalities, such as MRIs [13]. 
Additionally, BT primarily occurs in the pituitary, glioma, and meningioma glands. Tumors of the pituitary gland are usually 

harmless and develop in the basal layer of the brain, where they produce many important hormones [14]. In gliomas, 

uncontrolled growth of glial cells leads to malignancy. The central nervous system is typically supported by these cells, 

which are found in nerves. Brain gliomas, as well as spinal cord gliomas, can develop [15]. Brain and spinal cord membranes 

can be affected by cancers called meningiomas [16]. 

2. RELATED WORK  

The term brain tumour refers to any growth of cells in or near the brain. It is possible for brain tumours to develop in the 

brain tissue. A brain tumor can affect the tissues in the brain as well. Several nearby structures are related to neural 

pathways, pituitary glands, and pineal glands [15]. Primary brain cancer is a tumour that originates in the brain. It is possible 
for cancer to spread to the brain from other parts of the body at times. A primary brain tumor and a metastatic brain tumor 

are two different types. A brain tumour may either be malignant (cancerous) or benign (non-cancerous). Surgery cannot 

remove malignant brain tumours, a form of cancer that is among the deadliest. 

Early detection of brain tumours is essential for effective treatment [17]. There is also a difference between a primary brain 

tumor, which arises from brain nerves, and a metastatic tumour, which has transferred from another part of the body to the 

brain. In adults, about 80% of malignant brain tumors are lymphomas or gliomas of the central nervous system. 

In this section, the authors outline the noteworthy research that has been conducted in the related field. Among the methods 

presented are largely state-of-the-art CNNs. They used a variety of CNN architectures for categorization [17], including 

VGGNets, GoogleNets, and ResNets, each repeated several times. According to [18], ResNet-50 performed well in the 

implementation, achieving 96.65% accuracy. Next, GoogleNet achieved 93.45% accuracy and VGGNets 89.33% accuracy. 

Additionally,[18] reported 75% and 85% accuracy levels for support vector machines and linear discriminant analyses, 
respectively, using leave-one-out cross-validation. Pediatric brain tumors are differentiated by a set of vital metabolites, 

according to a study. VGG-16, ResNet-50, and EfficientNet-B0 are among the models used [19]. It performed 99.8% better 

than other models when compared to EfficientNet-B0. 

According to the authors of [20], this research should be carried out in five steps. In the first step, the edge of the source 

image is determined by linear contrast stretching. Deep neural networks are used to segment brain tumours at stage 2 using 

a 17-layer architecture. Step 3 involves the extraction of features using a modified MobileNetV2 architecture. System 

training is then based on transfer learning. Step 4 includes analyzing pituitary, meningioma, and glioma images to classify 

brain tumors using M-SVM. As part of step 5, entropy-based controlled techniques are combined with M-SVM (multiclass 

support vector machines) to select the best features. This 5-step process was found to be more accurate, both visually and 

numerically, than other methods, achieving 97.47% accuracy and 98.92% accuracy. 

An adapted Google-Net model was used by the authors of [21], Based on Google-Net models that were fine-tuned, they 

achieved 93.1% accuracy. The authors used an SVM with Google-Net to achieve an accuracy of 98.1%. Inception v3, 
MobileNetV2, and VGG19 were CNN-based pretrained models used to classify brain X-ray images. Using ImageNet, tiny 

data was examined. A 93% F1 score for brain tumours and a 91% score for healthy individuals was achieved for 

MobileNetv2. 

Additionally, the authors used a U-Net model to analyze two standard datasets, namely the 2017 and 2018 Brain Tumor 

Segmentation Challenges [22]. Segmentation achieved an accuracy rate of 93.40%, while classification achieved a rate of 

92.20%. According to the authors, images were classified into tumour cores (TC), enhancement cores (EC), and whole 
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tumors (WT). Based on the comparative evaluation, it was determined that U-Net was effective. Similar to [23], the authors 

worked on tumour identification using hyperparameters. A better set of parameters was chosen based on the results. CNN-

based U-Net models were also advocated in that study because they yielded 92% accuracy. 

According to the authors, they used transfer learning to compare VGG-16, ResNet-50, and Inception v3 [11]. A 96% 

accuracy rate was observed for Inception v3, an 89% accuracy rate for ResNet-50, and a 75% accuracy rate for VGG-16. 
Based on the results, VGG-16 performed better than both other models. The authors also used a CNN-based approach [24]. 

The authors also used a CNN-based approach. Additionally, 25 new MRI images were tested and found to be 96% accurate. 

The authors in [25] investigated whether VGG-16 could be used to classify brain tumors, achieving an accuracy of 91%, 

which increased to 94% once hyperparameters were tuned effectively[26]. 

3. METHODOLOGY  

This paper describes how the GN-AlexNet deep learning model is used to classify images from the CE-MRI data set into 

three types of BT tumors. A CAD system for BT classification has been developed and tested. We have tested and 

developed the main modules of the proposed BT classification CAD system. 

3.1.  Brain Tumor CE-MRI Dataset 

An MRI dataset that was publicly available was used by the authors for their research [27]. A total of 262 patients underwent 

brain MRIs at the TJU Hospital in China. The collection contains 3062 MRI images, including 1426 gliomas, 760 

meningiomas, and 940 pituitary tumors. The image includes 512 x 512 layers and a size of 0.49 x 0.49 𝑚𝑚2. An MRI 

image was used for training in this study (2146) and for testing in this study (918). 

3.2.  Augmenting and pre-processing data 

A total of 3075 BT images are included in this dataset. The images were converted to grayscale. As well as the label of the 

image, these pre-processed data are one of the inputs to the neural network. Gliomas are depicted in Label 1, pituitary 

glands are depicted in Label 2, and meningiomas are depicted in Label 3. An effective training dataset for GN-AlexNet 

requires a total of 3075 MRI images. This problem can be solved through data augmentation. In this method, data is rotated 
and scaled, and noise is added to the already existing data to make it larger. Increasing or decreasing the brightness range 

of an image, rotating it horizontally or vertically, and zooming in on it will magnify the data. Through the use of all these 

methods, MRI images have been enhanced. Data size was increased by 16 times using augmentation methods, reducing 

overfitting [28]. 

3.3.  Proposed Model 

For identifying and segmenting three kinds of brain tumors (pituitary, meningioma, and glioma), this study will develop a 

hybrid transfer learning model that includes both AlexNet and GoogleNet. After discussing AlexNet and GoogleNet, we 

move on to the details of the hybrid GN-AlexNet deep learning model. 

3.3.1. AlexNet 

In the development of the AlexNet model, [29]. On 30 September 2012, ImageNet hosted the Large-Scale Visual 

Recognition Competition within AlexNet. Top-5 error rates decreased by 10.8 points (from 15.3% to 15.3%) between the 

network and the runner-up. Through the use of graphics processing units (GPUs) in training, the depth of the model could 

be adjusted in a more efficient manner. 

Through the use of graphics processing units (GPUs) in training, the depth of the model could be adjusted in a more efficient 

manner. In contrast to only capturing low-level characteristics in the first convolutional layer, the subsequent two layers 

extracted high-level features. Maximizing the pooling at the end of the network increased accuracy as per Figure 1. 

 
Fig. 1. AlexNet model block diagrams. 
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3.3.2. GoogleNeT 

GN-AlexNet is a hybrid deep model combining GoogleNet with its fundamental layers. In addition to AlexNet, the model 

also includes. In the beginning, convolution networks can be challenging to train, and it can sometimes take several hours 

to complete the process. Hence, it may be more beneficial to train the proposed model with a classifier than to construct 

one from scratch. Ideally, this would be the best approach. ILSVRC (2014) ImageNet competition, GoogleNet's [30] 
Successful participation in the 2014 ImageNet competition organized by ILSVRC. Only 22 of GoogleNet's 144 layers can 

be learned. A total of nine modules are inception layers, two convolution layers, four maximum pooling layers, one average 

pooling layer, and two normalization layers. As well as the six CLS that were standard in the inception modules, each 

included one MX layer. In GoogleNet, new input layers have been added with dimensions 224 × 224 × 1. The GooLeNet 

algorithm utilized activated ReLUs as part of its pre-training. A zero will be substituted for any negative value during the 

ReLU activation procedure. A Leaky ReLU improves performance by replacing negative values with positive ones. While 

developing Deep Transfer learning model, GoogleNet classifier was lost. After removing them, ten more layers were added. 

The leaky ReLU activation function has also been applied to the ReLU activation function in the feature map layer for 

improved expressiveness and to solve the dying ReLU issue. 

In GoogleNet, three NIN (Network In Network) methods have been implemented: the 11 Convolution method, the global 

average pooling method, and the inception modules method.  As shown in Figure 2a, the inception module consists of three 

convolutional layers including a 33-pixel pooling layer and 11-pixel convolutional layers. As the data from a lower layer 
is processed in parallel, the results are then sent up to the next layer in order to generate feature maps. Networking is made 

easier with this method. As a result of applying 11 convolutions to the inception module's internal layers, processing 

requirements were significantly reduced. 

 

 
Fig. 2. GoogleNet network architecture. (a) Module without convolution. (b) Convolution Layer at inception 

 

A convolution neural network could be modified without changing its fundamental structure. As a result of these 

modifications, 154 layers have been added to the previous 144. An 8 x 8 filter (patch) size reduced the image size 

immediately after applying the first convolution layer. Two-layer convolution network based on 1x1 convolution blocks. 

Reducing dimensions was the goal, so it was achieved. The GoogleNet inception module extracts features to the smallest 

degree with convolution kernels such as 1 by 1, 3 by 3, and 5 by 5 [31]. 

3.3.3. The Hybrid GN-AlexNet Model 

Our model is also more expressive and the dying ReLU issue has been resolved by modifying the activation function for 

ReLUs in the feature map layer. With this approach, it is possible to extract more rich, more discriminative, and deeper 

features than state-of-the-art pretrained deep learning models. Based on a comparison of the results in Figure 3, it can be 

seen that classification performance has improved. 
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Fig. 3. The proposed GN-AlexNet model. 

 

It consists of five layers, which include input, convolution, activation, normalization, Maxpooling, fully connected, 

softmax, and classification. Images are processed by the input layer after they have been received. Image inputs of 

dimensions 224 x 224 x 11 are used in GN-AlexNet learning models. This three-digit number indicates how wide, how 

high, and how many channels an image has in grayscale format. Input layers were applied before further processing. Image 

matrices and image filters are required as inputs to convolution layers. Input images were multiplied by the filter to produce 

feature maps. Here is a mathematical expression for the convolution layer: Equation (1). 

𝑍𝑏
𝑎 = ∑ 𝐾𝑎𝑗

𝑘

𝑖∈𝑑𝑐

 

∗ 𝑦𝑙
𝑐−1 + 𝑎𝑑

𝑐                                                                                   (1) 

Feature maps represent both layers represented by 𝑍𝑏
𝑎 and c-1 of layer D, whereas layers 𝐾 and 𝑎𝑑

𝑐  show bias 

In the activation layer, the neural network has a nonlinear activation function. Increasing the training speed is achieved 

through the use of rectifier linear units (ReLUs). ReLU activation is described by equation (2). 

𝑅(𝑥) = {
𝑥 𝑖𝑓 𝑥 > 0
0 𝑖𝑓 𝑥 ≤ 0

                                                                                        (2) 

As a result of the proposed convolution layers, the output parameters need to be normalized using a batch normalization 

layer. Normalization enables a shorter training period, leading to more efficient and effective learning. Their location 

dependence limits feature capture by convolutional layers. Due to this, classifications are incorrect if a feature's location 

changes slightly in an image. Fortunately, max-pooling can overcome this limitation by reducing the size of the 

representation and making it insensitive to minor changes. For the purpose of connecting the features, we used the 

maximum and average pools. 
Fully connected layers receive features after convolutional layers have learned them. There are nodes in layers that are 

"fully connected" with the nodes in the layer above. Using this layer, input images can be labelled according to their class. 

There is a softmax layer that uses activation functions. During training, it is necessary to minimize the Loss function (H). 

Following the passing of all layers, an output calculation is performed. When calculating error rates based on loss functions, 

the desired output is subtracted from the actual output. Several iterations are necessary to minimize the loss function. Loss 

function was determined using categorical cross-entropy (CCE). CCE is represented mathematically by equation (3). 

𝐻 = −𝐻 = − ∑ 𝑦𝑚
𝑙 .

𝑀

𝑚=1
𝑘𝑙𝑜𝑔 �̂�𝑚

𝑗
                                                                                  (3) 

In 𝑦𝑚
𝑙 , sample m is predicted from 𝑀 samples, and sample 𝑚 is targeted from 𝑀 samples. 

3.3.4. VGG-16 Model.  

In our experiment, we used VGG-16-trained CNNs. As a result, some convolution (Conv) layers have been frozen in order 

to prevent overfitting problems and avoid overfitting problems due to the small image dataset. Designed in 2014 by 

researchers, VGG-16 has sixteen convolution layers [15]. Brain MRI images, which have dimensions of 224 x 224 x 3, are 

accepted as input. In a network, the conversion layers consist of kernels with 3x3 filter sizes and 5 max-pooling layers of 

2x2 dimensions [36]. A softmax output layer and extensive ReLU activation functions are included. An approximate 138 
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million hyperparameters are contained in the VGG-16 model. A deep neural network is constructed by stacking multiple 

convolutional layers in order to learn the features of invisible handcrafted products. As the model's behaviour is controlled 

by its hyperparameters, they are essential. In this method, the predefined loss function is minimized, and the results are 

improved. Several hyperparameters can be tuned, including the number of neurons, the number of epochs, softmax 

activation functions, learning rates, and optimizers. To tune a hyperparameter, you must first determine how many 
convolution layers it should have. 

Thus, as ConvNet depth increases, hidden features can be learned at a subordinate cost. An overview of the VGG-16 

ConvNet architecture can be seen in the figure below. 

3.3.5. ResNet-50 Model. 

Developed by Microsoft Research in 2015 [12], ResNet50 is a 50-layer Residual Network comprised of 26M parameters. 

Residual Networks use the concept of feature subtraction to refer to residuals. Instead of adding features to a layer, we 

learn from the subtraction of features and inputs into the layer. As compared to conventional deep CNNs, ResNet50 requires 

less training time. Based on the ImageNet database, a pretrained model is developed [1]. Therefore, these networks are 

more accurate in classifying images. In addition to skip connections, it normalizes a large number of batches at once. A 

gated recurrent unit or a gated unit specifies these skip connectivity. In order to create a deep neural network, an input from 

an 𝑛𝑡ℎ a layer is connected directly to an (𝑛 + 𝑥)𝑡ℎlayer. 

As compared with VGG16 or VGG19 models, this Residual Network is less complex in terms of time complexity. We 

calibrated a pretrained ResNet50 model for use in our experiment. 

3.3.6. Performance metric evaluation  

It is proposed that a number of metrics should be measured in order to assess the effectiveness of the model, including 

accuracy, precision, recall, sensitivity, specificity, and F1-score. A confusion matrix shows the model's predictions based 

on untested examples as well as its predictions class-by-class. In subsequent subsections, each evaluation metric will be 

discussed in more detail following a brief description. 

 Sensitivity (Se)  

To determine whether a patient has a brain tumor, a model must be sensitive and recallable, especially for categorizing 

brain tumors. Additionally, we evaluate this model on the basis of accuracy, precision, recall, sensitivity, specificity, and 

F1-score. For the calculation of model sensitivity and recall, here is a formula: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆𝑒) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                             (4) 

 Specificity (Sp)  

As a measure of how often predicted negative labels are actually negative, specificity is called the true negative rate (TNR). 

In the following equation, we present the formula for computing specificity, 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑆𝑝) = 𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                                                                  (5) 

 Accuracy (Acc)  

To determine the accuracy of the model, the number of correctly predicted labels is compared to the total number of labels. 

Comparing the number of correctly predicted labels to the total number of labels is one way to determine a model's 

accuracy. In classification tasks, precision is a key evaluation metric, and a formula is available for calculating it. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝑐𝑐) =
𝑇𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                                                 (6) 

 F1-score  

F1 scores are often referred to as F-measures due to their correlation with accuracy and recall. Measuring the model's 

overall performance with this metric is comprehensive. F1-score highlights the importance of balancing precision and 

recall. Below, you will find the formula that is used to calculate the F1 score, 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                                                         (7) 

 Confusion matrix  

The confusion matrix, or error matrix as it is sometimes called, contains data about actual labels and predicted class 

assignments (ground truth). In this paper, the model's generalizability and overall performance are discussed in detail. An 

explanation matrix contains y-axis ground truth and x-axis predicted labels. 

4. RESULTS AND DISCUSSION  

Analyses of the F1 score, sensitivity, specificity, and accuracy are conducted between AlexNet and a proposed model. The 

graph below shows the performance results of both models. Purple bars represent the proposed model, while orange bars 
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represent AlexNet. Consequently, the proposed model performs better when it comes to correctly classifying positive and 

negative cases and dealing with imbalanced data. The performance of the proposed model is clearly improved over that of 

AlexNet, a widely known architecture. These findings suggest that the proposed model would provide enhanced results for 

these key evaluation categories, indicating its suitability. The accuracy rate of AlexNet was 95.60 percent, which is an 

excellent result. 

 

Fig. 4. Performance evaluation of the proposed model's. 

All metrics show that the proposed model outperforms the VGG-16 model. A purple bar indicates the proposed model is 

more accurate, sensitive, specific, and has a higher F1 score than an orange bar. According to this, the proposed model is 

better able to identify positive and negative cases, as well as to cope with class imbalances, than the VGG-16 model. In 

this particular evaluation, the proposed model appears to deliver more reliable and robust results than the VGG-16 

architecture. The VGG16 model achieved 97.66% accuracy. 

 

  

Fig. 5. Proposed model comparison of the proposed model with existing model. 

All evaluated metrics show that the proposed model performs better than ResNet-50. Purple bars (proposed model) are 

higher than orange bars (ResNet-50), indicating that the proposed model is more accurate, sensitive, specific, and F1. 

Compared to ResNet-50, the proposed model correctly identifies positive and negative cases, handles class imbalances 

better, and provides higher overall classification accuracy. In these important evaluation categories, the proposed model 
proved to be more robust and reliable than ResNet-50. ResNet-50 achieves 96.90% accuracy, which is an impressive 

achievement for a model of this type. 
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Fig. 6. Proposed model performance compared to the ResNet-50. 

Based on all four evaluation categories, purple bars consistently performed better than orange bars. In terms of accuracy, 

sensitivity, specificity, and F1, the proposed model performs near-perfectly, while GoogleNet performs significantly worse, 

particularly on sensitivity and specificity. Hence, the proposed model can correctly identify positive and negative cases and 
handle imbalanced data. GoogleNet, on the other hand, performs much less well. Considering the large difference between 

these results, the proposed model is more efficient and robust than GoogleNet, making it a perfect fit for the task. 

GoogleNet's accuracy is 98.99%. 

 

Fig. 7. Proposed model performance compared to the Google-Net. 

5. CONCLUSION  

Using MRI images, this study compares various transfer learning models for detecting brain tumors. As a result, the 

proposed hybrid GN-AlexNet model demonstrates significantly superior accuracy, sensitivity, specificity, and F1 score to 

AlexNet, GoogleNet, ResNet-50, and VGG-16. Based on its superior performance, it could lead to more accurate and 

reliable brain tumor classifications that could improve early diagnosis and treatment planning. The use of transfer learning, 

especially when combined with data augmentation, has proven a valuable method to overcome challenges related to the 

limited amount of labelled data and the efficiency of model training. Future efforts should focus on further optimization, 

evaluating the model's performance on a larger and more diverse dataset, and exploring how it can be deployed in clinical 

settings to assist healthcare professionals in diagnosing brain tumors. 
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