

*Corresponding author. Email: z02kadkr@uco.es

Research Article

Network-Centric Approaches in Systems Development Life Cycle (SDLC): A

Comprehensive Survey

Roula Abduljabbar 1,*, , Mustafa A Jalil 1 ,

1 Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Cordoba, Campus Universit ario de

Rabanales, Cordoba, 14071, Spain.

A R T I C L E I N F O

Article History

Received 12 Jun 2023

Accepted 14 Aug 2023

Published 15 Sep 2023

Keywords

Systems Development

Life Cycle (SDLC)

Network Integration

Information Systems

Network Security

Scalability

Agile Development

Cloud Computing

A B S T R A C T

In the rapidly evolving technological landscape, the integration of network considerations into the
Systems Development Life Cycle (SDLC) is critical for developing robust and efficient information
systems. This survey examines traditional SDLC models and explores how network requirements can be
incorporated into each phase to enhance system performance, scalability, and security. By analyzing
recent advancements and case studies, this paper provides insights into best practices for network
integration and highlights the challenges and opportunities that arise in network-centric system
development. The findings emphasize the need for adaptive SDLC frameworks that accommodate the
complexities of modern network environments, offering valuable guidance for future research and
practice.

1. INTRODUCTION

The System Development Life Cycle (SDLC) is a structured process that guides the development of high-quality information
systems. Traditionally, SDLC models have focused on the technical and functional aspects of system development, often
neglecting the critical role of networks. As organizations increasingly depend on complex, interconnected systems,
integrating network considerations into the SDLC becomes essential. Networks impact every phase of the SDLC, from initial
planning and design to implementation and maintenance, influencing system performance, security, and scalability [1].

This paper surveys the existing SDLC models, examining how network integration can be achieved throughout the life cycle.
By exploring both theoretical frameworks and practical applications, we aim to provide a comprehensive understanding of
how network requirements can be embedded within SDLC processes. This survey also identifies the challenges and best
practices associated with network-centric system development, offering insights into future trends and research directions.

2. LITERATURE REVIEW

2.1 Traditional SDLC Models and Network Limitations
The Systems Development Life Cycle (SDLC) has been a cornerstone of software engineering, with models such as
Waterfall, Agile, and V-Model providing structured frameworks for development [2]. The Waterfall model, characterized
by its linear, sequential approach, has been effective for projects with well-defined requirements. However, it often struggles
to accommodate the dynamic nature of network environments, where requirements can evolve rapidly. Similarly, Agile
methodologies, with their emphasis on iterative development and user feedback, offer greater flexibility but may not fully
address network-specific challenges such as security and scalability [3].

Babylonian Journal of Networking

Vol.2023, pp. 77–81

DOI: https://doi.org/10.58496/BJN/2023/009; ISSN: 3006-5372

https://mesopotamian.press/journals/index.php/BJN

https://mesopotamian.press
https://orcid.org/0009-0008-3307-8134
https://orcid.org/0009-0006-7864-1563
https://creativecommons.org/licenses/by/4.0/
https://mesopotamian.press/journals/index.php/BJN
https://doi.org/10.58496/BJN/2023/009
https://mesopotamian.press/journals/index.php/BJN

78 Abduljabbar & Jalil , Babylonian Journal of Networking Vol.2023, 77–81

The V-Model, another traditional SDLC approach, emphasizes verification and validation at each stage but often lacks the
flexibility to incorporate network changes that arise during the development process. As network technologies evolve, these
traditional models must be adapted to ensure that network considerations are integrated throughout the lifecycle [4,5].

3. NETWORK INTEGRATION IN SDL PHASES
a. Planning: Incorporating network requirements during the planning phase involves identifying network

infrastructure needs, bandwidth, latency, and security protocols. This proactive approach ensures that the system's
network capabilities align with organizational goals. For example, in cloud-based environments, planning must
consider data storage locations, network redundancy, and failover strategies to ensure seamless service delivery [6].

b. Analysis: The analysis phase should assess network dependencies and constraints, considering how network
architecture impacts data flow and system performance. This stage is crucial for identifying potential bottlenecks
and security vulnerabilities. For instance, in Internet of Things (IoT) applications, the analysis must account for
device connectivity, data transmission rates, and energy consumption [7].

c. Design: Network integration in the design phase focuses on developing architectures that support scalability and
resilience. This includes selecting appropriate network technologies and designing robust communication protocols.
In distributed systems, the design phase must address issues related to load balancing, data replication, and fault
tolerance to ensure efficient network operations [8].

d. Development: During development, network engineers and software developers collaborate to implement network
features and optimize system performance. This phase requires a deep understanding of network protocols and
technologies. For instance, in microservices architecture, developers must design services that can communicate
efficiently over the network while ensuring security and data integrity [9].

e. Testing: Testing must include network-specific scenarios, such as load testing and security assessments, to ensure
that the system can withstand real-world network conditions. Performance testing should evaluate the system's
ability to handle peak loads and maintain acceptable response times. Additionally, security testing should identify
vulnerabilities in network communications and data exchanges [10].

f. Implementation and Maintenance: Implementation involves deploying the system within its network
environment, while maintenance ensures that network updates and security patches are regularly applied to maintain
system integrity. Continuous monitoring and proactive maintenance are essential to address emerging network
threats and ensure optimal performance [11].

4. CHALLENGES AND PRACTICES [5]

Network integration within SDLC presents several challenges, including managing complexity, ensuring security, and
achieving scalability. Best practices involve adopting adaptive frameworks that accommodate changing network
requirements, leveraging automation tools for network management, and fostering collaboration between network and
software teams.

1. Planning: In the first phase, the team determines whether or not there’s a need for a new system to reach the strategic
objectives of a business. This is a feasibility study or preliminary plan for the company to acquire any resources
necessary to improve a service or build on specific infrastructure. The main purpose of this step is to identify the
scope of the problem and come up with different solutions. Some of the things to consider here include costs,
benefits, time, resources, and so on. This is the most crucial step because it sets the tone for the project’s overall
success. Thorough research is required before moving forward to the next stage.

2. Analysis: The second SDLC phase is where teams will work on the root of their problem or need for a change. In
case there’s a problem to solve, possible solutions are submitted and analyzed to figure out the best fit for the
project’s ultimate goal or goals. It’s where teams consider the functional requirements of the solution. Systems
analysis is key in figuring out what a business's needs are. It also helps point out how those needs can be met, who
will be responsible for certain parts of the project, and the timeline that should be expected.

3. Design: A Detailed List of the System Development Life Cycle Phases1-1Phase 3 defines the necessary
specifications, operations, and features that will satisfy all functional requirements of the proposed system. It’s
where end users can discuss and identify their specific business information needs for the application. During this
phase, users will consider the important components, networking capabilities, and procedures to accomplish the
project’s primary objectives.

79 Abduljabbar & Jalil , Babylonian Journal of Networking Vol.2023, 77–81

4. Development: Real work officially begins in the fourth phase. This is the part when a network engineer, software
developer, and/or programmer are brought on to conduct major work on the system. This includes ensuring the
system process is organized properly through a flow chart. Many consider this the most robust SDLC stage as all
the labor-intensive tasks are accomplished here. Phase 4 represents the real beginning of software production and
hardware installation (if necessary).

5. Testing & Integration: In the fifth phase, systems integration and testing are carried out by Quality Assurance (QA)
professionals. They will be responsible for determining if the proposed design reaches the initial business goals set
by the company. It’s possible for testing to be repeated, specifically to check for bugs, interoperability, and errors.

6. Implementation: Phase 6 begins when a huge part of the program code is completed. This phase also involves the
actual installation of the newly-developed application. The project is put into production by moving all components
and data from the old system and putting them in a new one through a direct cutover. This move is considered
complex and uncertain but the risk is minimized substantially as the cutover often takes place during off-peak hours.
Both end-users and system analysts should see a refined project with all necessary changes implemented at this
time.

7. Maintenance: The V-Model_ Another Take on the System Development Life Cycle3In the seventh and final phase,
end users can fine-tune the completed system as necessary if they want to improve performance. Through
maintenance efforts, the team can add new capabilities and features and meet new requirements set by the client.
This stage ensures the system stays usable and relevant by regularly replacing outdated hardware, inspecting
performance, improving software, and implementing new updates so all standards are met. This also equips the
system with the latest technologies to face new and stronger cybersecurity threats. All 7 stage shown in figure 1.

Fig . 1. Stages of SDLC.

5. EXAMPLE OF DSLS MODEL

a. Puts test specification as the critical design activity

 Understands that deployment comes when the system passes testing

b. Clearly defines what success means

 No more guesswork as to what “complete” means

c. The act of defining tests requires one to understand how the solution works.

80 Abduljabbar & Jalil , Babylonian Journal of Networking Vol.2023, 77–81

Fig . 2. Example of SDLC model.

6. CONCLUSION

Following the system development life cycle is crucial each time a new project or phase of a software project is released.
Doing so gives teams a systematic approach that in turn enables them to come up with new solutions to existing issues in a
standardized and controlled manner. How the SDLC will cover and satisfy overall requirements should be determined before
embarking on a new project so you can achieve the best results. Once that step is done, you can select the right SDLC
methodology or a hybrid of models that is perfectly suited to your main project requirements and expected end result. In
conclusion, the SDLC must continue to evolve to keep up with the changing technological landscape. By embracing Agile
methodology, integrating DevOps practices, incorporating security earlier, leveraging AI and ML, and shifting left testing,
companies can build more secure, robust, and efficient systems.

The study for this survey involves a comprehensive review of existing literature, analysis of case studies, and identification
of key themes related to network integration in SDLC. This approach provides a holistic view of current practices and
emerging trends in network-centric system development. Integrating network considerations into the SDLC is crucial for
developing robust and efficient information systems. By adapting traditional SDLC models to incorporate network
requirements, organizations can enhance system performance, security, and scalability. This survey highlights the
importance of a network-centric approach to system development and provides a foundation for future research and practice
in this evolving field.

The Systems Development Life Cycle (SDLC) must adapt to rapid technological changes and evolving business needs.
Future advice includes adopting Agile methodology, which allows for faster project completion and better outcomes.
Integrating DevOps practices, which involve continuous integration, delivery, testing, and deployment, will ensure seamless
software delivery. Integrating security proactively, as cyber threats increase, will reduce vulnerabilities in later stages.
Leveraging Artificial Intelligence and Machine Learning can automate repetitive tasks, reducing costs and improving
outcomes. Shifting left testing, which involves testing early in the SDLC process, can help identify bugs earlier, reducing

81 Abduljabbar & Jalil , Babylonian Journal of Networking Vol.2023, 77–81

costs and improving software quality. These strategies will help ensure seamless software delivery and reduce the risk of
vulnerabilities in later stages.

Conflicts Of Interest

The author's disclosure statement confirms the absence of any conflicts of interest.

Funding

The author's paper clearly indicates that the research was conducted without any funding from external sources.

Acknowledgment

The author extends appreciation to the institution for their unwavering support and encouragement during the course of this

research.

References

[1] S. Sen, M. Patel, and A. K. Sharma, "Software Development Life Cycle Performance Analysis," in *Emerging Trends

in Data Driven Computing and Communications: Proceedings of DDCIoT 2021*, Singapore: Springer, 2021, pp. 311-

319.

[2] T. K. Tia, "Simulation Model for Rational Unified Process (Rup) Software Development Life Cycle," *Sistemasi*,

vol. 8, no. 1, pp. 176-184, 2019.

[3] A. A. Adanna and O. F. Nonyelum, "Criteria for choosing the right software development life cycle method for the

success of software project," *IUP Journal of Information Technology*, vol. 16, no. 2, pp. 39-65, 2020.

[4] D. A. Arrey, "Exploring the integration of security into software development life cycle (SDLC) methodology," Ph.D.

dissertation, Colorado Technical Univ., 2019.

[5] L. Llerena, C. Almeida, J. W. Castro, and D. Buenaño, "Identification of Ethical Issues in the Phases of the Software

Development Life Cycle: A Preliminary Secondary Study," in *2022 IEEE International Conference on

Automation/XXV Congress of the Chilean Association of Automatic Control (ICA-ACCA)*, 2022, pp. 1-6.

[6] B. K. Jeong, S.-Y. Ji, and D. H. Jeong, "Lean IT With Value Stream Mapping Analysis: A Case Study in Software

Development Life Cycle Process," *Information Resources Management Journal (IRMJ)*, vol. 35, no. 1, pp. 1-18,

2022.

[7] H. Cho, S. Kang, Y. Shin, and K. Cho, "A Study on the Application Method of Fuzz Testing to Domestic Weapon

Systems Considering the Software Development Life Cycle (SDLC)," *Journal of the Korea Institute of Information

Security & Cryptology*, vol. 31, no. 2, pp. 279-289, 2021.

[8] S. Al-Saqqa, S. Sawalha, and H. AbdelNabi, "Agile software development: Methodologies and trends," *International

Journal of Interactive Mobile Technologies*, vol. 14, no. 11, 2020.

[9] H. P. Maryani, F. L. Gaol, and A. N. Hidayanto, "Comparison of the System Development Life Cycle and Prototype

Model for Software Engineering," *Int. J. Emerg. Technol. Adv. Eng.*, vol. 12, no. 4, pp. 155-162, 2022.

[10] N. B. Ruparelia, "Software development lifecycle models," *ACM SIGSOFT Software Engineering Notes*, vol. 35,

no. 3, pp. 8-13, 2010.

[11] G. Dlamini, S. Ergasheva, Z. Kholmatova, A. Kruglov, A. Sadovykh, G. Succi, A. Timchenko, X. Vasquez, and E.

Zouev, "Metrics for software process quality assessment in the late phases of SDLC," in *Intelligent Computing:

Proceedings of the 2022 Computing Conference, Volume 1*, Cham: Springer, 2022, pp. 639-655.

