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A B S T R A C T  
 

The classification's traffic is regarded as a significant study domain because to the rising demand among 

network users. In addition to improving the identification of network services and addressing difficulties 

related to the security of traffic networks, it also simplifies and improves the accuracy of a broad variety 

of Internet application modes and activities. Over the course of the last several years, a multitude of 

traffic classification algorithms have been developed alongside their effective implementation. This 

paper proposed evaluate the classification issues of information security which happened through 

networks traffic by using machine learning (ML) classification algorithm the RamdomForst by using 

NSL- KDD test and NSL-KDD train dataset to show the performance of testing data and training data.  
 

 

1. INTRODUCTION 

Traffic classification is the first process that facilitates the identification of various protocols and applications present inside 

the network. Various activities, including monitoring and optimization, may be executed on the detected traffic to enhance 

network performance. Traffic classification is a crucial method for identifying and categorizing unknown network types, as 

it addresses several network issues and offers diverse solutions for Internet service providers and their technological 

devices.[1]. Traffic analysis encompasses the whole process of intercepting traffic data to identify correlations, 

relations,trends, abnormalities, and configuration errors inside networks. One of the subsets of techniques that fall under this 

category is known as traffic classification. Its primary objective is to classify network traffic into predetermined categories, 

such as regular traffic and dangerous traffic..[2]. The analysis of network traffic sheds light on how new networks should be 

designed with user preferences and the basic concepts of Internet service operation in mind by providing comprehensive data 

on all services. Because of these factors, the categorization of network traffic is still an open subject, and research teams are 

always proposing new techniques that could function well in the future[3]. The attention of the Internet community was 

immediately drawn to the categorization of traffic from the very beginning. For the goal of improving Quality of Service 

(QoS) and managing network security, a number of different classification strategies have been proposed as potential 

approaches to network traffic classification. Standard categorization approaches which require modifications to 
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Transmission Control Protocol/Internet Protocol (TCP/IP) architecture have not gained acceptance because they necessitate 

substantial administrative work. In addition, port-based approaches and deep packet inspection have limits when it comes to 

coping with new traffic characteristics[4].machine learning(ML) methods might alleviate the shortage of qualified 

individuals competent to handle these specialized cybercrime detection systems. In addition, modern cyber-attacks, which 

are both automated and evolving, need robust mechanisms for detection and response. Machine learning (ML), which is able 

to learn from errors made in the past and immediately counteract more recent ones, is one possible reaction that might be 

used to combat these kinds of attacks. These links facilitate productivity development, process efficiency, and the creation 

of opportunities for new enterprises, however, network security is gaining significance as the growth of Internet of Things 

(IoT) devices escalates [5]. Because of the rising number of devices that are linked to the internet and the related rise in 

danger, the relevance of security precautions is expanding at an alarming rate. [6]. Training of traffic classification using 

machine learning has been of concern to the researchers as has been regarded as a promising approach to achieving higher 

performance. The incorporation of intelligence into network operations is made possible by machine learning, which thereby 

improves network management. In [7], authors consider machine learning approaches for a rather practical aim of predicting 

the classification of the network traffic.. 

 

2. LITERATURE REVIEW  

The analysis employs four variants of Neural Network estimators to perform traffic application classification. This study 

evaluates the proposed method through four evaluation conditions consisting of feed forward and Multilayer Perceptron 

(MLP) and NARX (LevenbergMarquardt) and NARX (Naïve Bayes). The four examined scenarios produced accuracy 

measurements of 95.6%, 97% and 97.6%, 97%.[9]. In order to train their model, the authors use a large dataset that includes 

many different types of network traffic. Notable accuracy rates were achieved by decision trees (93%), random forests 

(97.89%), support vector machines (91%), and recurring neural network models (89.49%), demonstrating the usefulness 

of their technique.[7] This research use machine learning methods to forecast network traffic classification. They use four 

supervised learning algorithms: random forest, support vector machine, , k-nearest neighbors, and decision tree. They also 

use a port-based approach to traffic categorization predicated on the commonly allocated port numbers of apps. 

Subsequently, we contrast the outcomes of this strategy with those derived from the machine learning algorithms. [8] A 

novel framework model is presented in this research. An innovative selection of features measurement approach called 

CorrAUC is proposed, followed by the development and design of a new feature selection algorithm named Corrauc. This 

algorithm employs an additional technique to accurately filter features and select effective ones for the chosen machine 

learning algorithm using the AUC metric. This work proposed an investigation to study what enables this technique succeed 

in traffic classification problems. A systematic review process is developed following the steps required to classify traffic 

through Machine Learning techniques.[9]this paper The suggested classifiers demonstrate superior performance when 

network traffic streams are created with varying time parameters (timeout). The findings indicate that ensemble methods, 

namely Gradient Boosting, Random Forest and , surpass individual machine learning classifiers. 

 

3. METHODOLOGY  

An abstract representation of our suggested system is shown in the following Figure1:  

 
Fig. 1. flow chart of the proposed system. 
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3.1 Description of Dataset  

NSL-KDD is a dataset proposed to address several essential issues much better than the KDD'99 dataset . Since there are 

currently no publicly available data sets for network-based intrusion detection systems, we think this updated KDD dataset 

can still serve as a useful benchmark for researchers to compare various intrusion detection algorithms, despite the fact that 

it has some of the issues highlighted by McHugh and might not be an exact representation of current real networks. In 

addition, the NSL-KDD training and test sets include sufficient amounts of data. This advantage makes it cost-effective to 

perform tests on the whole dataset without necessitating the random selection of a smaller sample. Consequently, the 

evaluation results of different academic pursuits will be consistent and similar.The whole NSL-KDD training and testing 

dataset with binary labels in ARFF format.The NSL-KDD dataset offers many advantages over the original KDD dataset: 

it addresses some intrinsic problems of KDD, and the training set omits duplicate information, hence avoiding classifiers 

from being biased towards more frequent entries. The proposed test sets have no duplicate entries; hence, the learners' 

performance is not biased by methods that provide higher identification rates for common records. The number of selected 

records from each challenge level group correlates directly with the percentage of records in the original KDD dataset. 

Various machine learning algorithms exhibit notable variance in their classification rates, allowing for a more precise 

assessment of various learning approaches. It is not necessary to randomly choose a smaller subset of the dataset in order 

to do experiments since there are enough records in both the training and testing sets..As a consequence, the assessment 

outcomes of many research studies will be uniform and comparable. Every entry in the NSL-KDD dataset comprises 42 

attributes.41 attributes represent the characteristic attributes of the data, and the rest one attribute called class represents 

the if the data is normal or anomaly.[10][11][12].  
In the current research, NSL-KDDTest is adopted for experimenting on intrusion detection systems in network security 

which is common dataset. The dataset includes 42 attributes, which characterize various characteristics of the network 

connections and was created on a basis of normal and anomalous traffic as shown in Table 1. 

Dataset Overview: 

1. Dataset Name: NSL-KDDTest 

2. Number of Attributes: 42 

3. Target Classes: (Normal, Anomaly) 

4. Purpose: Network Intrusion Detection 

TABLE  I. DATA SET'S FEATURES DESCRIPTION  
 

# Attribute Name Data Type Description 

1 duration Real Length of the connection. 

2 protocol_type Categorical Type of transport protocol (TCP, UDP, ICMP). 

3 service Categorical Network service used (e.g., HTTP, FTP, SMTP, etc.). 

4 flag Categorical Status flag of the connection (e.g., SF, RSTO, S0, etc.). 

5 src_bytes Real Bytes transferred from source to destination. 

6 dst_bytes Real Bytes transferred from destination to source. 

7 land Binary (0,1) Indicates if source and destination addresses are the same. 

8 wrong_fragment Real Number of incorrect fragments. 

9 urgent Real Number of urgent packets. 

10 hot Real Number of key indicators for suspicious activity. 

11 num_failed_logins Real Number of failed login attempts. 

12 logged_in Binary (0,1) Whether the connection was successful. 

13 num_compromised Real Number of compromised conditions. 

14 root_shell Real Indicates if a root shell was obtained. 

15 su_attempted Real Indicates if an su command was attempted. 

16 num_root Real Number of root-level accesses. 

17 num_file_creations Real Number of file creation operations. 

18 num_shells Real Number of shell prompts invoked. 

19 num_access_files Real Number of operations accessing control files. 

20 num_outbound_cmds Real Number of outbound commands in an FTP session. 

21 is_host_login Binary (0,1) Indicates if the login was to a host account. 

22 is_guest_login Binary (0,1) Indicates if the login was to a guest account. 

23 count Real Number of connections to the same host. 

24 srv_count Real Number of connections to the same service. 

25 serror_rate Real Percentage of connections with SYN errors. 
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26 srv_serror_rate Real Percentage of connections to the same service with SYN errors. 

27 rerror_rate Real Percentage of connections with REJ errors. 

28 srv_rerror_rate Real Percentage of connections to the same service with REJ errors. 

29 same_srv_rate Real Percentage of connections to the same service. 

30 diff_srv_rate Real Percentage of connections to different services. 

31 srv_diff_host_rate Real Percentage of connections to different hosts. 

32 dst_host_count Real Number of connections to the same destination host. 

33 dst_host_srv_count Real Number of connections to the same service on the destination host. 

34 dst_host_same_srv_rate Real Percentage of connections to the same service on the destination host. 

35 dst_host_diff_srv_rate Real Percentage of connections to different services on the destination host. 

36 dst_host_same_src_port_rate Real Percentage of connections using the same source port. 

37 dst_host_srv_diff_host_rate Real Percentage of connections to different hosts using the same service. 

38 dst_host_serror_rate Real Percentage of destination host connections with SYN errors. 

39 dst_host_srv_serror_rate Real Percentage of destination host connections to the same service with SYN 

errors. 

40 dst_host_rerror_rate Real Percentage of destination host connections with REJ errors. 

41 dst_host_srv_rerror_rate Real Percentage of destination host connections to the same service with REJ errors. 

42 class Categorical Label indicating whether the connection is normal or anomalous. 

 

3.2 Description Of Analytical Data By Algorithms  
3.2.1 Machine Learning Algorithms 

It is worth mentioning that according to machine learning which is a concept that means sets of raw instructions, a computer 

is capable of learning from data and improving its ability of building a model without the interference of human being. 

Some common categories for algorithms used in machine learning are as follows:  

1. In the first kind of learning, known as supervised learning, the relationship between the input and the output is 

already established, and computers learn from data that has been labeled.  

2. When provided with unlabeled data, algorithms engage in unsupervised learning in order to detect clusters or 

patterns. This is done in order to identify patterns. 

3. Reinforcement Learning: This kind of learning enables an algorithm to learn on her own through use of feedback 

from the environment which may be in form of reward signals or punishments. This is in addition to the fact that 

supervised algorithms are necessary for the analysis of supervised datasets. 

[13]. 

 

3.2.1.1 Supervised Learning Algorithms 

As a response or target variable, a label is paired with each example in the datasets used to train supervised learning 

algorithms. Finding a process that reliably assigns corresponding labels to incoming data is the main objective. Because of 

this, the model will have an easier time making correct predictions when given fresh data. There are mainly two types of 

supervised learning tasks: classification and regression. A few examples of supervised learning algorithms that are often 

used include: 

1. Linear Regression 

Linear regression figures out the best straight line that shows the relationship between the inputs of the independent variable 

and the inputs of the dependent variable in order to predict a continuous value. 

• Reduces the mismatch between actual and expected values by a technique known as least squares to optimally 

match the data. 

• Prediction of obesity based on height, or predicting the rate of homes based on certain measurements. 

2. Logistic Regression 

• lobistic regression predicts probability and sort data items into two classes for example; data items that are likely 

to be spam and those that are not. 

• It uses a logistic function (S-shaped curve) to map the input characteristics with the class probability. 

• TestUtils is used for classification tasks like binary or multiclass. Produces probability for categorizing data. 

• Example: Forecasting a customer's ability to purchase a product online (positive/negative) or determining an 

individual's health status (ill/not ill). 
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3. Decision Trees 

This decision tree algorithm is excellent for both regression and classification tasks. It uses a tree-like structure to split data 

into branches based on feature values. The leaf nodes provide the final prediction, while each decision node represents a 

feature. If you're looking for additional decision tree algorithms, you can explore: 

• Iterative Dichotomiser 3 (ID3) Algorithms. C5. Algorithms. Classification and Regression Trees 

Algorithms. 

4. Support Vector Machines (SVM) 

Support Vector Machines (SVM) identify the optimal border, known as a hyperplane, that distinguishes data points into 

distinct categories. The system utilizes support vectors, which are essential data points, to delineate the hyperplane. Because 

of the utilization of kernel functions for linear and non-linear problems and also due to the fact that it focuses on the 

separation of classes, it is applicable when dealing with high dimensional data or structures. 

5. k-Nearest Neighbors (k-NN) 

Easy to implement, the concept of KNN involves the determination of the future values a new data point basing on the 

Friedman of its weights similar data points in the training set. This gives the benefit of being able to handle either 

classification problems as well as regression ones in case there is a difficulty with either one of the two. Never 

underestimates the distance of a given point with another point in the training set using a distance measures such as 

Minkowski, Manhattan or Euclidean distance. Based on these calculated distances, the k near neighbor of the new data 

point is fitted. During the classification stage, the label is determined by the frequency of such label being present among 

the K-NN’s. Under regression, the method uses the average of the k closest neighbors and returns the value of the function. 

6. Naive Bayes 

Grounded on Bayes' theorem, it implies that every feature is mutually independent (hence termed "naive").  

• confirms the function that calculates probabilities for every class and assign the highest probability for a data point 

to a peculiar class. I guess the degree of independence of the features used might not hold all the time since they 

are not normally valid in the real world.  

• Effectively handles high-dimensional data.  

• Applied particularly in the text categorization tasks for instance in the identification of junk email: Naive Bayes’ 

algorithm. 

7. Random Forest 

A random forest combines many decision trees into one ensemble method.  

• Uses feature selection and random sampling to guarantee that trees are different.  

For classification, the final prediction is based on a majority vote, and for regression, it's based on an average.  

• Benefits: mitigates overfitting relative to standalone decision trees.  
• Accommodates extensive datasets with elevated dimensionality.  

8. Gradient Boosting (e.g., XGBoost, LightGBM, CatBoost) 

Each iteration of a model is improved upon by these algorithms, which work in an incremental fashion to build models. 

Builds a strong prediction model by combining weak learners, such decision trees. Perfect for jobs requiring categorization 

and regression analysis. Machine Learning using Gradient Boosting...  

• XGBoost, short for "Extreme Gradient Boosting," is a more sophisticated version of GB that uses regularization 

to lessen the likelihood of overfitting. For big datasets, it's faster than regular Gradient Boosting.  

• Light Gradient Boosting Machine (LightGBM) incorporates categorical data naturally and uses a histogram-based 

technique to improve computational efficiency.  

• CatBoost: Using integrated encoding methods, it is specifically tailored for category data. Improves 

generalizability and speeds up training with symmetric trees.  

Look at AdaBoost and stacking-ensemble learning if you want to learn more about ensemble learning and gradient 

boosting. 

9. Neural Networks ( Including Multilayer Perceptron) 

Supervised machine learning algorithms include Neural Networks like Multilayer Perceptrons (MLPs) that minimize error 

by adjusting weights during training using the back propagation algorithm. These networks need labeled data for training 

and to determine the relationship between inputs and desired outputs. One kind of neural network is the multilayer 

perceptron (MLP), which has multiple layers of nodes and can be used for both regression and classification tasks. It is 

often used for such things as image recognition, filter spam, numerical value predictions, stock values or the value of 

properties [14][15][16][17][18].  
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• Random Forest 

Classification and prediction are two applications of the machine learning model known as a random forest. For efficient 

data collection, a large quantity of high-quality data is required to train AI models and machine learning algorithms. 

Improving algorithms, software and hardware efficiency, user behavior evaluation, pattern detection, decision-making, 

predictive modeling, and problem-solving are all made possible by system performance data, which is crucial for achieving 

these goals.[19]. Random Forest (RF) is a widely used machine learning methodology in data mining. It functions under the supervision 

of a collective and has achieved substantial recognition.[20] 

1. Further definition: Random Forest, is a classifier that comprises different tree-based models h(x, Θk) k=1, 2, 

…wherein the Θk is an independently, identically distributed random vector and every tree plus a unit vote to the 

majority class at point x[21]. 

2. Random forests may be used for in two ways; a response that is categorical variable, termed 'classification' or a 

continuous response, known as "regression." Expectation variables may be classified as either categorical or 

continuous. From a computational perspective, random forests are appealing due to their : 

• Inherent ability to handle both regression and classification tasks (multilayer). 

• Comparatively fast in training and prediction.  

• Rely only on one or two adjustable factors.  

• You possess an inherent estimation of the generalization mistake.  

• The subsequent methods may be used directly for high-dimensional issues. 

• They may be easily executed concurrently.  

• Statistically, random forests are appealing because of the supplementary features they provide, including:  

✓ Metrics of varying significance.  

✓ Assigning weight to the differential layer.  

✓ Determination of the absent value.  

✓ The cognition  

 

• Random Forest Working 

A network of decision trees is used in the Random Forest method of machine learning, which is designed to reduce the 

degree of correlation that exists between features. When working with enormous datasets, Random Forest is famously 

sluggish; its computational complexity is O(n), where n is the number of samples. Random Forest is a very slow algorithm. 

This integration makes it possible for several processes to execute in parallel, which results in a gain in performance. The 

relationship between decision trees is removed by the use of Random Forest, which does this by selecting samples and 

characteristics at random. The decision tree is constructed by randomly selecting a group of features and then selecting a 

matched volume of data from the main training dataset. Both of these components are picked at random. By decreasing the 

degree to which decision trees are dependent on one another, these two randomization strategies increase the accuracy of 

the model while simultaneously lowering the likelihood of overfitting. A graph that is enclosed inside another graph is 

referred to as a "inset," not a "insert." This is the proper form of the term. When contrasted with the phrase "alternatively," 

the former is the more desirable option. 

.[19]. As explained in image below as shown in Figure2:  

1. The process starts with a dataset including rows and their associated class labels (columns).  

2. Therefore, from the training data set, many decision trees occur as follows. Every tree is created from a random 

selection of the given data with substitution and a random selection of features. 

3. This procedure is referred to as bagging or bootstrap aggregating.  

4. Each Decision Tree inside the ensemble individually learns the ability to make predictions.  

5. Upon encountering a novel, unobserved instance, each Decision Tree inside the ensemble generates predictions.  

6. The ultimate forecast is derived from the aggregation of the predictions of all the Decision Trees.[22] 
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Fig. 2.  Random Forest Algorithm in Machine Learning.[22] 

 

 

3. RESULTS AND DISCUSSION  

The analyzation has been done according to cross-validation of 10 folds. The result’s of both files of testing and training 

files( the total of instances are 148517:which includes 125973 instances of  training file and 22544 instances of testing 

file,the details listed below: 

1. Duration: weka classify this attribute according to the class type(normal as blow color, anomaly as red color) and 

shows how much instance classifies as normal or anomaly related to time. 

2. Protocol_type: weka classify this attribute according to the class type(normal as blow color, anomaly as red color) 

and shows how much instance classifies as normal or anomaly and how much instances belongs to the types of 

protocol as TCP,UDP or ICMP. 

3. Service: We categorize this attribute in terms of the class type with normal as blow color and anomaly as red color, 

and the number of instances that is classified under the types of services. 

(aol,auth,bgp,courier,csnet_ns,ctf,daytime,discard,domain,domain_u,echo,eco_i,ecr_i,efs,exec,finger,ftp,ftp_dat

a,gopher,harvest,hostnames,http,http_2784,http_443,http_8001, 

imap4,IRC,iso_tsap,klogin,kshell,ldap,link,login,mtp,name,netbios_dgm,netbios_ns, netbios_ssn, netstat, nnsp, 

nntp, ntp_u, other, pm_dump, pop_2, pop_3, printer, private, red_i, remote_job, rje, shell,smtp,sql_net, 

ssh,sunrpc,supdup,systat,telnet,tftp_u,tim_i,time,urh_i,urp_i,uucp, uucp_path, vmnet,whois,X11,Z39_50).  

4. Flag: weka classify this attribute according to the class type(normal as blow color, anomaly as red color) and 

shows how much instances classifies as normal or anomaly and how much instances belongs to the types of 

Flag(OTH,REJ,RSTO,RSTOS0,RSTR,S0,S1,S2,S3,SF',SH). 

5. src_bytes: weka classify this attribute according to the class type(normal as blow color, anomaly as red color) and 

shows how much instances classifies as normal or anomaly and how much instances belongs to the types of 

src_bytes (real). 

6. Dst_bytes. : weka classify this attribute according to the class type(normal as blow color, anomaly as red color) 

and shows how much instances classifies as normal or anomaly and how much instances belongs to the types of 

dst_bytes (real). 

7. Land: weka classify this attribute according to the class type(normal as blow color, anomaly as red color) and 

shows how much instances classifies as normal or anomaly and how much instances belongs to the types of 

Dst_bytes.Land (0,1). 
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8. Wrong_fragment: weka classify this attribute according to the class type(normal as blow color, anomaly as red 

color) and shows how much instances classifies as normal or anomaly and how much instances belongs to the 

types of Wrong_fragment (real). 

9. Urgent: weka classify this attribute according to the class type(normal as blow color, anomaly as red color) and 

shows how much instances classifies as normal or anomaly and how much instances belongs to the types of urgent 

(real). 

10. Hot: : weka classify this attribute according to the class type(normal as blow color, anomaly as red color) and 

shows how much instances classifies as normal or anomaly and how much instances belongs to the types of hot 

(real). 

11. Num_failed_logins: weka classify this attribute according to the class type(normal as blow color, anomaly as red 

color) and shows how much instances classifies as normal or anomaly and how much instances belongs to the 

types of dst_bytes (real). 

12. Logged_in: weka classify this attribute according to the class type(normal as blow color, anomaly as red color) 

and shows how much instances classifies as normal or anomaly and how much instances belongs to the types of 

dst_bytes (0,1). 

13. Num_compromised: : weka classify this attribute according to the class type(normal as blow color, anomaly as 

red color) and shows how much instances classifies as normal or anomaly and how much instances belongs to the 

types of Num_compromised (real). 

14. Root_shell: weka classify this attribute according to the class type(normal as blow color, anomaly as red color) 

and shows how much instances classifies as normal or anomaly and how much instances belongs to the types of 

Root_shell (real). 

15. Su_attempted: weka classify this attribute according to the class type(normal as blow color, anomaly as red color) 

and shows how much instances classifies as normal or anomaly and how much instances belongs to the types of 

Su_attempted (real). 

16. Num_root: weka classify this attribute according to the class type(normal as blow color, anomaly as red color) 

and shows how much instances classifies as normal or anomaly and how much instances belongs to the types of 

Num_root (real). 

17. Num_file_creations: weka classify this attribute according to the class type(normal as blow color, anomaly as red 

color) and shows how much instances classifies as normal or anomaly and how much instances belongs to the 

types of Num_file_creations (real). 

18. Num_shells: weka classify this attribute according to the class type(normal as blow color, anomaly as red color) 

and shows how much instances classifies as normal or anomaly and how much instances belongs to the types of 

Num_shells (real). 

19. Num_access_files: weka classify this attribute according to the class type(normal as blow color, anomaly as red 

color) and shows how much instances classifies as normal or anomaly and how much instances belongs to the 

types of Num_access_files (real). 

20. Num_outbound_cmds: weka classify this attribute according to the class type(normal as blow color, anomaly as 

red color) and shows how much instances classifies as normal or anomaly and how much instances belongs to the 

types of Num_outbound_cmds (real). 

21. Is_host_login: weka classify this attribute according to the class type(normal as blow color, anomaly as red color) 

and shows how much instances classifies as normal or anomaly and how much instances belongs to the types of 

Is_host_login(0,1). 

22. Is_guest_login: : weka classify this attribute according to the class type(normal as blow color, anomaly as red 

color) and shows how much instances classifies as normal or anomaly and how much instances belongs to the 

types of Is_host_login(0,1). 

23. Count,srv_count: weka classify this attribute according to the class type(normal as blow color, anomaly as red 

color) and shows how much instances classifies as normal or anomaly and how much instances belongs to the 

types of Count,srv_count(real). 
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24. Serror_rate: weka classify this attribute according to the class type(normal as blow color, anomaly as red color) 

and shows how much instances classifies as normal or anomaly and how much instances belongs to the types of 

Serror_rate (real). 

25. Srv_serror_rate: weka classify this attribute according to the class type(normal as blow color, anomaly as red 

color) and shows how much instances classifies as normal or anomaly and how much instances belongs to the 

types of Srv_serror_rate (real). 

26. Rerror_rate: : weka classify this attribute according to the class type(normal as blow color, anomaly as red color) 

and shows how much instances classifies as normal or anomaly and how much instances belongs to the types of 

Rerror_rate (real). 

27. Srv_rerror_rate: weka classify this attribute according to the class type(normal as blow color, anomaly as red 

color) and shows how much instances classifies as normal or anomaly and how much instances belongs to the 

types of Srv_rerror_rate (real). 

28. Srv_rerror_rate: weka classify this attribute according to the class type(normal as blow color, anomaly as red 

color) and shows how much instances classifies as normal or anomaly and how much instances belongs to the 

types of Srv_rerror_rate (real). 

29. Same_srv_rate: weka classify this attribute according to the class type(normal as blow color, anomaly as red color) 

and shows how much instances classifies as normal or anomaly and how much instances belongs to the types of 

Same_srv_rate (real). 

30. Diff_srv_rate: weka classify this attribute according to the class type(normal as blow color, anomaly as red color) 

and shows how much instances classifies as normal or anomaly and how much instances belongs to the types of 

Diff_srv_rate (real). 

31. Srv_diff_host_rate: weka classify this attribute according to the class type(normal as blow color, anomaly as red 

color) and shows how much instances classifies as normal or anomaly and how much instances belongs to the 

types of Srv_diff_host_rate (real). 

32. Dst_host_count: weka classify this attribute according to the class type(normal as blow color, anomaly as red 

color) and shows how much instances classifies as normal or anomaly and how much instances belongs to the 

types of Dst_host_count (real). 

33. Dst_host_srv_count: weka classify this attribute according to the class type(normal as blow color, anomaly as red 

color) and shows how much instances classifies as normal or anomaly and how much instances belongs to the 

types of Dst_host_srv_count (real). 

34. Dst_host_same_srv_rate: weka classify this attribute according to the class type(normal as blow color, anomaly 

as red color) and shows how much instances classifies as normal or anomaly and how much instances belongs to 

the types of Dst_host_same_srv_rate (real). 

35. Dst_host_diff_srv_rate: weka classify this attribute according to the class type(normal as blow color, anomaly as 

red color) and shows how much instances classifies as normal or anomaly and how much instances belongs to the 

types of Dst_host_diff_srv_rate (real). 

36. Dst_host_same_src_port_rate: weka classify this attribute according to the class type(normal as blow color, 

anomaly as red color) and shows how much instances classifies as normal or anomaly and how much instances 

belongs to the types of Dst_host_same_src_port_rate (real). 

37. Dst_host_srv_diff_host_rate: weka classify this attribute according to the class type(normal as blow color, 

anomaly as red color) and shows how much instances classifies as normal or anomaly and how much instances 

belongs to the types of Dst_host_srv_diff_host_rate (real). 

38. Dst_host_serror_rate: weka classify this attribute according to the class type(normal as blow color, anomaly as 

red color) and shows how much instances classifies as normal or anomaly and how much instances belongs to the 

types of Dst_host_serror_rate (real). 

39. Dst_host_srv_serror_rate: weka classify this attribute according to the class type(normal as blow color, anomaly 

as red color) and shows how much instances classifies as normal or anomaly and how much instances belongs to 

the types of Dst_host_srv_serror_rate (real). 
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40. Dst_host_rerror_rate,dst_host_srv_rerror_rate: weka classify this attribute according to the class type(normal as 

blow color, anomaly as red color) and shows how much instances classifies as normal or anomaly and how much 

instances belongs to the types of Dst_host_rerror_rate,dst_host_srv_rerror_rate (real). 

41. Dst_host_srv_serror_rate: weka classify this attribute according to the class type(normal as blow color, anomaly 

as red color) and shows how much instances classifies as normal or anomaly and how much instances belongs to 

the types of Dst_host_srv_serror_rate (real). 

42. Dst_host_rerror_rate,dst_host_srv_rerror_rate: weka classify this attribute according to the class type(normal as 

blow color, anomaly as red color) and shows how much instances classifies as normal or anomaly and how much 

instances belongs to the types of Dst_host_rerror_rate,dst_host_srv_rerror_rate (real). 

43. Class: weka classify this attribute type(normal as blow color, anomaly as red color) and shows how much instances 

classifies as normal or anomaly and how much instances belongs to the types of normal as blow color, anomaly 

as red color . 

 

a. Analytical Data with RandomForest by NSL-KDDTest 

Firstly  we analyzed the NSL-KDD dataset file of KDDTest.arff by using Weka data mining tool to classify this data using 

the classification algorithm RandomForest ;the visualizing of all attributes shown in Figures 3,4,5,6 : the analyzation has 

been done according to cross-validation of 10 folds. The details explained in section 4. ,the following is the execution of 

algorithm: 

 

 
Fig. 3.  Visualizing of attributes 
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Fig.4.  Visualizing of attributes 

 

Fig. 5. Visualizing of attributes 
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Fig. 6.  Visualizing of attributes 

 

b. Run information 

1. Scheme:       weka.classifiers.trees.RandomForest -P 100 -I 100 -num-slots 1 -K 0 -M 1.0 -V 0.001 -S 1 

2. Relation:     KDDTest 

3. Instances:    22544 

4. Attributes:   42: 

  Attributes:42: 

“Duration,protocol_type,service,flag,src_bytes,dst_bytes.Land,wrong_fragment,urgent,hot,num_failed_l

ogins,logged_in,num_compromised,root_shell,su_attempted,num_root,num_file_creations,num_shells,n

um_access_files,num_outbound_cmds,is_host_login,is_guest_login,count,srv_count,serror_rate,srv_serr

or_rate,rerror_rate,srv_rerror_rate,same_srv_rate,diff_srv_rate,srv_diff_host_rate,dst_host_count,dst_ho

st_srv_count,dst_host_same_srv_rate,dst_host_diff_srv_rate,dst_host_same_src_port_rate,dst_host_srv_

diff_host_rate,dst_host_serror_rate,dst_host_srv_serror_rate,dst_host_rerror_rate,dst_host_srv_rerror_ra

te, class”. 

5. Test mode involves10-fold cross-validation. 

6. Classifier model (full training set). 

7. RandomForest bagging with number of trees = 100 base learner . 

8. Time taken to build model: 6.44 seconds. 

9. Stratified cross-validation . 

10. Summary  
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This is the performance evaluation of a classification model. Here's what the metrics signify: 

• Correctly-classified-instances: Out of 22,544 instances, 22,252 were classified correctly, achieving 98.7048% 

accuracy, which is outstanding. 

• Incorrectly-classified-instances: Only 292 instances were misclassified, representing 1.2952%, which is very 

low. 

• Kappa statistic: A high value of 0.9736 indicates excellent agreement between predicted and actual 

classifications, beyond random chance. 

• Mean Absolute Error (MAE): 0.0201 signifies the average error in predictions is quite small. 

• Root Mean Squared Error (RMSE): 0.0986 reveals an overall low error magnitude in predictions. 

• Relative Absolute Error (RAE): 4.0972%, showing the prediction errors are relatively very low compared to a 

naive baseline. 

• Root Relative Squared Error (RRSE): At 19.9075%, it shows the variance in prediction errors compared to the 

baseline. 

Overall, these metrics indicate that the model performs impressively well with minimal errors and excellent consistency. 

 

11. Detailed Accuracy By Class : the accuracy of classification in random forest algorithm shown in the Table 2. 

 
TABLE II.   ACCURACY OF CLASSIFICATION IN RANDOM FOREST ALGORITHM  

 TP_Rate FP_Rate Precision Recall F_Measure MCC ROC_Area PRC_Area Class 

 0.984 0.011 0.985 0.984 0.985 0.974 0.999 0.999 normal 

 0.989 0.016 0.988 0.989 0.989 0.974 0.999 0.999 anomaly 

Weighted Avg. 0.987 0.014 0.987 0.987 0.987 0.974 0.999 0.999  

 

12. Confusion Matrix : confusion matrix shown in the Table 3. 

TABLE  III. CONFUSION MATRIX  

a b Classified as 

9560 151 a=normal 

141 12692 b=anomaly 

 

13. Performance parameters of confusion matrix: 

• TP-Rate: true positive alarm rate, representing cases accurately identified as a certain class.  

•  FP-Rate: false positive alarm rate ,(instances incorrectly categorized as belonging to a certain class).  

•  Precision: the ratio of true occurrences of a class to the total instances categorized as that class.  

Recall is the ratio of occurrences identified as a certain class to the actual total inside that class, synonymous 

with the true positive rate.  

• F-Measure: A composite metric for accuracy and recall, computed as 2 * accuracy * Recall / (Precision + 

Recall).  

• MCC serves as an indicator of the accuracy of binary (two-class) classifications in machine learning. It 

considers true and false positives and negatives and is often seen as a balanced metric applicable even when 

the classes vary significantly in size.  

•  ROC-Area (Receiver Operating Characteristic) measurement: A crucial metric produced by Weka. They 

provide an overview of the classifiers' overall performance.  

•  Precision-Recall Curve Area (PRC-Area): The Precision-Recall plot is more effective than the ROC plot in 

the assessment of binary classifiers for imbalanced datasets [23]. 

 

c. Analytical Data with RandomForest by NSL-KDDTrain 

Secondly we annualized the NSL-KDD dataset file of KDDTrain by using Weka data mining tool to classify this data using 

the classification algorithm tree.RandomForest ;the visualizing of all attributes shown in Figures 7,8,9,10 : the analyzation 

has been done according to cross-validation of 10 folds. The details explained in section 4. ,the following is the execution 

of algorithm: 
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Fig.7.  Visualizing of  attributes 

 

 
Fig. 8.  Visualizing of attributes 
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Fig. 

9. Visualizing of attributes 

 

 
Fig. 10.  Visualizing of attributes 

 

4.2.1 Run Information 

1. Scheme:       weka.classifiers.trees.RandomForest -P 100 -I 100 -num-slots 1 -K 0 -M 1.0 -V 0.001 -S 1 

2. Relation:     KDDTrain 

3. Instances:    125973 
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Attributes:42: 

“Duration,protocol_type,service,flag,src_bytes,dst_bytes.Land,wrong_fragment,urgent,hot,num_failed_logins,lo

gged_in,num_compromised,root_shell,su_attempted,num_root,num_file_creations,num_shells,num_access_file

s,num_outbound_cmds,is_host_login,is_guest_login,count,srv_count,serror_rate,srv_serror_rate,rerror_rate,srv_

rerror_rate,same_srv_rate,diff_srv_rate,srv_diff_host_rate,dst_host_count,dst_host_srv_count,dst_host_same_sr

v_rate,dst_host_diff_srv_rate,dst_host_same_src_port_rate,dst_host_srv_diff_host_rate,dst_host_serror_rate,dst

_host_srv_serror_rate,dst_host_rerror_rate,dst_host_srv_rerror_rate, class”. 

4. Test mode involves 10-fold cross-validation. 

5. Classifier model (full training set) . 

6. Random-Forest bagging with 100 iterations and base learner. 

7. Time taken to build model: 90.31 seconds. 

8. Stratified cross-validation.  

9. Summary : 

This is the summary of classification model evaluation metrics. Here's a quick breakdown of what these metrics typically 

indicate: 

• Correctly-classified-instances: Out of 125,973 instances, 125,869 (99.9174%) were classified correctly. 

This reflects a high accuracy rate. 

• Incorrectly-classified-instances: Only 104 instances (0.0826%) were classified incorrectly—an 

impressively low error rate. 

• Kappa-statistic: At 0.9983, this indicates almost perfect agreement between the predicted and actual 

classifications. 

• Mean-absolute-error: A value of 0.0028 suggests a very low average difference between predictions 

and actual values. 

• Root-mean-squared-error: This metric is at 0.0285, showing that prediction errors are minimal on 

average. 

• Relative-absolute-error: At 0.5704%, this indicates the mean error relative to the observed data range—

a very small percentage. 

• Root-relative-squared-error: At 5.7071%, this reflects the root mean squared   error relative to the 

variance in the observed data. 

• Total Number-of-Instances: There were 125,973 instances in total for evaluation. 

These values indicate the model performs exceptionally well! Let me know if you'd like me to elaborate on any of these 

terms or discuss potential use cases. 

 

14. Detailed accuracy by class : the accuracy of classification in random forest algorithm shown in the Table 4. 

 

TABLE IV.  ACCURACY OF CLASSIFICATION  

 TP_Rate FP_Rate Precision Recall F_Measure MCC ROC_Area PRC_Area Class 

 1.000 0.001 0.999 1.000 0.999 0.998 1.000 1.000 normal 

 0.999 0.000 1.000 0.999 0.999 0.998 1.000 1.000 anomaly 

Weighted Avg. 0.999 0.001 0.999 0.999 0.999 0.998 1.000 1.000  

 

10. Confusion Matrix : confusion matrix shown in the Table 5. 

 

TABLE V.  CONFUSION MATRIX  

a b Classified as : 

67319 24 a = normal 

80 58550 b = anomaly 

 

4. CONCLUSION  AND FUTURE WORKS 

It is evident that several applications in future 5G and SDN networks for which timely and accurate classification and 

characterization of traffic and applications are crucial, are becoming more critical. Through the use of payload-independent 

traffic data, methodologies that are based on machine learning are able to overcome some of the restrictions that are 

associated with classic classification methods in the context of network traffic characterization. This work employs 

"machine learning" techniques using the "random forest" algorithm to categorize Internet traffic into general application 
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types based on flow metrics derived from the NSL-KDD test and training files, which comprise 42 attributes. Feature 

choices were conducted prior to traffic classification. Results reveal that the "random forest" approach offers superior 

accuracy and demonstrates more computing efficiency. Analysis of classification findings using ten-fold cross-validation 

indicates a general classification accuracy of correctly classified instances are22252 means 98.7048 % while the Incorrectly 

Classified  Instances are 292 means 1.2952 % for testing file and the time taken to build model is 8.64 seconds .The 

correctly classified  instances are125869 means  99.9174 % while the Incorrectly Classified Instances are 104 means  

0.0826 % for training file and  the time taken to build model is 90.31 seconds. Within all traffic classifications, a properly 

enough level is attained for the diagnosis of Internet traffic. The robustness of the "random forest" algorithm model is 

assessed using a novel test dataset. Despite the deterioration of recall, precision, and F1-measure to certain extent, the 

median accuracy of classification for the primary application subcategories is still quite satisfactory. Experimental findings 

demonstrate that the classification model using "random forest" achieves superior precision for the predominant class 

(normal, anomalous), confirming that methodologies grounded on supervised learning algorithms often provide enhanced 

classification accuracy. 

The future studies will focus on applying the classification technique described in this work on other traffic datasets that 

may have attributed that are different from the one used in this study. The application of traffic and usage recognition 

through machine learning techniques in wireless SDN networks to enhance the traffic optimization, the transferring rules 

of SDN, segmentation of wireless SDN network and flow QoS control is one of the promising research areas. 
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