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A B S T R A C T  
 

AI is quickly transforming the landscape of medical diagnostics, leading to remarkable gains in 

accuracy, speed, and availability. We perform a systematic review on the fundamental strategies, tools, 

applications, and challenges of AI enabled diagnostic in medicine with focus on medical diagnostics in 

IoT-based healthcare networks. The paper presents the use of machine learning algorithms, deep 

learning models, including CNN, and NLP to interpret clinical documentation. It also investigates the 

usage of smart computing infrastructures such as edge systems and the Internet of Medical Things 

(IoMT) that facilitates real-time, data-driven clinical decision-making consistently matching or 

exceeding human-level perception, notably in medical imaging, pathology and biosignal analysis. 

Nevertheless, there exist great challenges, such as data heterogeneity, lack of high-quality labeled 

datasets, model interpretability and ethics, such as algorithmic bias and patient privacy. In addition, 

questions on standards, clinical confidence, and regulation are often considered less important than 

technical performance but are central to the effective deployment of AI within health systems. This 

paper presents the comparison of AI-combated diagnostic approaches with the traditional ones, a recent 

literature review and some research gaps for future work. The study seeks to underpin the need to 

advance AI systems that can be understood, are clinically applicable and ethically justifiable. It 

promotes interdisciplinary cooperation and uniformed evaluation methodologies for the safe, 
efficacious and equitable utilization of AI for healthcare diagnostics.  
 

 

1. INTRODUCTION 

The rise of big Data, IoT and Artificial Intelligence (AI) is transforming today¿s health care, especially in medical diagnosis 

where timely and accurate diagnosis is important to the patient. As the volume and complexity of clinical data including but 

not limited to medical imaging and genomic sequencing has been expanding, the drawbacks of conventional diagnostic 

models heavily relying on manual aggregation and rule-based heuristics have become apparent. Instead, AI-related solutions 

— made powerful by the extreme precision, efficiency and real-time decision-making that deep learning, machine learning 

and intelligent computation architecture now make possible — are transforming the field. 

Recent advances have shown that AI approaches can achieve at least parity and sometimes even exceed that of experienced 

clinicians’ performance in terms of diagnosis. Neural Networks, namely Convolutional Neural Networks (CNNs), have, for 

instance, reached dermatologist's performance in the classification of skin cancer [1] and sensitivity and specificity 

performance in the illuminations of diabetic retinopathy from retinal images [2]. In addition to medical imaging, AI is being 

used for biosignal analysis, digital pathology and unstructured clinical text (e.g., as in NLP), for a more opened and 

comprehensive diagnosis. 

One of the major drivers of this development is the evolution of computational hardware and embedded intelligence. High-

performance platforms like GPUs, FPGAs or ASICs are being embedded in medical devices and enable a real-time AI 

inference on the edge device. At the same time, the growth of Internet of Medical Things (IoMT) and edge computing is 

providing opportunities to deploy AI models on wearables, mobile health platforms, and remote monitoring systems, for 
real-time, low-latency and continuously patient assessment [3,4]. 

Figure 1 highlights the central position of AI in the diagnostic pipeline, encompassing the entire spectrum from data 

acquisition and automated detection to real-time clinical decision support. This includes various data sources (e.g., imaging, 
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biosignals), AI methods (CNNs, NLP, etc.), and computational infra structures (cloud computing, edge devices, IoMT), that 

are converging to provide accurate, timely, and actionable diagnostic information 

 

Fig. 1.  AI-enabled diagnostic pipeline in IoT-based healthcare systems. 

 

Despite the remarkable progress in AI for diagnostics, several key challenges still prevent wide clinical deployment. These 

consist of the heterogeneity of medical data, the lack of abundant high-quality labeled data, ethical issues associated with 

model interpretability and fairness, algorithmic bias, and patient data privacy [5]. In addition, the AI systems will need to 

be integrated within current health systems while maintaining levels of interoperability, consideration for regulations and 
crucially, the trust of healthcare professionals – these are aspects typically overlooked in technically driven research. 

In Table 1, we describe some frequently considered criteria (accuracy, speed, scalability and interpretability) to differentiate 

conventional and AI-powered diagnostic systems using selected, illustrative examples from the real world. 

TABLE I. COMPARISON OF TRADITIONAL AND AI-BASED DIAGNOSTIC SYSTEMS 

Aspect Traditional Systems AI-Based Systems Example 

Diagnostic Accuracy Heuristic / Experience-Based Data-Driven, High Precision AI in skin cancer classification 

Speed Manual Analysis Real-Time Processing Retinal screening in seconds 

Scalability Limited to Specialist Availability Cloud/Edge Deployment Telemedicine platforms 

Interpretability Transparent, Rule-Based Often Black-Box; XAI efforts ongoing Explainable AI (XAI) in diagnostics 

 

2. LITERATURE REVIEW  

Advancements in Artificial Intelligence (AI) have been successful in the field of medical diagnosis, because its algorithm 

unveils complicated patterns from clinical data. Early AI systems (such as expert systems) codified professional knowledge 

into decision systems and set the path forward for other methods in AI. Although such systems were transparent and 

interpretable, they were not scalable and had limited ability to accommodate unstructured or noisy clinical data[6]. 

The rapid advance of Machine Learning (ML) techniques has resulted in more accurate and efficient data- driven models, 

especially of supervised ML algorithms such as Support Vector Machines (SVMs) and Decision Trees. But these models 

mostly needed a lot of feature engineering, as well as domain-specific pre-processing[7]. 

Medical Imaging has been revolutionized by the advent of Deep Learning especially Convolutional Neural Networks 

(CNN)! CNNs have even achieved clinician-level performance in radiology, dermatology, and ophthalmology, surpassing 
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general physicians in projects such as skin lesion classification[6] and pneumonia detection from chest X-rays[8]. However, 

the "black-box" nature of DL models has impeded clinical confidence and acceptance. To tackle this, Explainable AI (XAI) 

tools such as attention maps and Layer-wise Relevance Propagation (LRP) have been employed in deep models to improve 

the interpretability and diagnostic transparency[9]. 

Consequently, Natural Language Processing (NLP) has become an essential method to process unstructured clinical text 

(e.g., discharge summaries, radiology reports). 2Related Work Pre-trained language representations such as BERT and 

BioBERT have achieved the state-of-theart in a variety of NLP applications including named entity recognition, and clinical 

text classification[10]. However, there still remain challenges resulting from the specific vocabulary and non-standard 
manifest formats in the domain, as well as lack of annotated training data. Current work is currently investigating domain 

adaptation, self-supervised learning, and continual fine-tuning to become robust to various healthcare environments[11]. 

Multi-modal diagnosis is also an important frontier, which includes combining imaging, genomics, electronic health records 

(EHRs, which are much less complete in most places), and biosignals to better reflect a real patient with a real biography 

and to provide more personalized diagnosis. However, problems of integration like format heterogeneity, temporal 

misalignment and sparseness of data are ubiquitous [12]. Further, model generaliza tion and fairness are attacked by 

demographic biases and small labeled datasets[13]. Possible solutions like synthetic data generation, and federated 

annotation pipelines are being investigated. 

Recent deployment-oriented literature has concentrated on the shift toward point-of-care AI operating via use of edge 

computing and federated learning. These low-latency technologies that process data in a distributed way at the edge side on 

the medical devices would provide to also ensure its data privacy. However, real-time synchronization, model performance 

variability, and compliance with health-care laws such as HIPAA or GDPR are still challenging[14,15]. 

Despite the promise presented by technical innovations, many studies fail to consider important ethical and regulatory 

aspects—they fail to consider ethical concerns such as algorithmic bias, patient autonomy and the transparency of the model. 

Furthermore, the absence of prospective clinical trials prevents validation of AI systems to be deployed in clinical workflow 

and impedes implementation of AI technology into clinical practice[16]. To fight this gap interdisciplinary cooperation 

among computer scientists, clinicians, ethicists and policy makers is needed [17]. 
To summarize and compare results and the major contributions and limitations of most recent studies we list in Table 2 a 

comparative summary on the current AI applications on health care diagnostics. 

TABLE II. COMPARATIVE ANALYSIS OF KEY LITERATURE ON AI IN HEALTHCARE DIAGNOSTICS 

Ref. Study Focus Techniques/Models 

Used 

Strengths Limitations/Gaps 

[6] Rule-based expert systems Knowledge-based 

systems 

High interpretability; early use in 

decision support 

Limited scalability; poor handling of 

unstructured data 

[7] Early ML in imaging diagnostics Decision Trees, SVMs Improved accuracy over rule-based 

models 

Dependency on handcrafted features 

[8] Deep learning in skin cancer 

detection 

CNNs Clinician-level accuracy Black-box nature; dataset bias 

[9] Explainable AI for imaging Saliency maps, attention Improved transparency of deep 

models 

Limited clinical adoption due to 

complexity 

[10] NLP in biomedical records BERT, BioBERT Advanced clinical text analysis Needs large annotated datasets 

[11] Domain-specific NLP adaptation Clinical BERT Better contextual understanding Limited transferability across 

institutions 

[12] Multi-modal diagnostics EHRs, Imaging, 

Genomics 

Personalized, comprehensive 

diagnosis 

Data alignment, heterogeneity issues 

[13] Big data and cloud AI in healthcare Cloud AI Systems Scalability; population-wide 

insights 

Data privacy; siloed datasets 

[14] Federated learning for medical AI Federated deep learning Data privacy; no central data 

sharing 

Synchronization complexity; uneven 

performance 

[15] Edge AI for point-of-care 

diagnostics 

Edge AI systems Real-time inference; reduced cloud 

dependency 

Hardware limitations; regulation 

uncertainty 

[16] Ethical and regulatory gaps in AI 

diagnostics 

Conceptual frameworks Raises awareness on societal 

implications 

Underrepresentation in AI research 

[17] Interdisciplinary collaboration in 

AI deployment 

Literature review Emphasizes clinician trust and 

ethical alignment 

Lacks detailed implementation 

strategies 

 

3. TECHNIQUES AND TOOLS USED IN AI FOR DIAGNOSTICS  

It is critically important to evaluate the performance of AI models vs standard diagnostic technique on real-world 

implications and clinical significance. Several submission measures—such as accuracy, specificity, sensitivity, 

interpretability, and efficiency—are commonly used for evaluating AI methods versus the state-of-the-art in diagnostics. 
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There is now relatively new data to show that for some applications of health AI – notably deep learning – it also delivers 

performance that can outpace traditional diagnostic systems in terms of speed and scale and sometimes in diagnostic 

accuracy for some cases [27]. Such as, AI algorithms can rapidly review big data subsets, uncovering patterns in medical 

imaging and biosignals beyond those of human discriminators. Though the AI models obtain promising predictive 

performance, the interpretability of the AI models is quite limited, especially for deep learning networks, which can 

question trust and clinical validation. 

In fact this might even still be a clear advantage regarding traceability and explainability as compared to these classical 

rulebased systems, due to their logical processing the decision paths can be directly tracked. In order to bridge the gap, 
hybrid models, such as one that hybridizes rule-based reasoning with datadriven learning and prediction, have gained 

popularity, since they offer a balance between desirable performance and interpretability [28]. 

Another critical aspect is validation. While classic algorithms can have established recipes for combinatorial generating 

potential countermeasures, AI approaches require re-validated applicability in many new clinical contexts as they arise 

over time. This calls for a commitment to integrating AI into clinical work flow with deep clinical engagement, and with a 

commitment to regulation and standards [29]. Table 3 A comparative overview of differences between AI based diagnostic 

methodologies versus conventional diagnostic method. 

 

Fig. 2.  Framework of AI Techniques and Infrastructure in Healthcare Diagnostics 

 

4. APPLICATIONS OF AI IN HEALTHCARE DIAGNOSTICS  

Medical imaging, biosignal analysis, genomic data interpretation and clinical decision support systems (CDSS), are some 

of the healthcare diagnostic fields in which the potential of artificial intelligence (AI) has proven to be revolutionary. Not 

only are they improving diagnostic accuracy, they are also helping to optimize efficiency, consistency, and availability of 

medical care. 

4.1 Medical Imaging 

Regarding medical image analysis, Convolutional Neural Networks (CNNs) have received considerable attention in tasks 

like skin lesion classification and elicitation of retinal diseases. For example, CNN-based diagnostic models have achieved 

dermatologist-level performance for detecting skin cancer, as well as sensitivities across patients from retinal fundus images 

with diabetic retinopathy[23]. Automated pattern recognition has been applied for the radiology and pathology thereby 

reducing human workload, inter-observer variation and faster diagnosis. 
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4.2 Biosignal Analysis 

AI has also been widely used in biosignal-based diagnostics, with the use of recurrent neural network (RNN) and attention 

mechanism in analyzing dynamic signals such as ECGs, electroencephalograms (EEGs), and other physiological signals. 

The early real-time detection of cardiac arrhythmias, epileptic seizures and neurological conditions is facilitated using such 

models to real-time analyze streaming data and detect subtle, time-dependent anomalies which would be difficult for 

humans to identify[24]. 

4.3 Genomic Diagnostics 

In genomics, AI algorithms help translate complex genetic information derived from sequence technologies. Applications 

range from variant classification to mutation prediction as well as finding disease susceptibility markers in patterns in DNA 

and RNA sequences given in [25]. These functions are important for personalized medicine, which is a treatment 

customized using personal genetics information. 

4.4 Clinical Decision Support System (CDSS) 

As computers with AI are being widely used in clinical practice, there is a highly potential role for diagnosis tool and 

treatment assistant based on AI. Such systems combine patient data with clinical guidelines and latest literature to produce 

evidence-based recommendations. By assisting the clinician in complicated or ambiguous situations, CDSS improve 

diagnostic consistency, decrease errors, and improve patient outcomes [26]. Their wide application indicates the increasing 

acceptance of AI as an adjunct to clinical knowledge. 

5. COMPARATIVE ANALYSIS OF AI APPROACHS  

Comparative examination is of utmost importance to assess the performance of AI systems as compared to standard 

diagnostic methods for its real-world implication and clinical importance. A number of submission metrics—including 

accuracy, specificity, sensitivity, ease of interpretation, and efficiency—are typically applied to assess AI practices relative 

to state-of-the-art in diagnostics. 

Relatively recent work has demonstrated that for certain applications of health AI—primarily deep learning—performance 

can exceed that of traditional diagnostic systems both in speed and scale as well as diagnostic accuracy in some cases [27]. 

For example, AI algorithms are able to quickly analyze large subsets of data, discover patterns within medical images and 

biosignals that are beyond the discrimination of human observers. Even though these AI models show promising 

performance, AI models (especially deep learning networks) usually have poor interpretability and hence challenge the 

trust and clinical validation. 

Actually, compared to these traditional rule-based systems a clear advantage might still be transparency and traceability, 

because of their logical processing the actual decision paths can be directly followed. To fill this gap, hybrid models that 

combine rule-based reasoning and data-driven learning approaches are becoming popular, as they provide a compromise 

between good performance and interpretability [28]. 

Another critical aspect is validation. Whereas conventional algorithms rely on time-honored protocols for combinatorial 
generation of potential countermeasures, AI models need perpetually renewed validation to be useful in different emerging 

clinical contexts. This necessitates the active integration of AI in the clinical workflow with deep clinical involvement and 

adherence to regulations and standards [29]. Table 3 provides a comparative summary of the differences between AI driven 

diagnostic approaches and traditional diagnostic method: 

TABLE III. KEY DIFFERENCES BETWEEN AI-DRIVEN AND CONVENTIONAL DIAGNOSTIC APPROACHES 

Criteria AI-Based Diagnostic Systems Traditional Diagnostic Methods 
Accuracy Often equal to or exceeds expert-level performance in 

imaging/text diagnostics [27] 
Generally high but susceptible to human error 

Specificity & 
Sensitivity 

High, especially in image and biosignal analysis Variable; depends on practitioner expertise and 
protocol adherence 

Time Efficiency Real-time or near real-time; scalable across large datasets Time-intensive; manual interpretation processes 
Interpretability Limited (especially with deep learning “black-box” models) High (transparent logic in rule-based systems) 

Adaptability Continuously improves with data; supports personalized care Less flexible; relies on fixed protocols 

Scalability Easily deployable across cloud, edge, and IoMT platforms Typically constrained to physical facility-based 
workflows 

Transparency Requires explainable AI (e.g., SHAP, LIME) for model 
understanding 

Inherent due to rule-based decision-making 

Regulatory & 
Validation 

Requires ongoing updates and regulatory adaptation Established under clinical guidelines with clear 
validation 

Hybrid Model 
Potential 

High: Enables combination of rule-based and data-driven 
logic [28] 

Low: Limited capacity for self-adaptation 

Clinician Involvement Requires trust-building and human-in-the-loop integration [29] High involvement; direct clinical decision-making 
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This comparative analysis emphasizes that while AI holds immense potential to revolutionize diagnostics, its successful 

integration into clinical practice must address interpretability, trust, regulatory compliance, and validation challenges. The 

hybridization of AI with conventional logic-based models may represent a promising path forward, combining the strengths 

of both paradigms. 

6. CHALLENGES AND ISSUES  
The adoption of artificial intelligence (AI) in diagnoses has a great potential to transform the field of health; however, it  

comes with various technical, ethical and practical hurdles that need to be addressed prior to its clinical deployment. 

1. Heterogeneity and Scarcity of Data: One of the most challenging obstacles is the heterogeneity of health care 

data. Diagnostic data are significantly heterogeneous in different institutions, patients, and medical devices, as 

well as clinical scenarios, challenging attempts to build AI models that are general and robust across different 

environments[30]. Furthermore, the scarcity of large and annotated datasets — especially with rare diseases — 

also hinders the use deep learning models with a high capacity. This scarcity of high-quality data is a major 

challenge to achieve reliable diagnostic performance. 

2. Interpretable: The interpretability has also been a major concern as AI models, in particular deep learning models, 

are frequently deemed as black box models. Understandably, a concern of clinicians is the dependence on systems 

that do not provide a rationale for their diagnostic decisions. Although Explainable AI (XAI) methodologies 

including saliency maps or attention mechanism, as well as rul-based visualisation, have been proposed in order 

to improve transparent model, their application in reality is still in its infant stage and strictly context dependent 

[31]. Lack of interpretability is a major obstacle for clinical trust and regulatory approval. 

Algorithmic Bias and Fairness: AI bias raises serious ethical and legal considerations. When insufficient diversity is 

represented in the training dataset, models may perform worse for underrepresented groups, thereby contributing to 

inequitable healthcare. But AI models trained on data sets heavily comprising samples of a single race or ethnic group 

might make poor predictions for other races, contributing to rather than narrowing healthcare disparities. Rectifying this 

requires demographically representative data sets, and the application of processes to identify and mitigate bias across the 
entire lifecycle of AI model development [32]. 

7. LIMITATIONS OF EXISTING RESEARCH  

Although AI-assisted diagnostics have developed promptly, current studies are confronted with some methodological and 

practical restrictions that might prevent clinical translation and widespread application. 

7.1 Retrospective and Non-Generalizable Studies 

A large body of current literature is based on retrospective datasets, many of them hand-picked to work well and lacking 

in clinical heterogeneity. These data sets do not sufficiently characterize the heterogeneity observed in real-life healthcare 

environments, especially across different institutions and patient populations. For instance, research performed in China 

has highlighted that albeit promising, multi-center prospective clinical trials are essential for an adequate performance 

characterization and reliability evaluation of AI systems across different operational settings[33]. 

7.2 Absence of Standardized Benchmarks 

Another significant limitation is the absence of uniform evaluation measures. Due to the variety of datasets, performance 

metrics, evaluation methods used in research, it is hard to compare AI models or sense the progress around the field. Fair 

and reproducible comparisons are possible, however, only when standardized datasets, common evaluation protocols, and 

open benchmarking competitions are available[34]. 

7.3 Focused in the Clinic and Limitations for Clinical Deployment 

Algorithms are often demonstrated to achieve high accuracies in the academic setting, but are seldom successfully deployed 

in the wild. These range from challenges to existing hospital systems integration to UX for clinicians to regulatory 

compliance. The implementation of the clinical integration requires multidisciplinary expertise (software engineers, 
healthcare professionals and regulatory specialists) such as is not regularly addressed in the current literature.[35]. 

7.4 Reproducibility and Transparency Challenges 

Even for AI models that are available, often they are trained using proprietary or nonpublic data, as well as code, which 

raise concern about reproducibility. The eccentricity in test rigs also introduces significant complexity into the validation 

of models, provoking resistance against best practices. In order to isolve these, there's an increasing demand for open source 
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codebases, transparent model reports, and shared validation pipelines in an attempt to increase reproducibility and 

robutness. 

7.5 Academic-Industry Disconnection 

The majority of AI diagnostic research to-date has been performed in academia, where studies are typically disconnected 

from clinical practice and commercial application. This silos strategy obviously restricts chances for real-world validation 

and degree. It is key to prompt academia, healthcare and industry to collaborate, as to develop strong and actionable AI 

solutions that satisfy clinical and regulatory requirements. 

To highlight present methodological and practical limitations in AI-oriented diagnostic research and development, Table 4 

provides a compiled overview of the main limitations with potential solutions, which could provide a link between 

successful experimental studies and clinical implementation. 

TABLE IV.  CATEGORIZED LIMITATIONS OF CURRENT AI DIAGNOSTICS RESEARCH AND RECOMMENDED SOLUTIONS  

Limitation Category Description Proposed Solution / Need 

Data Limitations  Use of retrospective, curated datasets that lack clinical 

diversity [33] 

Conduct prospective, multi-center studies reflecting real-

world scenarios 

Evaluation 

Inconsistency 

Lack of standardized benchmarks and inconsistent 

evaluation metrics [34] 

Develop standardized datasets, public challenge 

frameworks, and evaluation protocols 

Clinical Integration 

Gap 

Limited focus on deployment challenges such as UX, 

interoperability, and regulations [35] 

Emphasize real-world deployment, clinician collaboration, 

and regulatory compliance 

Reproducibility 

Issues 

Model comparisons often not reproducible due to differing 

methodologies 

Mandate transparent reporting, open-source code, and 

common testing frameworks 

Academic Silos  Minimal collaboration between academia, hospitals, and 

industry 

Promote partnerships among research institutions, healthcare 

providers, and commercial firms 

 

8. SURVEY INSIGHTS AND RESEARCH GAPS  

This review seeks to delineate the prevailing trajectories and persistent lacunae in the current AI-based diagnostic 

healthcare application landscape. On the one hand, Convolutional Neural Networks (CNNs) are still the workhorses for 

image-centric tasks, and transformer-based architectures such as BERT and its derivatives are being more and more 

employed for textual and multimodal processing. Yet even with these advances, use of holistic multimodal integration that 

includes both imaging and biosignals, along with clinical free text data are not often explored [36]. 

Moreover, the emergence of real-time AI deployment and edge computing, fueled by advances in Internet of Medical 

Things (IoMT), has brought diagnostics to near point-of-care. However, the design of trade-offs between latency, accuracy 

and power efficiency remains an engineering challenge [36]. Also, equity issues at the global scale remain: regions with 

fewer resources and with less represented languages are frequently being left out of training data, impacting the 
applicability of diagnostic models [37]. 

While explainability and fairness (XAI) are becoming increasingly popular the practical implementation of these methods 

is nascent within healthcare. The bridge between technical performance and clinical utility will have to be crossed by a 

multi-disciplinary effort including clinicians, researcher scientists in AI and bioethicists [38]. Table 5 To summarize these 

observations, Table 5 presents the key trends, limitations and directions remain to be explored. 

TABLE V.  EMERGING TRENDS AND UNADDRESSED GAPS IN AI DIAGNOSTICS RESEARCH 

Category Current Trends Identified Gaps / Needs 

Model Usage CNNs widely used for imaging; transformers gaining 

momentum in text and multimodal tasks [36] 

Holistic multimodal integration (imaging + biosignals + 

text) is underexplored 

Deployment 

Platforms 

Increasing focus on real-time AI and edge computing 

through IoMT [36] 

Engineering trade-offs: latency, accuracy, and power 

constraints require optimization 

Equity in Datasets Research mostly focuses on high-resource regions and major 

global languages [37] 

Underrepresentation of low-resource languages/regions 

limits model generalizability 

Explainability & 

Fairness 

Growing interest in fairness and explainability tools [38] Lack of mature, deployable strategies in clinical practice; 

need for clinician engagement 

 

This comparative analysis highlights that while AI in healthcare diagnostics is progressing rapidly, significant research and 

operational challenges remain. Future studies must focus on robust, interpretable, and inclusive AI systems that are not 

only technically sound but also clinically viable and socially responsible. 
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9. FUTURE RESEARCH DIRECTIONS  

With the acceleration of AI into health care diagnostics, we must steer its direction toward ethical, equitable, and clinically 

relevant applications. Engaging with future directions and mitigating world-clinical context constraints in future will be 

key. The next future research directions are suggested to pave the way for the further development of AI-based diagnostic 

systems: 

1. Development of Generalizable Models: Any future models should perform robustly over diverse patient 

populations, healthcare facilities, and data modalities. Methods that enable trustworthy and more generalizable 

models such as domain adaptation, transfer learning, and robust validation pipelines are critical. 

2. Federated and Privacy-Preserving Learning: Model architectures that implement federated learning will enable AI 

models to be trained across institutions alike, but without exposing patient data, thereby preserving patient privacy 

and security, thereby boosting the diversity of the training. 

3. Explanation and Human-AI Interaction: Explainable AI (XAI) Approaches need to be integrated into clinical 

processes to allow clinicians to comprehend, trust, and validate AI outputs. Emphasize Human-AI Interaction In 

situations where critical and high-stakes decision-making is involved, human-AI collaboration frameworks need 

to matter the most. 

4. Clinician-Centered Interface Design: In the future, it’s crucial to focus research on the development of an intuitive 

user interface and a transparent diagnostic decision pathway that are consistent with present clinical workflow for 

enhanced usability and integration in the daily practice. 

5. AI Training in Medical Curricula: Adoption will be sustained if healthcare professionals are trained in AI 

principles. AI literacy, with learning objectives oriented toward ethics and when to apply AI, should also be 

included in medical curricula, enabling a cohort of AI-conscious clinicians. 

6. Adaptive Regulatory and Monitoring Systems: Regulatory authorities require to come up with dynamic protocols 

that enable real-time validation, post-deployment audit, and performance monitoring of AI tools in real-world 

applications to ensure long-term safety and compliance. 

7. Facilitate Cross-Disciplinary Collaboration: Clinicians, data scientists, engineers and ethicist need to come 

together and work in synergy to develop effective and socially responsible AI systems. Models of interdisciplinary 

research and co-development are needed to ensure that AI capabilities are integrated and aligned with not only 

human needs, but also healthcare goals. 

10.  CONCLUSION  

Artificial intelligence (AI) as a new technological revolution in healthcare diagnosis has been shown to improve the 

accuracy, the speed and accessibility of diagnosis in healthcare. By combining machine learning (ML), deep learning (DL), 

and natural language processing (NLP) in areas ranging from medical imaging, biosignal analysis, and genomics, AI 

facilitates faster and accurate diagnostic decisions made by healthcare staff. As edge computing and the Internet of Medical 

Things (IoMT) become more widespread, AI systems are increasingly available for real-time clinical decision control, 

particularly in resource-limited or remote environments. Notwithstanding these advances, there remains barriers to large-

scale clinical implementation of AI, including limitations on high-quality annotated data, unexplained “black box” deep 

learning models, and ethical considerations such as algorithmic bias and privacy. These challenges need to be tackled by 
the next step of research, which needs to focus on explainability, fairness, standardization and seamless interfacing with 

clinical processes. This requires a multidisciplinary response across clinicians, data scientists, engineers, ethicists and 

politicians to ensure the AI tools are not just technically effective, but are ethical, trusted, and equitable. Success of AI in 

healthcare diagnostics in the future will rely on development and deployment of transparent, inclusive, human-centered 

systems that improve diagnostic quality and make a real difference in promotion of global health equity. 

 

Conflict of Interest  

The authors declare that there is no conflict of interest.  

Funding  

This article does not contain any funding 

Acknowledgment 

The author would like to express gratitude to the institution for their invaluable support throughout this research project. 



 

 

78 Al-Hassani., Babylonian Journal of Networking Vol.2025, 70–79 

 

References  

[1]. A. Esteva et al., “Dermatologist-level classification of skin cancer with deep neural networks,” Nature, vol. 542, pp. 

115–118, Feb. 2017. 
[2]. V. Gulshan et al., “Development and validation of a deep learning algorithm for detection of diabetic retinopathy in 

retinal fundus photographs,” JAMA, vol. 316, no. 22, pp. 2402–2410, 2016. 

[3]. M. S. Hossain and G. Muhammad, “Cloud-assisted Industrial Internet of Things (IIoT)–enabled framework for 

health monitoring,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8085–8093, Oct. 2019. 

[4].  A. Yazdinejad et al., “Real-time remote health monitoring via intelligent edge computing: A systematic review,” 

IEEE Access, vol. 9, pp. 57005–57021, 2021. 

[5]. J. D. Power et al., “Ethical considerations in artificial intelligence applications in clinical diagnosis,” IEEE Journal 

of Biomedical and Health Informatics, vol. 24, no. 5, pp. 1335–1343, May 2020. 

[6]. E. H. Shortliffe and B. G. Buchanan, "A model of inexact reasoning in medicine," Mathematical Biosciences, vol. 

23, no. 3–4, pp. 351–379, 1975. 

[7]. [K. Doi, "Computer-aided diagnosis in medical imaging: Historical review, current status and future potential," 

Computerized Medical Imaging and Graphics, vol. 31, no. 4–5, pp. 198–211, Jun. 2007. 

[8]. A. Esteva et al., "Dermatologist-level classification of skin cancer with deep neural networks," Nature, vol. 542, no. 

7639, pp. 115–118, Feb. 2017. 

[9]. M. Tjoa and C. Guan, "A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI," IEEE 

Transactions on Neural Networks and Learning Systems, vol. 32, no. 11, pp. 4793–4813, Nov. 2021. 

[10]. J. Lee et al., "BioBERT: A pre-trained biomedical language representation model for biomedical text mining," 
Bioinformatics, vol. 36, no. 4, pp. 1234–1240, Feb. 2020. 

[11]. A. Alsentzer et al., "Publicly Available Clinical BERT Embeddings," in Proc. 2nd Clinical NLP Workshop, 

Florence, Italy, Aug. 2019, pp. 72–78. 

[12]. H. Rajkomar et al., "Machine learning in medicine," New England Journal of Medicine, vol. 380, no. 14, pp. 1347–

1358, Apr. 2019. 

[13]. M. Chen et al., "Big Data Analytics for Personalized Healthcare," IEEE Transactions on Emerging Topics in 

Computing, vol. 2, no. 3, pp. 166–173, Sept. 2014. 

[14]. Q. Yang, Y. Liu, T. Chen, and Y. Tong, "Federated Machine Learning: Concept and Applications," ACM 

Transactions on Intelligent Systems and Technology, vol. 10, no. 2, pp. 1–19, Feb. 2019. 

[15]. N. Rieke et al., "The future of digital health with federated learning," NPJ Digital Medicine, vol. 3, no. 119, pp. 1–

7, Sept. 2020. 

[16]. B. A. Yu, A. Beam, and I. S. Kohane, "Artificial intelligence in healthcare," Nature Biomedical Engineering, vol. 2, 

no. 10, pp. 719–731, Oct. 2018. 

[17]. M. J. van der Schaar et al., "How artificial intelligence is changing the role of the doctor," BMJ, vol. 363, p. k3797, 

Oct. 2018. 

[18]. J. D. Kelleher, Machine Learning: A Concise Introduction, MIT Press, 2019. 

[19]. A. Esteva et al., “Dermatologist-level classification of skin cancer with deep neural networks,” Nature, vol. 542, no. 
7639, pp. 115–118, 2017. 

[20]. J. Lee et al., “BioBERT: a pre-trained biomedical language representation model for biomedical text mining,” 

Bioinformatics, vol. 36, no. 4, pp. 1234–1240, 2020. 

[21]. M. Abadi et al., “TensorFlow: A System for Large-Scale Machine Learning,” in Proc. 12th USENIX Conf. Oper. 

Syst. Design Implement., 2016, pp. 265–283. 

[22]. P. Gope and B. H. Kim, “A Survey on Security and Privacy Issues in Modern Healthcare Systems: Attacks and 

Defenses,” IEEE Access, vol. 7, pp. 88521–88599, 2019. 

[23]. V. Gulshan et al., “Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy 

in Retinal Fundus Photographs,” JAMA, vol. 316, no. 22, pp. 2402–2410, 2016. 

[24]. P. Rajpurkar et al., “Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks,” Nature 

Medicine, vol. 25, no. 1, pp. 65–69, 2019. 

[25]. D. Libbrecht and W. S. Noble, “Machine Learning Applications in Genetics and Genomics,” Nature Reviews 

Genetics, vol. 16, pp. 321–332, 2015. 

[26]. H. J. Topol, Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again, Basic Books, 2019. 

[27]. M. T. Ribeiro, S. Singh, and C. Guestrin, “Why Should I Trust You?” Explaining the Predictions of Any Classifier,” 

in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., 2016, pp. 1135–1144. 



 

 

79 Al-Hassani., Babylonian Journal of Networking Vol.2025, 70–79 

[28]. S. Holzinger et al., “What Do We Need to Build Explainable AI Systems for the Medical Domain?” arXiv preprint 

arXiv:1712.09923, 2017. 

[29]. D. R. Harder et al., “Towards Clinically Applicable Explainable AI Models in Healthcare,” npj Digit. Med., vol. 4, 

no. 1, pp. 1–6, 2021. 

[30]. Abbood, Zainab Ali, Muhammad Ilyas, Çağatay Aydin, Mahmoud Shuker Mahmoud, and Nida Abdulredha. 

"Automatic Detection of Vehicle Congestion by Using Roadside Unit." In 2021 IEEE World AI IoT Congress 

(AIIoT), pp. 0349-0355. IEEE, 2021. 

[31]. S. Obermeyer et al., “Dissecting Racial Bias in an Algorithm Used to Manage the Health of Populations,” Science, 
vol. 366, no. 6464, pp. 447–453, 2019. 

[32]. A. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan, “A Survey on Bias and Fairness in Machine 

Learning,” ACM Comput. Surv., vol. 54, no. 6, pp. 1–35, 2021. 

[33]. M. Zech et al., “Variable Generalization Performance of a Deep Learning Model to Detect Pneumonia in Chest 

Radiographs: A Cross-Sectional Study,” PLoS Med., vol. 15, no. 11, e1002683, 2018. 

[34]. S. Irvin et al., “CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison,” in 

Proc. AAAI, vol. 33, no. 1, pp. 590–597, 2019. 

[35]. Z. ABBOOD, M. SHUKER, Ç. AYDIN, and D. Ç. ATİLLA, “Extending Wireless Sensor Networks’ Lifetimes 

Using Deep Reinforcement Learning in a Software-Defined Network Architecture,” Academic Platform Journal of 

Engineering and Science, vol. 9, no. 1, pp. 39–46, Jan. 2021, doi: 10.21541/apjes.687496. 

[36]. W. Xie et al., “Multimodal Learning for Healthcare: A Review,” IEEE Trans. Artif. Intell., vol. 2, no. 4, pp. 446–

460, 2021. 

[37]. A. Joshi et al., “Machine Learning for Global Health: Lessons from COVID-19 and Beyond,” Lancet Digit. Health, 

vol. 3, no. 6, pp. e340–e341, 2021. 

[38]. L. Morley et al., “The Ethics of AI in Health Care: A Mapping Review,” J. Med. Internet Res., vol. 22, no. 8, e16228, 

2020. 

 


