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A B S T R A C T 
 

Symmetric cryptography forms the backbone of secure data communication and storage by relying on 

the strength and randomness of cryptographic keys. This increases complexity, enhances cryptographic 

systems' overall robustness, and is immune to various attacks. The present work proposes a hybrid 

model based on the Latin square matrix (LSM) and subtractive random number generator (SRNG) 

algorithms for producing random keys. The hybrid model enhances the security of the cipher key against 

different attacks and increases the degree of diffusion. Different key lengths can also be generated based 

on the algorithm without compromising security. It comprises two phases. The first phase generates a 

seed value that depends on producing a randomly predefined set of key numbers of size n via the Donald 

E. Knuths SRNG algorithm (subtractive method). The second phase uses the output key (or seed value) 

from the previous phase as input to the Latin square matrix (LSM) to formulate a new key randomly. 

To increase the complexity of the generated key, another new random key of the same length that fulfills 

Shannon’s principle of confusion and diffusion properties is XORed. Four test keys for each 128, 

192,256,512, and 1024–bit length are used to evaluate the strength of the proposed model. The 

experimental results and security analyses revealed that all test keys met the statistical National Institute 

of Standards (NIST) standards and had high values for entropy values exceeding 0.98. The key length 

of the proposed model for n bits is 25*n, which is large enough to overcome brute-force attacks. 

Moreover, the generated keys are very sensitive to initial values, which increases the complexity against 

different attacks. 
 

1. INTRODUCTION 

Cryptography protects confidentiality by altering the source data (plaintext) into an unreadable form (ciphertext). 

Additionally, it is referred to as secret writing to prevent stealing confidential data, modifying and deleting it, and many 

other problems [1, 2]. This method guarantees that only the intended recipient can recognize the actual content of the 

message, thereby preventing unauthorized access [3]. Hence, the encryption method must have a strong and complicated 

key that unauthorized users cannot easily guess or crack [4, 5]. Moreover, generating cipher keys randomly is considered 

an essential principle in cryptography and information security science to protect confidentiality, integrity, and availability 

[6, 7]. Many cipher algorithms depend particularly on pseudorandom number generator (PRNG) sequences for cipher keys, 

which are frequently employed in cryptography and digital communications [8]. The key generation process must therefore 

strike a balance between randomness, unpredictability, and efficiency to ensure security without introducing unnecessary 

vulnerabilities. Cryptanalysis, on the other hand, is a method of breaking cipher text created by a cryptographic algorithm 

[9]; thus, the randomness of cryptographic keys has a major effect on the system’s security. Therefore, achieving high 

levels of key randomness is crucial for any cryptosystem enhancement, implementation, and development [10]. 

The Latin square matrix (LSM) contains exactly 𝑀 distinct elements in 𝑀𝑋𝑀 of the matrix. When each element appears 

only once per row and column, 𝐴 is referred to as an LSM, as illustrated in Figure 1, with various orders. The most effective 

method for constructing an LSM is to start with its standard form, which is achieved by shifting the integer elements of an 

array from 1 𝑡𝑜 𝑀. A new LSM can be created by rearranging the rows or columns of this standard form [11, 12]. Generally, 

constructing an LSM via the offline algorithm takes O (n2), which is optimal for random key generation [13][27]. 
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Fig. 1. (a) Order Three of Latin Square, (b) Order Four of Latin Square [11]. 

The aim of this research is to combine the mathematical structures of Latin square matrices (LSMs) and the PRNG to 

produce a robust cryptographic key. The idea behind using LSMs for cipher key generation is to exploit their inherent 

properties, such as their uniform distribution of symbols and their resistance to regular patterns, to produce keys that are 

both robust against cryptanalysis and difficult to predict or replicate. 

The structure of the remaining sections of this paper is divided as follows: Section 2 presents the state-of-the-art concerning 

related work, while Sections 3 and 4 present the proposed hybrid model and the analysis of the results, respectively. Finally, 

Section 5 presents the conclusion. 

 

2. RELATED WORKS 

Various studies suggest different techniques to solve the weakness in key generation for the cipher process. [6] suggested 

a developed pseudo-random sequence generator (PRSG) to solve the problem of the nonuniform distribution of the 

sequences. It is based on nonintegral numbers with a modular number operation system, and the statistical empirical tests 

for PRSGs have passed and approved its success. The sort-index method and diffusion processing for image encryption are 

performed depending on the PRSG. The obtained results showed good statistical characteristics and increased the degree 

of security in cryptographic applications. [14] suggested a key generation method based on 2D Henon chaotic map 

improvement. This process is implemented among mantissa bits in a consecutive sequence via a simple XOR operation. 

Pseudorandom bit generators (PRBGs) are tested based on the National Institute of Standards (NIST) statistical 

performance and Hamming distance metrics. Furthermore, various security analyses, such as brute force, differential attack, 

and other tests, have been performed. The ease of this approach makes it compatible with a variety of software and hardware 

platforms[26]. 

Moreover, [15] proposed a system for key generation involving a combination of a stream cipher and evolutionary 

algorithms. It is composed of three phases: a logistic map, a left-feed shift register (LFSR), and a genetic algorithm. 

Combining LFSR and the logistic map stream yields a chaotic image that is used to extract random values and is 

subsequently employed by the genetic algorithm to produce random keys. The results evaluated by NIST statistics revealed 

that the produced sequences are highly random. In addition, brute force, differential, and guess-and-determine attacks are 

also used, which makes them suitable for cryptographic applications. However, [16] uses reinforcement learning techniques 

to generate dynamic random numbers by evaluating and selecting all possible states of an episode, ensuring the randomness 

of the numbers. It uses the long short-term memory (LSTM) method to retain long-term memory (LTM) of past patterns 

and to guide the selection of new patterns based on these previous observations. The results assessment confirms the 

randomness and security of the generated numbers. Additionally, [17] proposed a hybrid method for generating 

pseudorandom numbers by combining LFSR and linear congruent generators (LCGs). The results were evaluated based on 

randomness, correlation between the keys, and the impact of changing the initial state on the generated keys. Additionally, 

the obtained results passed many tests, such as brute-force and differential attacks. 

A novel adaptive image encryption system was proposed in [18] based on the LSM and the fractional-order Lu system. 

The suggested method of image encryption combines the LSM and chaotic sequences. The results show that this approach 

is effective for resisting known plain image attacks (KPAs) and chosen plain image attacks (CPAs). An innovative two-

stage algorithm for generating orthogonal Latin squares within finite fields for bolstering the efficiency of image encryption 

was presented in [19][28]. It exploits the property of the orthogonal LSM to generate randomized ones that correlate with 
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the plaintext. Security testing of the cipher image revealed that the number of changing pixels rate (NPCR) and unified 

averaged changed intensity (UACI) closely align with the expected values of 99.6094% and 33.4635%, respectively. 

The primary contribution of this work is the introduction of a novel hybrid model that combines the LSM and SRNG 

algorithms to create secure random keys across multiple layers. This model produces cipher keys of the desired length (128, 

192, 256, 512, and 1024–bit) depending on the symmetric algorithm applied. This approach significantly enhances 

complexity and unpredictability in key generation by expanding the key space and increasing sensitivity to initial 

parameters. As a result, the model strengthens the security of cryptographic systems, offering improved resistance against 

attacks that exploit predictable key patterns. 

3. MATERIALS AND METHODS 

The primary objective of this section is to introduce the proposed model for random key generation based on the LSM 

approach. The components of the proposed model can be recapitulated into two phases: 

• The first phase: Initially, this phase produces a randomly predefined set of key numbers each of size n via Donald E. 

This phase involves the subtraction random number generator algorithm (subtractive method). Depending on the cipher 

key length needed, it can select any number of initial keys within the set and merge them to formulate a final cipher 

key. The outcome of this phase is fed to the next phase, as described in Algorithm 1. 

Algorithm (1):     Phase1 of Random Key Generation  

Input:  Max : represents maximum number generated in the set 

Output: B-Key (binary Key of n-bits). 

Begin 

Step 1: Repeat (For i= 1…….. Max) 

Step 2: Generate R[i] decimal random numbers each have a size of 4 bytes using the SRNG method and save it in 
R[i] 

Step 3 : End For 
Step 4: Select randomly M numbers from R[i].  //M : is a number of digits required to generate a key length of n-bits. 

Step 5: Concatenate the M digits to form a final D-Key (in decimal). 

Step 6: Convert decimal D-Key to a binary B-Key of n-bits length. 
End 

 

• The second phase: This phase was implemented to increase the randomness of the key generated from the previous 

phase based on the LSM. Notably, the 2D LSM in the proposed model depends on the number of bits in the key, which 

is generated from phase one. For example, if the key length is 128 bits, then the LSM is composed of 128 rows and 

128 columns. Algorithm 2 clarifies in detail the steps of the final key generated from this phase. The purpose of step 

6 in Algorithm 2 is to generate another key (R-Key) to increase the degree of complexity of the key generated. 

Algorithm (2):    phase2 of Random Key Generation  

Input: B-Key (binary key of n-bits output from Algorithm1) 

Output: Final-Key (binary key of n-bits) 

Begin 

Step 1: Generate Latin square matrix T [n,n]. 

Step 2: Fill every row in T [n,n] of value 0,……,n-1 randomly. 
Step 3: Select three random row indices in the T [n,n], RW1, RW2, RW3. 

Step 4: Permutated B-Key bits according to the sequence of RW1 contents → per-key1. 

Step 5: Permutated per-key1 bits according to the sequence of RW2 contents→ per-key2. 
Step 6: Permutated per-key2 bits according to the sequence of RW3 contents→ per-key3. 

Step 6: Generate randomly a new 𝑅 − 𝐾𝑒𝑦 of n-bits by SRNG algorithm. 

Step 7:  Apply  the following formula  to obtain the (Final-Key) 𝐵 − 𝐾𝑒𝑦: 

             (Final-Key) 𝐵 − 𝐾𝑒𝑦 =  per − key3 ⊕ 𝑅 − 𝐾𝑒𝑦   
End 

 

Figure 2 depicts in detail the main structure of the two phases, and Figure 3 graphically shows an example of generating a 

128-bit random key suggested by the proposed model yields after two-phase implementation. 
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Fig. 2. A Block Diagram for the Proposed Model 

 

 

 

Concatenate M digits 

Select M digits randomly where M represents number of decimal digits required to 

generate binary key of length n-bits 

    Phase-2 Random Key Generation 

 

 Convert the result to binary key of n-bits (B-Key) 

 Phase-1 Random Key Generation 

Generate R decimal digits randomly 

 

Permutated B-Key -bits according to the sequence of row1 contents 

Select three rows randomly from the Latin Square Matrix 

Generate n*n Latin Square Matrix  

Permutated the output key of the previous step according to the sequence of row2 contents 

Permutated output key of the previous step according to the sequence of row3 contents 

Generate randomly R-Key of n-bits 

XOR 

Final -Key 



 

 

 

 

207 Ali et al, Mesopotamian Journal of Cybersecurity Vol.4,No.3, 203–215 

 
Fig. 3. Example of 128-bit key generation implemented with two phases 
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Figure 2 shows the general structure of the proposed two-phase model. Its steps can be summarized as follows: 
Step 1: Generate R decimal digits via Donald E. In the SRNG, each digit has 4 bytes or 32 bits. 

Step 2: Select the number of digits randomly to formulate the cipher key. For example, if the desired key length is 128  

             bits, then select 4 digits randomly, concatenate them, and then convert them to binary form to obtain the final   

             key of length n-bits. 

Step 3: Depending on the n bits obtained from step 2, a 2D LSM is generated. 

Step 4: Fill each row randomly in 2D LSM with numbers (0,…….n-1) without repetition. 

Step 5: Randomly select three-row indices from the 2D LSM. 

Step 6: Depending on the three rows of content, the final key obtained from Step 2 is consequently scrambled three times. 

Step 7: As an extra step, the SRNG generates a random key of size n and XORed with the key obtained from Step 5. 

           to increase security. 

4. RESULTS AND DISCUSSION 

The experimental tests were run on a Windows 11 Home processor with an Intel(R) Core (TM) i3-1005G1 CPU @ 1.20 

GHz and 1.20 GHz. Random Access Memory (RAM): 8 GB. The system type is a 64-bit operating system with an x64-

based processor. For the experimental work, Table 1 represents the four test keys of lengths 128, 192, 256, 512, and 1024, 

which are considered to test the quality of randomness obtained from the key generation phases of the proposed model. To 

assess the effectiveness of the proposed model, several measurements and attacks were conducted on the generated keys to 

prove their efficiency, strength, and degree of complexity as follows: 

TABLE I.   FOUR TEST KEYS OF VARIOUS LENGTH IN HEXADECIMAL 
 

Key no. Key Value/Hex Key no Key Value/Hex 

128-bit 

1 2B23E4BF13955F5FD54171BFDBCBDF40 3 B2D2B590B40567B23809364BC94349DE 

2 966404998E83DE04BAF3369A6A7A876A 4 DB9F46D498D376C2F0C7D5D51F5FC2CB 

192- bit 

1 DEA913EECA49E5F0965FF859AC0F4D9
C0D7EB9D0FAA89DC9 

3 B4D8D371FC9BA7B1BB30AE86732EA34183269675
0681A18C 

2 9D3E0234451332BE736B5FC90E1B5347B

A2EB139EF4187AD 

4 D79089EFC9D606AA0D602CB49A62609F5D3E1CB

AE8FC4224 
256-bit 

1 4A6FE1922586CBD42E93E420F3EB3EF9

6785E9D3E3F277463F3E392EDAAB6C5A 

3 3AA128085F91BAF025F6A8865EEDB2AD4305C978

EF599F16B47BB19D4CA98E0A 

2 96226C01979C0F9F6DA233664CB13CC98

58F3DC779DDE9B65ED9AE89D0507133 

4 4AD0F33D0EA318E3DF59E7B5E65DB0EC1110EAB

D0245D073466710614F9FA497 

512-bit 

1 3D4497FB895A333EDC270631A87C81396
E7C504248240EC0AC6E01D394BCCABA

729BCA4D713C253214AA390099E40C14

E634D5429E2A034BC5B14FAC6510D4E0 

3 77C7499446CAEE1C86AFE87CDDAD80A6116102B
E36EA53331175A7344DC65F7974DE76A71A72EFC

DA7BF7ECB482170895A6BA98609316147219B5081

A83F92FE 

2 F523491D1785DDB6FA6C3C44E5925514

BB94C0EAFD712F3B384B68EBBB101BB

EECB7FE6513C4BA7292D3037C8293E5E
21DE84DFAD890A530CE4BC6820E48612

3 

4 553B5969C76D243554A8CEF43071B3328109F9A75

0ECECD0A8CF5E291089127FE139F48C75F8295C97

832BF6CB2D5A7260391C34E00232701D72DF4AA3
08DEDF 

1024-bit 

1 7BAC357E25C94D9094D16F291BB2FD81

9E6E2FA2D1FD91AD20CD4F2B54F1D93

33EB931443EB68109F5B1196FABBF3CC

639056056C2F76D501040D09002B9749C

B3B64E3696D5B3757F1DDD862697C1C9
8FA886C71006C607356ABF376DC332039

2E0C804C444C5E146C85C8E375707185E

3B4A6BFF734BF6206DD2A32C4FE8C5 

3 A5968EB32A3EC739C44EF5D45E033FA853331BB0

230B51B0EC5F40792ABA2A5F28C06C2A18EB0F2

A159819240EE8AD22FD7E5F04BB3954E35534D095

979CE688FC6D595993844A2DC387D9615A588063A

19212833C12477C8FD96F689C17CB874065411741D
F04554BE5C76D66679106B183501AFA6FF3809AF4

66C7B933CE12 



 

 

 

 

209 Ali et al, Mesopotamian Journal of Cybersecurity Vol.4,No.3, 203–215 

2 F53858141815334714AA27E7B154BB0506

2543C6D0317C9548CE2805D0987E454C2

DA0557325C46AAA504B42104A57B6CC

7992231712E86BE4B0EEC6541145B39AD
3BD2D136C16F047BC0D6DBD09F7F751

C51982EF8FA176C80A6D71857C7136AB

236449C1A408D72ED2D6D2051D532E28
F1FF7B9A90D6854A49D780BB80013A 

4 6FBF351A908517C6DA86655BFA4C080CDC03EBA

2AA691C5F5192686C950224CBB6C6D4A0CBF85C

CB4E2686EBE1EE92566392810DA984986DBDAFD

A28485C70E6097246FBA9D58836D2219609211CA9
F8919FE49D14A2594FACF3F3E19CD7CE0920986B

37FA846C280368DCD8C2FF1F62D5EC1510CC92EE

0D13B7CCD1AD2723E8 

4.1 NIST Performance Evaluation Tests 

The National Institute of Standards and Technology (NIST) test suite is an arithmetic package that includes numerous tests 

designed to examine the unpredictability of (randomly lengthy) binary series generated by either hardware- or software-

based cryptographic PRNGs. These assessments stress a variety of different types of nonrandomness that might exist in a 

series [20]. Statistical tests were applied to measure the strength of the keys. The key lengths used are 128 bits, 192 bits, 

256 bits, 512 bits, and 1024 bits. As shown earlier in Table 1, four different values for each key length were used to test 

the NIST effectiveness and accuracy performance of the proposed model, as shown in Tables 2, 3, 4, 5, and 6. Notably, 

only six NIST tests are used because of the limited length of the generated keys for p values ≥ 0.01. 

 
TABLE II.  NIST TESTS FOR FOUR 128-BIT KEY LENGTHS 

Test type Key1 Key2 Key3 Key4 Decision 

Frequency (Monobit) 0.077099 0.723673 0.376759 0.111611 Pass 

Frequency within a Block 0.077099 0.723673 0.376759 0.111611 pass 

Runs 0.918815 0.472228 0.1356006 0.441729 pass 

Longest Run of Ones in a Block 0.539089 0.682747 0.276999 0.059137 pass 

Approximate Entropy Test 0.034025 0.840568 0.486691 0.473553 pass 

Cumulative Sums (Cusum) Test P value Forward 

0.0431129 0.574763 0.369655 0.154199 pass 

P value Reverse 

0.067789 0.946011 0.499938 1 pass 

Success Ratio 6/6 6/6 6/6 6/6  

 

TABLE III.  NIST TESTS FOR FOUR 192-BITS KEY LENGTHS 

Test type Key1 Key2 Key3 Key4 Decision 

Frequency (Monobit) 0.193930 0.665005 0.665005 0.563702 Pass 

Frequency within a Block 0.288844 1 0.479500 0.479500 pass 

Runs 0.788328 0.874438 0.762269 0.980774 pass 

Longest Run of Ones in a Block 0.503840 0.559409 0.111428 0.965326 pass 

Approximate Entropy Test 0.467892 0.968090 0.068824 0.881931 pass 

Cumulative Sums (Cusum) Test P value Forward 

0.297799 0.880822 0.619770 0.686526 pass 
P value Reverse 

0.693833 0.747681 0.297799 0.777852 pass 

Success Ratio 6/6 6/6 6/6 6/6  

TABLE IV.   NIST TESTS FOR FOUR 256-BITS KEY LENGTHS 

Test type Key1 Key2 Key3 Key4 Decision 

Frequency (Monobit) 0.077099 0.723673 0.376759 0.215924 Pass 

Frequency within a Block 0.077099 0.723673 0.376759 0.215924 pass 

Runs 0.918815 0.472228 0.1356006 1.437248 pass 

Longest Run of Ones in a Block 0.539089 0.682747 0.276999 0.201226 pass 

Approximate Entropy Test 0.034025 0.840568 0.486691 0.505500 pass 

Cumulative Sums (Cusum) Test P value Forward 

0.0431129 0.574763 0.369655 0.223219 pass 
P value Reverse 

0.067789 0.946011 0.499938 1 pass 

Success Ratio 6/6 6/6 6/6 6/6  
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TABLE V.   NIST TESTS FOR FOUR 512-BITS KEY LENGTHS 

Test type Key1 Key2 Key3 Key4 Decision 

Frequency (Monobit) 0.929568 0.723673 0.0170102 0.536101 pass 

Frequency within a Block 0.492275 0.487445 0.113095 0.707046 pass 

Runs 0.658276 0.654459 0.601197 0.583927 pas 

Longest Run of Ones in a Block 0.269774 0.843861 0.549406 0.397314 pass 

Approximate Entropy Test 0.514679 0.942272 0.090820 0.899543 pass 

Cumulative Sums (Cusum) Test P value Forward 

0.536609 0.314554 0.034020 0.536609 pass 
P value Reverse 

0.807114 0.574763 0.504677 0.737518 pass 

Success Ratio 6/6 6/6 6/6 6/6  

TABLE VI.    NIST TESTS FOR FOUR 1024-BITS KEY LENGTHS 

Test type Key1 Key2 Key3 Key4 Decision 

Frequency (Monobit) 0.802587 0.211299 0.028706 0.317310 Pass 

Frequency within a Block 0.041494 0.421356 0.139089 0.764234 pass 

Runs 0.898971 0.764722 0.074607 0.552291 pass 

Longest Run of Ones in a Block 0.388893 0.542961 0.004957 0.163534 pass 

Approximate Entropy Test 0.571045 0.791973 0.034536 0.518181 pass 

Cumulative Sums (Cusum) Test P value Forward 

 0.857964 0.221980 0.048897 0.469326 pass 

P value Reverse 

0.814611 0.625703 0.038181 0.689269 pass 

Success Ratio 6/6 6/6 6/6 6/6  

 
The influence of the key length has a major effect on each NIST test since it increases the randomness of the key values. If 

the P value is ≥ 0.01; then the key values have a uniform distribution; which proves the success of the proposed model. 

Each test shows the success of breaking down the coefficient correlation between key values based on the seed value by 

the proposed model. 

4.2 Information Entropy Analysis 

Information entropy, considered a key parameter in information theory, describes the degree of chaos in a system. This 

method involves gathering randomness using cryptography or other applications that call for random data from an operating 

system or application [21]. The encryption data should be sufficiently muddled to withstand a statistical analysis attack. In 

this case, information entropy may be utilized in the calculation, as the more complicated the cipher data are, the higher 

the first entropy is. Equation (1) is used to compute first-order information entropy [22, 23]. 

 

            𝐻(𝑚) = ∑ 𝑃(𝑚𝑖
2𝑛−1
𝑖=0 ) 𝑙𝑜𝑔2 

1

𝑃(𝑚𝑖 )
                                                                                                 (1)  

 

where the number of bits is denoted by the variable n, and the total number of symbols is denoted by the variable                               
M (= 2𝑛). The variable mi ∈ M and the variable 𝑃(𝑚𝑖  )    denote the probability of having mi levels in the key space. 

Entropy measures the unpredictability of a cryptographic key and is frequently used in cryptanalysis. To break a key via a 

brute force attack, one typically needs to try, on average, 2n−1 attempts, where n represents the number of bits in the key. 

Based on the obtained test results, as shown in Table 7, the suggested approach creates keys with a sophisticated entropy 

value. 
 

TABLE VII.       RANDOM KEYS ENTROPY TEST 

 

Key length Key1 Key2 Key3 Key4 

128-bit 0.982317 0.999295 0.995593 0.985688 

192-bit 0.993651 0.999295 0.999295 0.998747 

256-bit 0.992546 0.999604 1 1 

512-bit 0.999989 0.999824 0.991961 0.999461 

1024-bit 0.999956 0.998899 0.996627 0.999295 



 

 

 

 

211 Ali et al, Mesopotamian Journal of Cybersecurity Vol.4,No.3, 203–215 

4.3 Keyspace analysis and brute force attack 

The total number of keys used in the cryptosystem is referred to as the key space. A robust encryption technique should 

have a large enough key space to overcome brute-force attacks. According to NIST, the minimum key length to resist brute-

force attacks is 112 bits; therefore, the key space should be larger than 2112 to avoid brute-force attacks [24]. 

The first phase of the proposed model generates several key lengths depending on the encryption algorithm requirements 

since it can concatenate more than one key of size n via the Donald E. Knuths method. For example, at 128, 192, 256,512, 

and 1024-bit lengths, the key spaces are 2128, 2192, 2256, 2512, and 21024, respectively. Table 8 lists the time required to 

implement the brute-force attack according to each key length. Moreover, the second phase of the proposed model repeats 

the key generation for three rounds, which increases the degree of complexity. As a final step in the same phase, another 

key is added of the same length and XOR, which doubles the key space. For example, for a key length of 128 bits, the total 

key space is 2128 × 2128 2128 × 2128 × 2128. In other words, the key space is doubled five times for a key size of n bits (25*n). 

 
TABLE VIII.     BRUTE-FORCE ATTACK TIMES ACCORDING TO KEY LENGTH 

Key Length Years 

128-bit 1.08*1013 

192-bit 1.989*1038 

256-bit 3.67*1057 

512-bit 4.25*10134 

1024-bit 5.698*10288 

4.4 Analysis of Key Sensitivity 

An efficient encryption technique should exhibit high sensitivity to small changes in the secret keys used. This property, 

known as the avalanche effect, ensures that even minor modifications to the key result in significantly different outputs. 

Moreover, the key generated from the proposed model is sensitive to the initial parameters, whereas any different values 

yield various keys. To assess this parameter, various initial parameters were used to generate secret keys of different lengths 

to yield diverse key values, as shown in Table 9. As shown in the table, the distributions of 0 and 1 in each key are different 

from the others, which means that any variation in any parameters will yield a key with a different value. 

TABLE IX.    NUMBERS OF 0 s AND 1 s FOR EACH GENERATED KEY 

Key 0’s 1’s 0’s 1’s 0’s 1’s 0’s 1’s 0’s 1’s 
128-bit 192-bit 256 512 1024 

1 54 74 87 105 115 141 283 229 516 508 
2 66 62 93 99 125 131 255 257 547 477 

3 69 59 99 93 128 128 252 260 532 492 

4 55 73 100 92 128 128 263 249 528 496 

 

Two keys for each length, key indices 2 and 4, as represented in Table 1, are selected and plotted to show the distribution 

of values of zeroes and ones. Figures 4 and 5 graphically depict the distribution of key values (0 s and 1 s), which proves 

the success of the proposed model for random key generation. As shown in the figures, any variations in the values at 0 s 

and 1 s yield different chart shapes. 

 
128-bit 

No. of 0= 66        No. of 1= 62 No. of 0= 55                No. of 1=73 
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192-bit 

No. of 0=93        No. of 1= 99 No. of 0=  100              No. of 1=92 

 
 

256-bit 

No. of 0= 125       No. of 1= 131 No. of 0= 128               No. of 1=128 

  

Fig. 4. Various key value distributions for 0 and 1 for 128-bit, 192-bit, and 256-bit keys 

512-bit 

No. of 0= 255       No. of 1= 257 No. of 0= 263               No. of 1=249 
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1024-bit 

No. of 0= 547       No. of 1= 577 No. of 0= 528               No. of 1=496 

  
Fig. 5. Key Value Distributions for 0 and 1 for 512-bit and 1024-bit Key Lengths 

4.5 Resistance Attack Analysis 
The assumption is that the cryptanalyst has a complete understanding of the cryptosystem's mechanism, except for the 

initial seed. The classical four types of attacks used to conclude the source message are listed as follows [25]: 

• Ciphertext-only attack: the attacker has access only to ciphertexts with no knowledge about either the key or 

plaintext. 

• Known plaintext where the attacker is aware of the corresponding plaintext and ciphertext pairs only. 

• Chosen plaintext attack: The attacker uses the corresponding plaintext-ciphertext pair to analyze the relationship 

between them, intending to uncover information about the encryption key or algorithm. 

• Chosen Ciphertext attack: where the attacker has selective access to the decryption system, allowing them to 

choose specific ciphertexts and obtain the corresponding plaintexts. 

The key in the proposed model is sensitive and changes depending on the initial seed variation. This property in the 

proposed model is resistant to the chosen plaintext attack, which is one of the most common attacks. Moreover, the final 

operation includes adding another random key to increase the diffusion property to make the cryptosystem more secure 

and resistant to the aforementioned attacks. 

Table 10 presents a comparison with the state-of-the-art methods, which prove the success of the proposed model in 

enhancing security and improving the key space analysis. 

TABLE X.    A COMPARISON WITH RELATED WORKS 

Ref. No. Methods Key Space 

[6]  Pseudorandom Sequence Generator (PRSG) based on the concept of modular 

arithmetic systems with nonintegral numbers 

 

2380 

[15] Logistic Map, LFSR, Genetic 

Algorithm, 

240 

[17] Linear Feedback Shift Registers (LFSR) and Linear Congruential Generator (LCG)  

2128 

Propose model Latin Square Matrix (LSM) and Subtractive Random Number Generator 

(SRNG) 

2640 
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5. CONCLUSION 

Based on the LSM and SRNG, high-secrecy and random key generation methods were developed. The Donald E. Knuths 

SRNG algorithm is used to generate variable key sizes as seeds in the first phase. The variable seed value is considered 

very important since the generated key for every session is not identical or is a one-time pad key. In addition, the variable 

seed length determines the LSM dimensions and can vary in every session. This property makes it more difficult for the 

cryptanalyst to guess the length and value of the key. The proposed method randomly selects three rows instead of one and 

permutates them in depth three times depending on each row's contents. This approach maximizes the randomness and 

breaks the correlation between bits in each row to increase the diffusion and confusion properties. The final step is to XOR 

an additional key created randomly to increase complexity and maximize the randomness of the generated key in the 

proposed model. The NIST, entropy, key analysis, and attack investigation metrics achieved high performance for the 

results implemented by the proposed model for random key generation. 
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