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A B S T R A C T 

Application-layer attacks (Layer 7 attacks), a form of distributed denial-of-service (DDoS) aimed at web 

servers, have become a significant concern in cybersecurity because of their ability to disrupt services by 

overwhelming server resources. This study focuses on addressing the challenges of detecting and 

mitigating the impact of such attacks, which are difficult to counter due to their sophisticated nature. The 

primary objective of this study is to develop an effective monitoring and defence model to detect, defend, 

and respond to these attacks efficiently. To achieve this, SHapley Additive exPlanations (SHAP) 

technology was used to understand the behaviour of the model and to increase the efficiency of the 

detection classifiers. The defence model is designed with three states: normal, observing, and suspicious. 

The observing mode, which represents the detection part, is triggered when the server load exceeds a 

predefined threshold. The detection system incorporates five machine learning (ML) algorithms: decision 

trees (DTs), support vector machines (SVMs), logistic regression (LR), naive Bayes (NB), and K-nearest 

neighbours (KNNs). A stacked classifier (SC) was then employed to combine these models to achieve 

optimal performance. The algorithms were evaluated in terms of accuracy (ACC), precision (PRC), recall 

(REC), F1 score (F1), and time (T). The SC demonstrates superior accuracy in distinguishing between 

legitimate traffic and malicious traffic. If the server continues to suffer from overload, the suspicious part 

of the defence model will be activated, and the mitigation algorithm will be called, which, in turn, bans 

users responsible for the attack and prevents illegitimate users from connecting to the server. The effects 

of the mitigation algorithm were noticeable in the server traffic rate, transmission rate, memory 

utilization, and CPU utilization, confirming its ability to defend against application-layer attacks.

1. INTRODUCTION 

Distributed denial of service (DDoS) attacks has become a disturbing, widespread threat in today's cyber environment. These 
attacks aim to overwhelm and disable the targeted systems by flooding a network, website, or online service with excessive 
traffic or malicious requests, rendering them inaccessible to legitimate users [1]. The motivations behind these attacks can 
vary depending on the specific circumstances. In some cases, attackers use DDoS as a means of extortion, threatening 
organizations with disruption unless a ransom is paid; others may have ideological or political agendas to disrupt services 
or make a statement [2, 3]. In other cases, DDoS attacks may be used to damage the competition between companies but 
could also be used as a mask for other malicious activities, such as data breaches and network intrusions [2, 3]. Regardless 
of this motive, DDoS attacks disrupt normal operations, causing significant downtime, financial losses, and harm to 
organizations’ reputation, resulting in long-lasting negative effects on the affected organizations and companies [4]. The 
selected attacks include the 2016 Dyn attack, the 2018 GitHub attack, and the 2016 KrebsOnSecurity attack, which disrupted 
services and websites in different ways [14–16]. 

Botnets, which are essential for executing DDoS attacks, can grow through several techniques, such as malware infections, 
phishing attacks, and exploiting weaknesses in networked devices. Once a botnet is established, attackers can launch DDoS 
attacks via compromised devices to flood targeted servers with continuous requests or data packets [9]. This overwhelming 
influx of traffic will deplete the critical resources of the system, such as bandwidth, memory, and processing power, leading 
to slowing system performance or even a complete service outage [10]. 

DDoS attacks can target various layers of the network stack by exploiting specific vulnerabilities. The nature of these attacks 
and the methods employed depend on the layer being targeted (Fig. 1) [11]. Common types of DDoS attacks include 
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volumetric attacks, which exhaust the target's available bandwidth by overwhelming it with a massive volume of traffic. In 
volumetric attacks, attackers often leverage amplification techniques or botnets to generate enormous amounts of data, 
crippling network infrastructures. Other common DDoS attacks include TCP/IP Protocol attacks, which exploit 
vulnerabilities within the TCP/IP protocol stack and target weaknesses in protocols such as TCP, UDP, or ICMP. Common 
examples include SYN flood attacks, UDP flood attacks, and Ping flood attacks. Conversely, application layer attacks focus 
on exploiting vulnerabilities at the application layer of the target system. They deplete server resources by targeting specific 
application functionalities, such as through HTTP floods or DNS query floods [12- 13]. 

 

Fig. 1. Common types of DDoS attacks 

To address the challenges posed by DDoS attacks, this study uses SHAP technology to interpret machine learning model 
outputs. SHAP is based on Shapley values, a game theory concept that assigns responsibility for a model's prediction to 
individual features or their specific values [21]. The characteristic feature of SHAP is its model-agnostic nature, allowing 
it to be applied to any machine learning model. SHAP provides consistent interpretable explanations and can effectively 
address complex model behaviours, such as feature interactions. This makes SHAP an invaluable tool for analysing 
sophisticated models [22]. SHAP offers human-readable explanations for predictions made by machine learning 
algorithms. It assigns a value to each input feature, indicating its contribution to the final prediction. This helps teams 
understand the decision-making process of the model and identify the most significant factors influencing its output [31]. 

The main motivation for this study is that many institutions, companies, and state-affiliated websites continue to suffer 
from DDoS attacks. Despite advancements in artificial intelligence, there has yet to be a comprehensive classification of 
algorithms based on multiple criteria. For example, it cannot be assumed that an algorithm with high accuracy, such as 
Algorithm X, can be fully trusted, as its performance in this context relies on various factors, including accuracy, processing 
time, and resource efficiency. This study addresses the critical challenge of application-layer (Layer 7) DDoS attacks, 
which are particularly dangerous because their ability to mimic legitimate traffic makes it extremely difficult to differentiate 
between legitimate and malicious users. The goal is to detect and mitigate these attacks while ensuring that the server 
remains operational without exhausting its resources, such as memory and processing power. 

This study fills the gaps in existing research by focusing on classifier selection and multicriteria evaluation for DDoS 
detection and aims to improve detection accuracy and identify the most suitable classifiers that consider multiple 
performance metrics. The goal is to develop an effective method to detect, mitigate, and potentially eliminate the impact 
of DDoS attacks on web servers. The significance of this study lies in the importance for companies to adopt robust 
mechanisms such as traffic monitoring, anomaly detection, and traffic filtering while also familiarizing themselves with 
effective mitigation techniques to counteract the impact of DDoS attacks. Collaboration and information exchange among 
companies, institutions, and internet service providers (ISPs) are equally important. These efforts, combined with a strong 
commitment to combat attackers, can significantly enhance the ability to quickly identify, mitigate, and potentially 
eliminate DDoS attacks [5-23]. Understanding the nature of DDoS attacks helps organizations improve their defences and 
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protect against serious consequences [6-32]. By utilizing specialized DDoS mitigation systems, monitoring traffic, and 
implementing postattack strategies, organizations can reduce the impact of such attacks. Partnering with ISPs or specialized 
services can further increase security [7-19]. This study provides valuable insights to help organizations, especially those 
involved in state security, improve their defenses and better protect against cyber threats. 

The key contributions of this research include improving detection accuracy by enhancing deep learning algorithms with 
ensemble learning techniques combined with SHAP, identifying the most suitable algorithm based on both accuracy and 
execution time among a range of options, and developing a real-time mitigation algorithm and deploying it on a local server 
for immediate application. 

2. RELATED WORK 

Cynthia et al. (2023) utilized SHAP to select features for DDoS attack detection. Using the CICIDS2017 dataset, 

researchers have demonstrated that the SHAP technique enhances model interpretability and efficiency. Additionally, they 

employed a conditional tabular GAN (CTGAN) to generate synthetic data, which facilitated the training of an improved 

classifier. Their model achieved high accuracy, with a random forest (RF) accuracy rate of 99%. However, the key 

limitation in their work was the need for real-time data to test the practical performance of SHAP across different 

conditions. Cynthia et al. recommended further research to improve synthetic data and detection methods for real-time 

environments [36]. 

Akinwale et al. (2024) presented "A Regenerative Model for Mitigating Attacks on HTTP Servers for Mobile Wireless 

Networks," which focuses on the strength of the HTTP protocol. The CICIDS2017 dataset and techniques such as SMOTE, 

random sampling, random dropout, and principal component analysis were used. Akinwale et al. (HReg) demonstrated 

robust defence against SQL injection and DoS attacks, enhancing mobile network security. However, researchers have 

highlighted the need for real-world data to evaluate model performance. They also recommend the use of firewalls and 

continuous monitoring to ensure long-term reliability in network environments [29]. 

Dogra and Taqdir (2024), in their work "Enhancing Detection of Distributed Denial of Service Attacks and Network 

Elasticity through Packet Processing and Frequency Range Optimization," employed random forest algorithms to analyse 

network traffic and optimize frequency ranges. Their group-based approach significantly reduces packet rates, improving 

network elasticity and resistance to DDoS attacks. However, the effectiveness of their model decreased with more complex 

attack patterns, which remain underexplored. The authors recommend further testing in diverse network settings to increase 

adaptability and reliability [30]. 

Tedyyana et al. (2024) developed "Automated Learning for Network defence: Real-Time Detection of DDoS Attacks with 

Telegram Notifications." which achieved 99.77% accuracy and an F1 score of 98.70% when DT, SVM, and neural networks 

were trained on the CICIDS2018 dataset. The integration of a Telegram-based notification system for real-time alerts 

enhances its practical application. However, reliance on Telegram limits integration with other notification protocols. The 

study recommends retraining the model with new attack data to adapt to evolving environments [31]. 

Bindu et al. (2024), in their study "Detection of DDoS Attacks in SDN Networks Using Machine Learning," utilized 

machine learning algorithms such as random forests, k-nearest neighbours, DT and LR to analyse network traffic. The 

authors demonstrated that combining software-defined networking (SDN) with machine learning offers an effective method 

for detecting and mitigating DDoS attacks. While the study highlights the importance of cooperative cybersecurity 

frameworks, they lack real-time application, which may limit their utility during active attacks. The authors recommend 

further research into advanced machine learning techniques to enhance detection abilities in cooperative security networks 

[33]. 

Layeq et al. (2024) investigated the application of Edge-IIoT networks and SMOTE for training ensemble learning models. 

They utilized techniques such as hard voting, soft voting, and stacking to improve detection rates for DDoS attacks in Edge-

IIoT environments. However, class imbalance may affect model accuracy in real-world environments. Layeq et al. 

recommend addressing class imbalance issues and exploring broader IoT security challenges in future work [34]. 

Ahmed et al. (2019) and Osid et al. (2018) wrote comprehensive reviews on DDoS detection and mitigation techniques. 

Ahmed et al. compared statistical methods with machine learning-based approaches, whereas Osid et al. explored both 

traditional and advanced techniques, including data mining and anomaly detection. These reviews highlight the evolution 

of defence strategies against DDoS attacks, identifying strengths and weaknesses in various methodologies. Earlier 
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contributions by Antonakakis et al. (2011) and Rajab et al. (2006) provided foundational insights into signature extraction, 

attack classification, and trends that continue to influence modern cybersecurity research [24-28]. 

3. METHODOLOGY 

The defence system modules are divided into three parts: natural, observing, and suspicious (Fig. 2). The observation mode 
depends on the comparison between the load and the threshold; if the load exceeds the predefined threshold, the ML 
algorithm runs, checks the traffic and detects if there is an attack. Once the system detects an attack, it transitions to 
Suspicious Mode after verifying that it is a genuine attack and not merely normal user behaviour (Fig. 2). In Suspicious 
Mode, if the load still exceeds the threshold, each user must pass a CAPTCHA test to join the server, thereby initiating the 
mitigation algorithm. This algorithm blocks every IP address that sends excessive traffic to the server and adds it to the 
blacklist. The blocked IP cannot be permanently blocked; instead, an initial period is given, which gradually increases if the 
IP continues to send high volumes of traffic. If the situation reverses, the IP will be removed from the blacklist and added to 
the whitelist. 

 

 

 

 

 

 

  

 

 

Fig. 2. Switching process between defense system units 

3.1 Detection Stage 

Fig. 3 shows the contents of the observation box in Fig. 2. To start the process, the CIC-DDoS2019 dataset is pre-processed 
by loading it and handling any missing values, either by filling them with a default value or removing them entirely. It is 
important to normalize the features to ensure that they are on the same scale, which helps algorithms work correctly. After 
preprocessing, the dataset is split into training and testing sets, with an 80–20 split. The test set should remain unseen during 
training for reliable evaluation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Detection procedures 
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Next, the machine learning models DT, SVM, LR, NB, KNN, and stacked classifiers (a stacked classifier is an ensemble 
learning method that combines individual classifiers to enhance predictions [33]) are trained on the training set and then 
tested on the test set. Evaluation metrics such as accuracy (ACC), precision (PRC), recall (REC), F1 score, and 
implementation time are used to assess model performance. To improve the model’s interpretability, SHAP is used to analyse 
features and identify the most important features. After the most important features are determined, only the top 10–15 
features [32] are retained based on SHAP importance, and then the model is retrained with the reduced feature set. This will 
improve accuracy, as SHAP not only helps identify the most important features but also simplifies the model. To enhance 
performance, the model’s hyperparameters are optimized by tuning parameters such as the number of estimators or the 
maximum depth of trees in a random forest model. This tuning helps identify the best combination of settings for maximum 
accuracy. Finally, the trained model is evaluated on the test set to obtain a high-performing and interpretable model for 
detecting DDoS attacks via the CIC-DDoS2019 dataset. 

  

 

 

 

 

Fig. 4. SHAP implementation steps 

Fig. 4 shows the SHAP implementation steps. The process begins by loading the trained model whose predictions need to 

be interpreted. Then, the data that need to be interpreted are entered. A SHAP object is then created via TreeExplainer. 

Interpretation is particularly suitable for tree-based models such as decision trees or random forests. Next, the SHAP 

explanation method is executed, and SHAP values representing the contribution of each feature to the prediction are 

calculated. Finally, a summary flowchart is shown, which provides an overview of the contributions of these features, 

which in turn helps users understand how each input feature affects the model’s decision. 

3.2 Mitigation 

To trigger the system to enter the suspicious mode (mitigation), the load must exceed the threshold. As a precaution for this 
mode, new users who want to join the server must pass a CAPTCHA test, which helps prevent bot users from joining the 
server. A Slowloris application DDoS attack was applied to a Unix server connected to users with 2 GB of RAM and 1 GB 
of CPU. The traffic, transmission rate, CPU utilization, and memory utilization were all monitored and recorded. The attack 
was applied to two forces: the first was somewhat light, and the second was stronger than the first by increasing the number 
of packets/second. Once the attack is detected, the mitigation algorithm is activated to stop the attack. The mitigation process 
checks if the source IP address has already been recorded; if not, it will be included in the list, and the blocking period may 
be extended if a specific IP address resurfaces (see Fig. 5). Since some valid IPs may temporarily become entangled with 
zombie groups, the mitigation module does not permanently bar the IP address. When authorized users detect misused 
devices and perform security updates, the source IP address can once again become legitimate. Typically, the same network 
generates these zombie devices to launch a powerful DDoS attack. Attackers aim to gather a substantial collection of devices, 
often infecting a particular network to convert its devices into botnets targeting a specific objective. 

The mitigation algorithm can obstruct IPs originating from the same network or subnet rather than blocking each source IP 
individually. Periodic updates and temporary maintenance of the blacklist, which expires within a predefined timeframe, 
protect legitimate users from future obstructions. The metrics used before and after the mitigation process to evaluate the 
impact of the attack included the CPU utilization, memory utilization, transmission rate, and traffic rate. 
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Fig. 5. Users IP management during the mitigation stage 

4. RESULTS AND DISCUSSION 

4.1 Detection Results 

Five basic machine learning classifiers and a stacked classifier were built via the Python programming language. As 
depicted in Fig. 6, the support vector machine (SVM) classifier outperformed all the other base classifiers, achieving 
exceptional performance results, with an accuracy of 99.32%, precision of 99.33%, recall of 99.32%, and an F1 score of 
99.32%. Logistic regression (LR) and k-nearest neighbour (KNN) followed closely. LR achieved an accuracy of 99.13%, 
precision of 99.14%, recall of 99.13%, and F1 score of 99.13%, whereas KNN achieved an accuracy of 97.82%, precision 
of 97.81%, recall of 97.82%, and F1 score of 97.84%. The decision tree (DT) classifier ranked fourth with good metrics, 
with an accuracy of 93.11%, precision of 93.12%, recall of 93.11%, and an F1 score of 93.11%. Conversely, the naive 
Bayes (NB) classifier showed more conservative performance, with lower values of 76.22% accuracy, 75.25% precision, 
76.22% recall, and an F1 score of 80.02%. Consequently, the algorithms are ordered from best to worst performance as 
SVM > LR > KNN > DT > NB. In terms of execution time, the KNN algorithm was the fastest, whereas the DT algorithm 
took the longest. 
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99.57% 99.46% 99.45% 99.45%

143.50%

ACC % PRC % REC % F1 % Time (sec)

143.5 

 

Fig. 6. ML algorithm results 

The superiority of the linear SVM classifier over the other classifiers highlights the dataset's inherently linear nature. This 

conclusion arises from the linear SVM's ability to effectively establish clear boundaries among different categories via 

linear techniques. Therefore, classifiers based on the linear data separation technique are the best choice for this specific 

problem. In contrast, the naive Bayes (NB) classifier, which relies on a probabilistic approach, demonstrated the lowest 

performance with the given problem because it is incompatable with the dataset structure. This suggests the limitations of 

probability-based classifiers when applied to challenges of this nature. 

 

TABLE I.   STACKED CLASSIFIER ACCURACY 

 

 

 

 

 

 

Fig. 7. SC (DT+SVM+LR+KNN) metrics 

The effectiveness of various combinations of machine learning classifiers on a given dataset is summarized in Table I. The 

classifiers include decision trees (DTs), support vector machines (SVMs), logistic regression (LR), k-nearest neighbors 

(KNNs), and naive Bayes (NB). 

The highest obtained accuracy was 99.57%, which was achieved by stacking the DT, SVM, LR, and KNN classifiers; 

additional performance metrics for this stacked classifier are presented in Fig. 7. The DT + SVM + LR combination also 

shows good performance, with an accuracy of 99.22%, which is better than the result obtained from the DT + SVM 

combination without LR, with an accuracy of 99.17%. This suggests that the predictive ability of DT and SVM is further 

enhanced when they are added to the LR classifier. In fact, the LR appears consistently in high-performing stacks, indicating 

its strength across different combinations and its effectiveness in complementing other classifiers. Furthermore, combining 

the SVM with the KNN classifier achieved an accuracy of 99.41%, suggesting that these models can effectively handle 

complex data distributions when used together. On the other hand, the lowest accuracy was 92.86% for the combination 

(DT + NB), suggesting that NB may struggle to capture the dataset's complexities even when combined with DT, which 

typically models more intricate patterns. Overall, the results emphasize the importance of diversity in model selection for 
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stacking, as combinations that mix various types of models tend to produce better results than those with similar 

characteristics. This analysis confirms that utilizing a diverse set of classifiers in stacking can lead to significant 

enhancements in accuracy, highlighting the need for careful selection of model combinations to achieve optimal results. 

On the other hand, the implementation time for the combination of (DT + SVM + LR + KNN) was 143.5 sec, which is 

considered relatively long compared with the rest of the classifier implementation times (Fig. 6 and Fig. 7), and this 

conflicts with one of the interests of this work, in which the time factor is important for eliminating the attack as quickly 

as possible. In Table I, all the mentioned values except the value of "DT+SVM+LR+KNN" are less than the accuracy value 

of the SVM classifier (99.32%), so the work relies only on the value of the stacked classifier "DT+SVM+LR+KNN", as 

shown in Fig. 7, and there is no need for the remaining classifiers because their accuracy is less than the accuracy of the 

SVM; of course, their implementation time is larger than the SVM implementation time (9.1 sec) (see Fig. 6), which is due 

to the integration of more than one classifier. As the accuracy factor is important, the time factor is equally significant. 

All the previous results were obtained before the SHAP method was applied. Next, the results after applying the SHAP 

method are presented and compared with those obtained prior to its use. 

Fig. 8. SHAP values 

Fig. 8 displays the SHAP graph values, illustrating how different features interact and affect predictions. The vertical axis 

represents packet lengths, port numbers, protocols, and other relevant features, whereas the horizontal axis indicates the 

SHAP interaction values, which reflect the effect of feature interactions on the model outputs. The dots represent individual 

data points, showing the direction of the effect, whether positive or negative, and their colors, ranging from blue to red, 

reflect the magnitude of the feature values. The 'Source Port' feature is represented by both red and blue dots. The red dots 

indicate higher values of the source port, which have a stronger impact (either positive or negative) on the predictions, 

whereas the blue dots represent lower values. The 'Source Port' feature exhibited the highest SHAP interaction values, 

making it the most impactful feature on the model's output. As a result, a greater focus on this feature, along with other 

similar features in the CIC-DDoS2019 dataset, will further improve the detection accuracy of the classifiers. 
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99.95% 99.95% 99.94% 99.94%

47.00%

ACC % PRC % REC % F1 % Time (sec)

47 

From TABLE II and TABLE III, it is evident that after applying the SHAP method, the accuracy of all classifiers increased 

while their execution time decreased, aligning perfectly with our goals. This improvement is attributed to the ability of 

SHAP to isolate high-impact features and disregard those with minimal impact. Notably, the rankings of the classifiers 

remained consistent before and after the application of SHAP: SVM, LR, KNN, DT, and NB. The most significant 

improvement was observed in the NB algorithm, which experienced a substantial increase in accuracy. Overall, the SVM 

algorithm continues to stand out as the best because of its high accuracy and short execution time. 

TABLE IV.  SC ACC AFTER SHAP 

    

  

 

 

 

 

 

 

Fig. 9. SC (DT+SVM+LR+KNN) metrics after SHAP 

As shown in TABLE IV and Fig. 9, the stacked classifier (DT+SVM+LR+KNN) achieved a significant improvement in 

accuracy, increasing from 99.57% to 99.95%, the highest accuracy achieved in this work. Additionally, its execution time 

decreased significantly from 143 seconds to 47 seconds. Although this reduction in execution time is impressive, it remains 

relatively greater than those of the individual classifiers. For the other classifier combinations listed in TABLE IV, the 

accuracy and execution time both improve; however, their accuracy remains lower than that of the single SVM classifier. 

Considering that both time and accuracy are critical for this study, the SVM classifier proves to be the most suitable choice, 

as it satisfies these two factors. However, if the time factor is less critical, the stacked classifier (DT+SVM+LR+KNN), 

which achieves the highest accuracy, would be the preferred choice. 

Table V quickly compares the accuracy of different classification approaches for DDoS detection models across various 
classifiers and feature selection methods. 

TABLE V.  THE PERFORMANCE COMPARISON TABLE FOR THE PROPOSED MODEL WITH OTHER METHODS IN THE LITERATURE 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Mitigation Results 

The implementation of the attack led to significant changes in memory usage, CPU performance, network traffic, and 

transaction rates. This is thoroughly illustrated in Figures 10 to 13. As a result of the attack, the system transitioned into a 

suspicious state, prompting the activation of the mitigation algorithm, as visualized in Figures 14 to 17. In Figures 10 to 17, 

the first attack (blue curves) was less powerful than the second attack (red curves). 

Stacking Classifiers ACC 

DT+SVM+LR+KNN 99.95% 

KNN+SVM 99.81% 

SVM+KNN 99.78% 

DT+SVM 99.60% 

LR+KNN 99.62% 

DT+SVM 99.58% 

SVM + NB 99.51% 

SVM+NB 99.53% 

SVM+LR 99.47% 

DT+LR 98.71% 

DT+KNN 98.51% 

DT+ND 92.99% 

Reference Papers Feature Selection Classifier Accuracy 

1. DDoS Attack Detection Using SHAP-
Based Feature Reduction [32]. 

SHAP CTGAN 99% 

2. Enhancing the discovery of the deprivation 
attacks of the distributed service and the 
elasticity of the network by processing the 
group's packets and improving the 
frequency range [27]. 

Frequency 
Domain 
Analysis 

RandomForest 95% 

3. Automated Learning to Defending the 
Network: Automated Detection of 
Distribution attacks using Telegram 
notifications [28]. 

CICIDS2019 DT 99.77%. 

4. Discovery of DDOS attacks in SDN 
networks using machine learning [29]. 

NetworkTraffic RandomForest 99.91% 

5. DDOS Attack Detection in Edge-IIOT 
Network Using Ensample Learning [30]. 

SMOTE Ensemble 99.91% 

6. This Work SHAP Stacking Classifer 99.95% 
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4.2.1 Results Before Mitigation (During DDoS Attack) 

These cases were recorded for one minute during the attack, and before invoking the mitigation algorithm, the CPU usage 

was 100%, as shown in Fig. 13, and almost 1 GB of memory (half of it) was utilized in Fig. 12. Additionally, there was a 

sharp and rapid rise in data transfer and traffic, as shown in Fig. 10 and Fig. 11. 

 

 
 

 

 

 

 

 
 

 

 
 

 

 

Fig. 10. Traffic rate                                                                                                                      Fig. 11. Transmission rate 

Notably, the traffic rate has exceeded 6000 packets/second, exceeding the server’s limits or threshold, which has placed a 

heavy load on it and made it unavailable to users (Fig. 10). Additionally, the transmission rate increased rapidly, reaching 

9000 packets per second, which is a high rate that exceeds the permitted limit for using server resources (Fig. 11). 
 

 
Fig. 12. Memory utilization                                                                                                                      Fig. 13. CPU utilization 

 

 

 

4.2.2 Results After Mitigation 

 
After the mitigation algorithm is implemented, the processor, memory, and data transfer activities return to their normal 
states, as illustrated in Figures 14 to 17. The CPU usage normalized, reaching 20% of the total utilization, as shown in Fig. 
17. Similarly, the memory usage stabilized at 200 MB (Fig. 16). Furthermore, the volume of data sent and received decreased 
to normal levels, as evident in Fig. 14 and Fig. 15. 
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Fig. 14. Traffic rate                                                                                                       Fig. 15. Transmission rate 

 

Fig. 16. Memory utilization                                                                                                           Fig. 17. CPU utilization 

 

TABLE VI presents a summary of the metrics obtained before and after mitigation. The values in the table illustrate the 
effectiveness of this algorithm in controlling the attack. During the attack, 100% of the CPU was utilized, along with 90% 
of the total memory, indicating exhaustion of the server's resources during the attack. After mitigation, we observe that the 
CPU usage decreases to 18%, whereas the memory usage decreases to 20% of the total capacity. 

TABLE VI.  METRICS BEFORE AND AFTER MITIGATION 

Metric Before Mitigation After Mitigation 

Traffic Rate (Mbps) 5010 150 

Transmission Rate 5500 100 

CPU Utilization (%) 100 18 

Memory Usage (MB) 900 200 

 

 

5. CONCLUSIONS 

The main idea presented in this study is to detect and mitigate DDoS attacks at Layer 7 via machine learning algorithms 

with the help of SHAP. This integration enhances the detection accuracy and reduces the implementation time of the 

classifiers. Unlike many existing studies that focus solely on accuracy, this work emphasizes balancing accuracy and 

execution time, which is crucial for detecting and mitigating attacks in real time or close to it. Additionally, the study 

introduces a mitigation algorithm that dynamically blocks and unblocks IP addresses based on traffic patterns. The practical 

implementation and testing on a local Unix server highlight the work, bridging the gap between theory and real-world 

application. 
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This study addresses several gaps in the literature, contributing to the field of DDoS defence. The stacked classifier, with 

the help of SHAP, demonstrated the highest accuracy in attack detection when multiple machine learning algorithms were 

combined, achieving an accuracy of 99.95%, albeit at the expense of execution time, which took 47 seconds. However, for 

tasks requiring a fast response in real time, the SVM algorithm, aided by SHAP, proved more suitable because of its strong 

balance between accuracy (99.81%) and execution time (4 s). This makes it ideal for applications where accuracy is critical, 

and execution time remains a crucial factor for real-time detection. Dividing the system into normal, observing, and 

suspicious states simplified the process and significantly contributed to monitoring and mitigating DDoS attacks. 

Testing on real attacks confirmed that the mitigation algorithm successfully prevented malicious users from connecting to 

the server or overloading it, with the CPU and RAM restored to their normal states prior to the attack. The SHAP technique 

greatly enhances the understanding of model outputs and identifies important features in the CIC-DDoS2019 dataset, and 

its use is recommended for improved and faster learning. 

One limitation of this study is its reliance on the CIC-DDoS2019 dataset, which may limit adaptability, particularly when 

faced with new attack patterns or advanced threats. Another consideration is that while the stacked classifier achieves high 

accuracy, its execution time is longer than that of other classifiers, potentially limiting its practical application in high-

traffic, real-time situations where fast response is essential. The mitigation algorithm, which blocks IP addresses based on 

a predetermined threshold, may also require continuous adjustments to respond to changing traffic and server loads, 

reducing its effectiveness in dynamic environments. Finally, this study focused on Layer 7 distributed denial-of-service 

attacks. Generalizing the results to include other forms of distributed denial-of-service attacks would broaden the scope of 

this research and should be considered in future studies. 
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