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A B S T R A C T 

The increasing number of Internet of Things (IoT) devices in healthcare applications, particularly during 

emergencies, necessitates safe protocols for transmitting real-time data. Medical data are essential for 

healthcare applications, and reliance on IoT devices to control information flow necessitates the 

consideration of five critical areas. This work addresses the security challenges associated with the 

transmission and storage of copyrighted healthcare data, as well as the inadequacy of the present methods 

in facilitating real-time data transfer given the volume of data and network conditions. This research 

provides a theoretical framework for the secure and immediate offloading of computations in IoT 

healthcare systems. The objective is to implement secure communication and networking technologies 

to ensure the security and integrity of medical data, maintain confidentiality, and facilitate real-time 

transmission of information. The proposed framework is simulated in MATLAB for system model 

implementation. A blockchain network sandbox was established with the delegated proof-of- stake 

(DPoS) consensus method, supplemented by proof-of-work (PoW) and proof-of-validation (PoV) for 

enhanced security. To assess the efficacy of this framework, multiple test scenarios focused on the 

number of nodes, the volume of data, and the conditions of network connectivity. The results 

demonstrated the system's efficacy in facilitating the offloading of real-time data in IoT healthcare 

applications. The aforementioned study demonstrated that the framework exhibited rapid transaction 

processing, efficient resource use, and energy conservation while also enhancing secure data 

transmission across various network conditions. The findings confirm that the proposed architecture can 

effectively and securely transmit real-time data in IoT healthcare applications without jeopardizing data 

authenticity, privacy, or integrity. The system's ability to address security challenges and manage 

substantial data volumes under varying settings indicates that it can be effectively deployed in healthcare 

systems, particularly in critical situations.

1. INTRODUCTION 

The increased deployment of IoT devices in healthcare facilities means that dependable power solutions for securing real-
time data transfer of critical medical information are needed. It may be even more important in an emergent state, as per the 
current outbreak of COVID-19, which ensures a timely and accurate flow of accurate patient data [1]. Nevertheless, the 
transfer of medical data within IoT healthcare systems can be both secure and efficient, albeit with certain challenges. These 
limits include the safeguarding of patients' information from illegal access, challenges related to resource availability and 
service delivery, and potential difficulties in managing substantial volumes of data owing to network and machine 
constraints. Furthermore, the rise of the need for healthcare solution delivery and managing large volumes of data, especially 
during a pandemic such as COVID-19, has made such systems more important [2-9]  
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The increased deployment of IoT devices in healthcare facilities means that dependable power solutions for securing real-
time data transfer of critical medical information are needed. It may be even more important in an emergent state, as per the 
current outbreak of COVID-19, which ensures a timely and accurate flow of accurate patient data [1]. Nevertheless, the 
transfer of medical data within IoT healthcare systems can be both secure and efficient, albeit with certain challenges. These 
limits include the safeguarding of patients' information from illegal access, challenges related to resource availability and 
service delivery, and potential difficulties in managing substantial volumes of data owing to network and machine 
constraints. Furthermore, the rise of the need for healthcare solution delivery and managing large volumes of data, especially 
during a pandemic such as COVID-19, has made such systems more important [2-13]. 

This study establishes a theoretical framework for the secure offloading of computational tasks in IoT healthcare 
environments. The framework proposes a blockchain system that uses the delegated proof-of- stake (DPoS) consensus 
mechanism in conjunction with secure multiparty computation (MPC) to safeguard patient data. This architecture enhances 
the reliability and speed of real-time data transmission while minimizing the data processing time, energy consumption, and 
low quality of service (QoS) [3-14]. The primary aim of this initiative is to improve the development of a robust and reliable 
framework for the transmission of real-time healthcare data in IoT applications. This document pertains to the fast and 
accurate dissemination of medical information while safeguarding the confidentiality, integrity, and availability of patient 
data. This research focuses on determining the flow rate and the system's ability to achieve QoS standards in the healthcare 
context, emphasizing data processing efficiency [4-17]. Therefore, the main contributions of this study are as follows: 

a) Decentralized IoT Healthcare System Development 

b) Integration of blockchain technology and DPoS for secure real-time medical data transmission. 

c) Use of Secure Multi-Party Computation (MPC) for patient data confidentiality and regulatory compliance. 

d) Optimization of real-time data transmission to address network latency and resource utilization issues. 

e) Implementation of DPoS for efficient management of IoT devices in healthcare settings. 

f) The application of offloading techniques minimizes processing time, energy consumption, and resource usage while 
maintaining high QoS. 

This is highly significant for the future of the IoT, particularly for decentralized healthcare systems. Our suggested system 
addresses the essential issues associated with cloud data storage and processing, including data security and privacy, network 
quality, resource consumption, and load variability, through the integration of blockchain and intelligent offloading 
techniques. Research indicates that such a system can be economically created and implemented for the tele-transmission of 
medical data in client healthcare and overall organizational efficiency during crises such as the ongoing COVID-19 epidemic. 
This study enhances the security, availability, and performance of IoT healthcare systems and establishes a foundation for 
further research on healthcare data utilization [5-18]. 

This paper is organized as follows: Section 2 delineates the literature on IoT healthcare systems and the implementation of 
blockchain technology. Section 3 delineates the theoretical framework for the secure offloading of computing delegation, 
integrating DPoS and Secure MPC. Section 4 presents the specifics of the employed technique, including the simulation 
environment and the performance indicators for evaluating the suggested solution. Section 5 of the study presents the results 
and comments, whereby the authors evaluate the effectiveness of the decentralized system on the basis of multiple offloading 
variables. Section 7 concludes the report by summarizing the study's key findings and offering recommendations for future 
research. 

2.  LITERATURE REVIEW 

The emergence of wireless technology and sensors has initiated a novel era of digital healthcare systems, specifically inside 
the blockchain network, hence augmenting the efficacy of healthcare applications. This part focuses on the continuous study 
of endeavors aimed at enhancing the performance of healthcare applications within the network environment. Figure 1 
illustrates the procedural framework for integrating blockchain technology within the IoT healthcare system. 

In [6], a patient healthcare program designed to increase energy efficiency was presented. This scheme also included 
certificate-based security measures, which were implemented to safeguard remote healthcare services. In [7] and [8], the use 
of energy-efficient machine learning techniques that incorporate supervised labelling was suggested to address the problem 
of dynamic intrusion threats. These approaches were designed specifically for mobile Android cloud-based healthcare 
applications. The methodologies were developed with the objective of optimizing the application processing procedure 
within the blockchain-powered network. The purpose of these methodologies is to address the inherent problems with 
authentication and authorization that arise when dealing with patient data. These investigations effectively addressed security 
and energy consumption issues, particularly in relation to network-edge administering devices. Nevertheless, it is essential 
to highlight that the study focused mostly on the examination of security measures as well as energy consumption inside 
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centralized healthcare apps. When confronted with many diverse nodes in the healthcare industry, this method frequently 
results in excessive use of resources and increased security vulnerabilities. 

Fig. 1.  Process of blockchain in the IoT healthcare system. 

To address these limitations, several studies [10–15] have proposed a decentralized healthcare system employing blockchain 

technology in tandem with the Internet of Things (IoT). Using a decentralized method, the primary objective was to mitigate 
security vulnerabilities associated with centralized healthcare Internet of Things (IoT) systems. Utilizing public blockchain 
technologies facilitated the processing of public healthcare data, ensuring data integrity across heterogeneous groups while 
simultaneously reducing energy consumption relative to centralized solutions. Nonetheless, the inherent limitations of 
blockchain technology, specifically its capacity to manage large datasets on nodes, pose obstacles to achieving accurate 
governance over these healthcare systems in terms of security and energy efficiency. 

In response to these issues, studies [16,19,21] have proposed blockchain-based healthcare system solutions that prioritize 
delay optimization and energy efficiency. The aforementioned advancements prioritized the reduction of processing delays 
in healthcare data transmission between fog and cloud nodes through the utilization of dynamic scheduling algorithms and 
machine learning techniques. Despite the implemented optimizations, the training and testing of models within consensus 
blocks caused delays in the final decision-making process for numerous studies. 

Additional progress was made in studies [20,25,22], which included the proposal of a healthcare system propelled by 
federated learning, as well as the incorporation of trivial offloading as well as scheduling systems. By implementing smart 
agreement regulations, the primary objectives of these solutions were to reduce delays, enhance security measures, and 
optimize energy consumption. The use of machine learning techniques for outsourcing and adaptive scheduling is crucial to 
the efficient management of healthcare data within fog–cloud networks. 

Recent studies have shown the emergence of innovative healthcare systems that integrate adaptive and artificial intelligence-
driven mechanisms to augment security, privacy, and energy efficiency within the realm of blockchain technology [25–28]. 
These platforms were designed to predict security as well as energy risks in the IoT network through the use of several 
mining techniques, including proof of stake (PoS), proof of work (PoW), and Byzantine disappointment, to authenticate and 
anticipate network nodes. The previously listed blockchain frameworks, specifically Ethereum, Fabric, Corda, and IBM, 
have made significant advancements in the field of decentralized security. Nevertheless, scholarly studies have emphasized 
the importance of validating data on the client side in the context of offloading and local processing. 

Table 1 provides a comprehensive list of the most important studies that have been conducted, encompassing the 
implemented application, the proposed methodology, the security challenges encountered, and the outstanding issues that 
remain unresolved. Additionally, the table outlines the objectives that were set for each study and whether they were 
achieved. The year in which each problem was resolved is also specified, enabling identification of the unresolved issues. 

TABLE I. COMPREHENSIVE STUDY OF THE IMPLEMENTED APPLICATION, RECOMMENDED METHODS, SECURITY CHALLENGES 
AND OBJECTIVES. 

Ref. Implement App Methodology Security Challenges Objectives Year 

[29] 

System for 

Managing and 
Sharing Medical 

Records 

 

Identification of unknown key 

exploiters 

Concerning the confidentiality, 
integrity, availability, and privacy 

of data 

Development of a Distributed 
Ledger Technology (DLT)-based 

Data Management Platform 

2020 

[30] 
RPM (Remote 
Patient Medicine) 

and Telemedicine 

Dedicated to bridging the gap 

between the blockchain platform 

concept and the healthcare 
industry 

Data collecting, patient 
monitoring, and privacy and data 

security 

Safe and reliable RPM using 

the blockchain 
2021 

[31] 

The EHR System, 

or Electronic 
Health Record 

Consider population-level data 

collection as an example of a work 
that could benefit from blockchain 

Safety, distribution, accessibility, 

and integrity of data 

E.H.R security as well as 

usability improved by employing 
blockchain technology. 

2021 
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automation that could be of use to 

healthcare practitioners. 

[32] 
Data storage & 

Security 

Dedicated to improving the 

technological advantages of 

blockchain applications, for 
example by coordinating Internet 

of Things gadgets. 

Safety, Authorization, Reliability, 

as well as Transfer of Data 

Creating Safe Methods of Data 

Transmission as well as Storage 
2022 

[33] 

Data analysis, 

computation on the 

edge and in the 
cloud 

The human body generates one-
of-a-kind protocols as a 

transmission channel as part of its 

efforts to construct a blockchain-
based, decentralized social 

network. 

Problems with information safety, 

administration, dependability, 
accuracy, manipulation, 

communication delays, and 

allocation of scarce resources. 

Better decisions may be made 

when blockchain technology is 
combined with other processing 

of data platforms, like cloud as 

well as edge computing. 

2023 

 

Table 2 presents a concise overview of our discussion about these six elements. First, we have blockchain's distinguishing 
qualities. The secondary publications provide an incomplete account of the properties of blockchain. The majority of the 
additional resources provide a cursory summary of blockchain characteristics. Furthermore, prior studies have examined the 
advantages of using blockchain technology in the healthcare sector. Nevertheless, the issue in question was examined by 
[34-38] across all participants in the healthcare industry. The remaining four assessments concentrated on a limited group of 
performers. Furthermore, the challenges and issues associated with implementing BC have been elucidated by [39, 40]. 

TABLE II. THE SECONDARY RESEARCH COMPARISONS INCLUDE SIX ASPECTS. 

Ref. 
Features of 

BC 

BC Benefits 

in HC 

BC Challenges & prob in 

implementation 

Apps of BC in 

HC 

Research 

Methodology 

BC-based Cloud Apps & 

Platforms in HC 

[34-

36] 

Relatively 

yes 
Non yes Relatively yes Non Non 

[37] 
Relatively 

yes 
Non Non Relatively yes Non Non 

[38] 
Relatively 

yes 
Non Non Relatively yes Non Non 

[39] 
Relatively 

yes 
Non Non Non Non Non 

[40] yes yes yes yes yes Non 

 

The healthcare market is currently experiencing swift advancements in technology. An analysis of the available literature 
reveals that only a limited number of primary studies have been incorporated into the discourse regarding the fourth aspect, 
namely, BC applications in HCs [35]. This study aims to expand the pool of primary studies available for analysis of 
blockchain applications within the healthcare sector. Moreover, extant research has employed a qualitative research 
methodology to elicit findings. 

Despite significant advancements in the application of blockchain and IoT technology inside healthcare systems, several 
constraints persist that hinder the efficacy of these systems. Current solutions predominantly focus on enhancing the security 
and efficiency of a location-based healthcare system, as decentralization is insufficiently acknowledged. Several previous 
studies [6-8] addressed energy economy and security in centralized mobile Android cloud-based applications, which vary in 
node quantity and seldom exhibit scalability or heterogeneity. Although the application of blockchain in decentralized IoT 
healthcare systems, as examined in studies [10–15], appears to effectively mitigate security concerns, this technology 
encounters challenges regarding scalability, data management, and governance, particularly concerning heterogeneous data 
sources. Nonetheless, challenges persist regarding delay optimization and energy efficiency, despite the advancements in the 
current research on delay optimization [16] and energy efficiency [19], which indicate potential future developments in 
healthcare big data scheduling, as significant delays arise from the consensus mechanisms intrinsic to its complex nature. 
Moreover, despite the implementation of federated learning and adaptive scheduling in certain studies [20–25], blockchain 
technology, IoT devices, and real-time medical data transmission inside a decentralized network are lacking. 

Recent advancements in artificial intelligence and other adaptive mechanisms have aimed to mitigate security and energy 
risks; however, they neglect the essential client-side validation of data during offloading and local processing, which remains 
crucial for real-time data accuracy in IoT healthcare networks. This paper addresses these issues by proposing a unique 
decentralized architecture that integrates the delegated proof of stake (DPoS) algorithm with safe multiparty computation 
(MPC). This integration enhances data protection, privacy, and the optimization of real-time healthcare data transfer, 
addressing the shortcomings of current centralized and decentralized systems, particularly in terms of scalability, energy 
consumption, and dependability. 
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3. METHODOLOGY 

This section describes a methodology for achieving real-time dispatching in healthcare applications during the COVID-19 
pandemic via the blockchain fog-cloud algorithm and the delegated proof of stake (DPoS) algorithm. The utilization of IoT 
technology to link sensors and equipment for real-time monitoring, data collection, and analysis is referred to as the 
healthcare IoT. In the long term, this interoperability will be advantageous for both patient care and malady management. 

Real-time offloading is a process in which computational duties that are resource-constrained on IoT devices are transferred 
to edge or cloud servers that possess superior processing capabilities. By implementing this method, energy is saved, battery 
life is extended, and processing capabilities are improved, specifically for COVID-19 applications. The challenges posed by 
the pandemic require the implementation of a robust and secure Internet of Things (IoT) infrastructure. This infrastructure 
should encompass features such as remote patient monitoring, contact tracing, and timely symptom identification. 
Nevertheless, ensuring the protection of security and privacy regarding confidential healthcare information must take 
precedence. 

The research topic is the development of a comprehensive framework for secure real-time outsourcing in healthcare 
applications of the Internet of Things, with a particular emphasis on addressing the difficulties brought about by the COVID-
19 pandemic. The illustration of this framework in Figure 2 demonstrates its capacity to enhance the capabilities of healthcare 
providers through efficient surveillance and response to the ever-changing circumstances, facilitation of remote patient care, 
and contribution to the all-encompassing management of the pandemic. 

Fig. 2.  Novel framework. 

The principal aim of the suggested framework is to enhance the capabilities of Internet of Things (IoT) devices utilized in 
healthcare contexts through the efficient resolution of challenges regarding energy efficiency, security, and real-time 
processing. It is expected that the implementation of this enhancement will result in improved diagnostic precision, timely 
interventions, and improved patient outcomes. 

This framework will be solved by using decentralized blockchain-enabled secure offloading that can handle secure real-time 
offloading for IoT healthcare applications, as well as solving the security problem by using a blockchain that consists of two 
cryptographic data (PoV & PoW). In addition, the approach consists of system distributed healthcare monitoring systems 
that assist in distributed fog–cloud networks that can process millions of queries. Hence, we design a unique blockchain-
distributed healthcare monitoring system to increase the balance of QoS and resources. Figures 3 and 4 show the structure 
and steps used to solve the contribution. 
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Fig.3. Structure to solve the novel approach. 

 

Fig. 4. Steps of RSA to solve the novel approach. 

Hence, the methodology comprises distinct phases, each strategically formulated to target a particular facet of the problem 
at hand. These distinct phases are inserted at the following point and shown in Figure 5. 

 

Fig. 5. Phases of research methodology. 
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1. Phase 1: The research design phase focuses on determining the goals, objectives, and data required for developing 

a secure real-time offloading system for monitoring COVID-19 healthcare. As shown in Figure 6, 

2. Phase 2: Data collection phase. As shown in Figure 7 

3. Phase 3 and Phase 4 involve enhancing the system architecture and framework, which includes implementing a 

decision-making solution and dividing the real-time offloading addresses. Figure 2 above illustrates step 4, which 

is the evaluation methodology step. As shown in Figure 8, 

4. Phase 5: Implementation of the methodology. As shown in Figure 9, 

5. Phase 6 involves the study of clinical data and 

6. Phase 7 involves examining the limitations of the framework, as shown in Figure 10. 
 

 

Fig. 6. Summary stages of the research design. 

 

 

 
Fig. 7. Block diagram of the inclusion of the clinical data in the code. 
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Fig. 8. Metrics used to evaluate the methodology. 

 

Fig. 9. These important stages of the implementation phase are presented and explained. 

 

 
Fig. 10. Block diagram showing the analysis of the clinical data in the DPoS algorithm. 

 

3.1  Algorithm Parameters 

To ensure the accessibility and repeatability of the results, this section details the critical parameters for the DPoS and secure 
multiparty computation (MPC) algorithms utilized in the study. Table 3 lists the principal parameters employed in the DPoS 
and MPC algorithms utilized in this research. These characteristics are essential for guaranteeing the efficient functioning, 
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security, and scalability of the decentralized healthcare system, as well as for preserving data privacy and integrity during 
real-time data transmission and offloading. 

 
TABLE  III. ALGORITHM PARAMETERS 

Parameter Description Value Used in the Study 

Delegated Proof of Stake (DPoS) 

Algorithm 

  

Number of Delegates (N) The number of elected delegates responsible for validating 
transactions in the blockchain. 

21 delegates 

Block Time (T) The time interval required to produce a new block in the 

blockchain. 

1 second 

Transaction Per Block (M) The maximum number of transactions allowed per block. 100 transactions per block 

Voting Power (V) The amount of power a user can delegate to a delegate based on 

the number of tokens held. 

Proportionally assigned based on 

tokens held 

Delegate Election Cycle (C) The frequency with which delegates are elected. Every 1000 blocks 

Secure Multi-Party Computation 

(MPC) Algorithm 

  

Threshold (T) The number of parties required to agree on a computation before 

it is accepted. 

3 parties 

Number of Participants (P) The number of parties involved in the computation. 5 participants 

Data Split Size (S) The size of the data split into parts to distribute across 
participants. 

1 MB per data split 

 

4. IMPLEMENTATION AND RESULTS  

4.1 Implementation 

The implementation phase aims to create a virtual blockchain network via MATLAB to imitate real-life events in a 

decentralized healthcare system. The process involves establishing a simulated blockchain network, assembling the 

network with nodes representing different components, assigning duties and obligations to nodes, configuring the network, 

and initializing nodes with unique identifiers, processing capabilities, and datasets. Once these operations are completed, a 

functional simulated blockchain network is constructed to facilitate further research on the execution of the proposed 

decentralized healthcare system. This section explores specific aspects of this implementation, such as the adoption of the 

DPoS consensus mechanism, security measures, and performance evaluation metrics. 

The DPoS consensus method is crucial for implementing a decentralized healthcare system. Delegates are responsible for 

creating new blocks in a predetermined order, ensuring a fair distribution of block creation responsibilities. They also 

validated the blocks created by other delegates, verified transactions and adhered to the network's consensus rules. 

Delegates play a crucial role in maintaining network security by actively participating in the consensus process and 

suggesting modifications to the consensus rules. 

Delegates create new blocks via computational resources, verifying the integrity and authenticity of transactions. 

MATLAB's built-in functions and algorithms handle the consensus protocol, block creation, and validation processes in 

the DPoS algorithm. The consensus rounds are managed via MATLAB, ensuring the progression of block production and 

validation. Consensus round management is essential for maintaining integrity and efficiency. By configuring the virtual 

blockchain network, it is possible to assess the impact of implementing the DPoS consensus method on the proposed 

system's efficiency, scalability, and security. 

Therefore, the implementation of PoW and PoV mechanisms in a decentralized healthcare system is discussed. It examines 

a blockchain network simulation in MATLAB, highlighting the integration procedures and functions of PoW and PoV. 

The use of cryptography libraries and functions in MATLAB helps integrate PoW and PoV schemes into the blockchain 

network, enhancing security and deterring bad actors. Proof of validation ensures the accuracy and reliability of medical 

records. The goal is to strengthen the security and data integrity of the decentralized healthcare system. 

A decentralized healthcare system's performance evaluation is crucial for assessing its practical efficacy and efficiency. 

Measurements were taken and simulated via MATLAB, and metrics were assessed across various loads and scenarios. 

Table 4 provides detailed metrics for a comprehensive assessment of the system's effectiveness. 

 
TABLE  IV. DEFINED METRICS FOR PERFORMANCE ASSESSMENT  

Metric Description 

Transaction Processing Speed Measures the average time taken to process and validate a transaction within the blockchain network. 

Scalability A measure of the system's ability to handle increased load or demand. 
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Centralization of Power Assesses the concentration of decision-making power within the system. 

Privacy Concern Reflects the level of concern for user data privacy within the system. 

Data Storage Accesses 
Measures the efficiency of data storage and access operations. 

 

Regulatory Compliance Evaluate the system's adherence to regulatory requirements. 

Decentralization Effectiveness Efficiency Assesses the efficiency of the decentralization strategy. 

Data Integrity Security Reflects the level of data integrity and security measures. 

Data Privacy Confidentiality Measures the system's effectiveness in preserving data privacy and confidentiality. 

 

The MATLAB simulation process involves two main steps: scenario generation and testing. The first step generates real-

life scenarios, considering variables such as data volume, network health, and node number. The second stage tests the 

system via MATLAB's simulation environment and develops scenarios, evaluating metrics such as transaction efficiency, 

scalability, and energy usage. Scalability measures measure the system's capacity to handle more transactions and nodes, 

transaction processing speed indicates responsiveness, and energy consumption measures evaluate the efficiency of the 

decentralized healthcare system. The performance evaluation metrics provide a comprehensive understanding of the 

system's scalability, energy efficiency, and overall performance. Comparison analysis helps identify strengths, limitations, 

and areas for improvement. 

The proposed framework for secure real-time data transmission from healthcare applications via the Internet of Things is 

validated via MATLAB data analysis tools. The evaluation focuses on the punctuality, precision, and dependability of 

offloaded data. Reliability and accuracy evaluations verify the consistency and dependability of the offloading process. 

Timeliness is assessed by comparing offloaded data to expected data. The MATLAB suite of tools, including algorithms, 

visualization tools, and statistical analysis routines, is used for data analysis. 

4.2 Results 

To provide a quantitative overview of a decentralized healthcare system's performance indicators, including the mean, 

median, and standard deviation, the DPoS mechanism is used. It aims to enhance the understanding of the system's 

efficiency and stability in three scenarios with varying offloading proportions, and delegates are included in the input data 

for a healthcare system. These factors affect efficiency and performance, affecting data distribution and processing. 

Hypothesis testing uses these cases to evaluate the system's performance with different levels of data offloading. Figure 11 

shows the distribution of data input for each scenario, highlighting the experimental conditions for hypothesis testing. 

 

 
Fig 11. Execute data entry into the framework. 

 
TABLE V. STATISTICS OF DATA 25 AND OFFLOADING RATES OF 20%, 50%, AND 80%. 

Statistics of Data 25 

statistics x y 

min 1 3 

max 300 100 

mean 150.5 50.58 

Median 150.5 49 

Mode 1 36 

Std 86.75 28.12 

range 299 97 
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Table 5 provides a statistical summary of x and y for three unloading percentages: 20%, 50%, and 80%. The initial 

observation of these data in a min‒max graph promptly indicates a substantial range of variability, with the minimum value 

for x being 1 and the maximum being 300. The range of y is confined between 3 and 100, indicating that the values of y 

are less dispersed than those of x. Statistics indicate that the mean of x is 150.5, whereas the mean of y is 50.58, 

demonstrating that, on average, x far exceeds y. The median values for both variables approximate the central tendency, 

with the mean for the x variable at 150.5 and the y variable at 49, indicating that the data for both variables are balanced 

and devoid of notable outliers. The mode value for x is 1, as it is the smallest value that occurs most frequently; for y, the 

mode value is 36, as it is the value that is most likely to be sampled most often. The standard deviation of x (86.75) exceeds 

that of y (28.12), indicating that the variability in x is more pronounced around its mean than the y variability is. The 

standard deviation of x (299) significantly exceeds that of y (97), indicating a broader range of values for x than for y. 

These data elucidate the system's interaction with various offloading units to gain insights into how offloading influences 

data factors such as scalability, variability, and transmission rates, among others. 

In experimental settings, normalized data are essential for consistency and comparability. The techniques are used to 

represent the normalized data in Figure 12 (a, b and c). The SF-style plot displays a three-dimensional surface plot. These 

methods complement each other to provide an alternative perspective on the distribution and attributes of the dataset. 

Analogous visualization methodologies can be employed to analyse normalized data in the 20%, 50% and 80% scenarios, 

allowing for a comprehensive comparison across varying degrees of data outsourcing. 

 
Fig. 12. (a) Normalizing result offloading 20% by Surf style plot visualization 

 
Fig. 12. (b) Normalizing result offloading 50% by Surf style plot visualization. 

 
Fig. 12. (c) Normalizing result offloading 80% by Surf style plot visualization. 

 

In addition, Table 6 displays the descriptive statistics of the normalized data for the three offloading scenarios: 20%, 50%, 

and 80%. The minimum and maximum values for x remain constant regardless of the offloading percentage employed, 

with the minimum set at 1 and the maximum set at 300. Consequently, the variability for x in all offloading situations is 

symmetrically distributed around the mean and median of 150.5. The mode for x is 1, indicating that the minimum value 

appears most frequently across all three circumstances. The standard deviation of 86.75 indicates that the x values exhibit 
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variability within a moderate range, whereas the range of 299 delineates the disparity between the least and maximum x 

values. The minimum value of y remains constant at -1.692, whereas the maximum value persists at 1.758 overall 

offloading situations, with y exhibiting relatively slight variance among the different scenarios. The mean of y is 

approximately 8.29e-17, indicating that the distribution of y is centred around zero and relatively unbiased. The median is 

-0.05619, indicating that half of the y values are below this threshold. The model is consequently -0.05186, representing 

the mean of the frequency distribution. The standard deviation for y is 1, indicating uniform variability across all 

distribution scenarios, whereas the range of 3.45 suggests that the variation is very small compared with the x values. 

Hence, examination of the three offloading rates—20%, 50%, and 80%—demonstrates that the normalized x and y values 

exhibit no significant alteration in statistical measurements as the percentage increases. The offloading percentage has a 

minimal impact on data dispersion, indicating that performance in terms of variability and the central tendency is 

consistently steady throughout all specified situations. 

 
TABLE VI. DESCRIPTIVE STATISTICS OF NORMALIZED DATA FOR DIFFERENT OFFLOADING PERCENTAGES (20, 50, AND 80%). 

Scenario Statistics x y 

Scenario 

20% 
Min 1 -1.692 

 Max 300 1.758 

 Mean 150.5 8.29e-17 

 Median 150.5 -0.05619 

 Mode 1 -0.05186 

 Std 86.75 1 

 Range 299 3.45 

Scenario 

50% 
Min 1 -1.692 

 Max 300 1.758 

 Mean 150.5 8.29e-17 

 Median 150.5 -0.05619 

 Mode 1 -0.05186 

 Std 86.75 1 

 Range 299 3.45 

Scenario 

80% 
Min 1 -1.692 

 Max 300 1.758 

 Mean 150.5 8.29e-17 

 Median 150.5 -0.05619 

 Mode 1 -0.05186 

 Std 86.75 1 

 Range 299 3.45 

 

4.3 Results of three scenarios (20%, 50%, and 80%) for the DPoS algorithm 

The DPoS algorithm was implemented in three scenarios with participation rates of 20%, 50%, and 80%. The results are 

shown in Figures 13, 14, and 15 via Surf style plot visualization. The surf-style plot shows data points clustered near the 

central point, with average and middle values near zero. 

Figure 14 depicts the DPoS algorithm results with an offloading percentage of 50%. Compared with the 20% offloading 

scenario, this visualization results in a wider spread of data points along both axes, indicating increased variability and 

dispersion. However, similar to the previous scenario, the mean and median values for both the x and y coordinates remain 

relatively close to zero. Figure 15 illustrates the outcomes of the DPoS algorithm when 80% of the workload is offloaded. 

The surf-style plot visualization demonstrates a greater expansion of the data distribution in comparison to the prior 

situations, as evidenced by data points that stretch farther away from the centre. Although the spread has expanded, the 

mean and median values for both the x and y coordinates remain near zero, indicating a balanced distribution despite the 

broader range. 
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Fig. 13. Results of the DPoS algorithm offloading 20% by Surf style plot visualization. 

 
 

Fig. 14. Results of the DPoS algorithm offloading 50% by Surf style plot visualization. 
 

 
Fig. 15. Results of the DPoS algorithm offloading 80% by Surf style plot visualization. 

 

Additionally, Table 7 shows the results of the DPoS algorithm on the basis of data offloading at the 20%, 50%, and 80% 

levels. The data distribution is normal and bell shaped, with a range of 1--300 and both a mean and median of 150.5. The 

mode of x is 1, indicating that the smallest value of x occurs with the highest frequency. The coefficient of variation is 

considerably significant, and absolute measures of dispersion are also notably high; additionally, the standard deviation is 

299, indicating the spread from minimum to greatest values. The minimum values of y are closely aligned, whereas the 

maximum value of y decreases with increasing offloading ratio, as anticipated. However, at a 20% offloading rate, its value 

exceeds approximately 96% of the ideal value, with offloading ultimately ceasing as d increases, culminating in zero 

offloading at 100%. The mode for y is variable, equating to -13.95, -23.25, and -7.778 for the 20%, 50%, and 80% failure 

rates, respectively. This investigation allows us to ascertain the effects of different offloading rates on the data distribution 

and the optimized DPoS algorithm within a DEC-IoT healthcare system. 
 

TABLE VII. DPOS ALGORITHM RESULTS AND DATA OFFLOADING RATES OF 20%, 50%, AND 80%. 

Metric Scenario 20% Scenario 50% Scenario 80% 

Min (x) 1 1 1 

Max (x) 300 300 300 

Mean (x) 150.5 150.5 150.5 

Median (x) 150.5 150.5 150.5 

Mode (x) 1 1 1 

Std (x) 86.75 86.75 86.75 

Range (x) 299 299 299 
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Min (y) -24.85 -23.25 -21.88 

Max (y) 22.29 21.56 19.41 

Mean (y) 0.04084 -0.004727 -0.0081 

Median (y) -0.1743 -0.2408 -0.2459 

Mode (y) -13.95 -23.25 -7.778 

Std (y) 7.172 8.063 7.978 

Range (y) 47.14 44.81 41.29 

 

The performance of the DPoS algorithm in decentralized healthcare systems is evaluated via different outsourcing 
percentages (20%, 50%, and 80%). Outsourcing percentages significantly impact the data distribution, scalability, efficiency, 
dependability, and stability. Higher percentages indicate greater scalability, whereas 20% may indicate constraints due to 
precise data distribution. The mean and median values of the DPoS algorithm outputs remain near zero, indicating a well-
balanced distribution. Standard deviations show increased variability in stability and dependability, indicating the system's 
ability to adapt to various stresses. Comparing different scenarios allows for a comprehensive understanding of the DPoS 
algorithm's effectiveness in decentralized healthcare systems. 

5. RESULTS AND DISCUSSION  

The delegated proof of stake (DPoS) algorithm is used to evaluate the performance of a decentralized healthcare system in 
various scenarios. The system's performance is assessed through metrics such as scalability, centralization of power, privacy 
concerns, data storage access, regulatory compliance, decentralization effectiveness, and data integrity security. The system's 
performance changes as the amount of data offload varies, providing crucial insights into its behaviour and potential 
consequences for practical applications. The analysis of performance metrics across different scenarios helps in evaluating 
the system's effectiveness and guiding potential improvements for real-world deployment. The delegated proof algorithm 
plays a crucial role in ensuring the security and efficiency of healthcare systems. Additionally, Tables 8 and 9 provide a 
detailed analysis of the statistical metrics and their explanations for a system, highlighting average and median values, 
standard deviations, patterns, consistent performance levels, and overall system attributes. 

TABLE VIII COMPARES PERFORMANCE METRICS ACROSS DIFFERENT SCENARIOS, REVEALING DECENTRALIZED HEALTHCARE 
SYSTEM EFFECTIVENESS UNDER VARYING DATA OFFLOADING CONDITIONS AND GUIDING REAL-WORLD DEPLOYMENT 

IMPROVEMENTS. 

Scenario Metric Mean Median Std 

20% Scalability 0.0060 0.0060 0.0000 

 Centralization Of Power 7.0920 7.0920 0.0000 

 Privacy Concern -0.1930 -0.1930 0.0000 

 Data Storage Accesses 6.8223 6.8223 0.0000 

 Regulatory Compliance -0.4954 -0.4954 0.0000 

 Decentralization Effectiveness Efficiency 7.1609 7.1609 0.0000 

 Data Integrity Security -0.0707 -0.0707 0.0000 

 Data Privacy Confidentiality 7.1489 7.1489 0.0000 

50% Scalability 0.0566 0.0566 0.0000 

 Centralization Of Power 8.2013 8.2013 0.0000 

 Privacy Concern -0.0050 -0.0050 0.0000 

 Data Storage Accesses 7.8569 7.8569 0.0000 

 Regulatory Compliancy 0.4377 0.4377 0.0000 

 Decentralization Effectiveness Efficiency 8.2198 8.2198 0.0000 

 Data Integrity Security -0.0790 -0.0790 0.0000 

 Data Privacy Confidentiality 8.3354 8.3354 0.0000 

80% Scalability -0.0569 -0.0569 0.0000 

 Centralization Of Power 8.7759 8.7759 0.0000 

 Privacy Concern 0.1165 0.1165 0.0000 

 Data Storage Accesses 8.7198 8.7198 0.0000 

 Regulatory Compliancy -0.1098 -0.1098 0.0000 

 Decentralization Effectiveness Efficiency 8.7645 8.7645 0.0000 

 Data Integrity Security 0.1952 0.1952 0.0000 

 Data Privacy Confidentiality 8.6173 8.6173 0.0000 
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TABLE  IX. COMPARISON OF STATISTICAL MEASURES AND INTERPRETATIONS FOR SYSTEM FACTORS 

Factor Mean and Median Standard Deviation Additional Comments 

Scalability Negative Zero Potential decrease, consistent performance 

Centralization of Power High Zero Centralized structure, consistent distribution 

Privacy Concern Positive Zero Moderate concern, consistent levels 

Data Storage Accesses High Zero Efficient storage and access, consistent performance 

Regulatory Compliance Negative Zero Potential compliance issues, consistent concern 

Decentralization Efficiency High Zero 
Effective and efficient decentralization, consistent 

performance 

Data Integrity Security Positive Zero Moderate concern, consistent levels 

Data Privacy Confidentiality High Zero 
Efficient privacy and confidentiality, consistent 

performance 

 

5.1 Normalization process 

Figure 16 and Figure 17 detail the original data and normalization procedure, a crucial step in ensuring data standardization 

across various contexts and removing inherent biases and discrepancies for meaningful comparisons and analysis. 

 
Fig. 16. Original data for the framework. 

 

 
Fig. 17. Normalize the data for the framework. 

 

The above results for the normalized data for three scenarios (20%, 50%, and 80% offloading) provide visual 

representations of the performance metric distributions. These results help identify trends and patterns, allowing for better 

interpretation and analysis of performance metrics. The normalization process ensures fair comparisons, allowing for robust 

conclusions about the decentralized healthcare system's effectiveness and response to different data offloading levels. 

An examination is conducted on the input and output data of the centralized blockchain, alongside the results obtained from 

blockchain one and blockchain two under three different outsourcing scenarios (20%, 50%, and 80%). There will be a 

detailed look at how the centralized blockchain system handles data compared with the decentralized approach used by 

Blockchain One and Blockchain Two (BC1 and BC2). Three different situations are used as examples. 
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Figure 18 (A, B, and C) shows the input data for three scenarios, including decentralized healthcare system factors such as 

patient information, transaction details, and security measures, illustrating the centralized blockchain's initial state and 

specific data points. 

 
(A) 

 

 
(B) 

 
(C) 

Fig. 18. (A, B, and C): Data for BC for the framework in three scenarios (20%, 50%, and 80%) for data offloading. 

 

Figure 19 (A and B) shows data offloading for BC1 and BC2 in different scenarios (20%, 50%, and 80%). The data pertain 

to BC1 and BC2 in the first scenario, 50% allocation in the second scenario, and an 80% offloading rate in the third scenario. 

The statistics showcase the output data of the decentralized approach, highlighting any differences or improvements 

compared with a centralized blockchain, including transaction speed, data integrity, security measures, and system 

performance. 
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(A) Output data for BC1 in the 1st scenario when 20% of the data are offloaded 

 
(B) Output data for BC2 in the 1st scenario when 20% of the data are offloaded 

Fig. 19. (A and B). Output data for BC1 and 2 in the 1st scenario in the 20% case for the framework. 

 

A comparative examination Through the results presented in this section, the input and output data of the centralized 

blockchain and the decentralized approach can be compared. By conducting a visual examination of the data generated by 

the decentralized blockchain in contrast to the data processed by the centralized blockchain, readers can identify any 

discrepancies, inefficiencies, or improvements that may arise from the decentralization process. This comparison provides 

critical insights into the effectiveness of the decentralized approach in addressing critical challenges and enhancing system 

performance. 

Through an analysis of the input and output data, substantial insights can be gained concerning the impact of 

decentralization on the efficacy of the healthcare system, as illustrated in Figures 20 and 21. The identification of 

discrepancies or advancements between the input and output data of the centralized blockchain could yield significant 

knowledge for decision-making and guide subsequent enhancements to the decentralized framework. Moreover, this 

section provides significant insights into the benefits of decentralization in healthcare systems, specifically concerning 

scalability, efficiency, and security. 

 
(A) Output data for BC1 in the 2nd scenario when 50% of the data are offloaded. 



 

 

308 Oleiwi et al, Mesopotamian Journal of Cybersecurity Vol.4,No.3, 291–317 

 
(B) Output data for BC2 in the 2nd scenario when 50% of the data are offloaded. 

Fig. 20. (A and B). Output data for BC1 and 2 in the 2nd scenario in the 50% case for the framework. 

 
(A) Output data for BC1 in the 3rd scenario when 80% of the data are offloaded. 

 
(B) Output data for BC2 in the 3rd scenario when 80% of the data are offloaded. 

Fig. 21. (A and B). Output data for BC1 and 2 in the 3rd scenario in the 80% case for the framework. 
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5.2 Results of the DPoS Algorithm 

Within the framework of the decentralized healthcare system, we investigate the outcomes of the DPoS algorithm for three 
different offloading scenarios: 20%, 50%, and 80%. The purpose of this section is to analyse the performance of the DPoS 
algorithm in terms of supporting efficient transaction processing, building consensus among participants in the network, and 
maximizing resource use. 

The DPoS performance evaluation results are shown in Figure 22 (A, B, and C) for the starting condition with 20% data 

offloading. The second situation with a 50% data offloading rate is shown in Figure 23 (A, B, and C), whereas the third 

scenario with an 80% rate is shown in Figure 24 (A, B, and C). The transaction processing speed, consensus mechanism, 

and resource utilization are measured. These statistics reveal the algorithm's decentralized consensus and network 

efficiency performance. Reading performance statistics can help users evaluate the DPoS algorithm's potential to scale and 

safeguard healthcare. 

 
(A) 

 
(B) 

 
(C) 

Fig. 22. DPoS algorithm (A, B, and C) for the 1st scenario when 20% of the data are offloaded 
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(A) 

 
(B) 

 
(C) 

Fig. 23. DPoS algorithm (A, B, and C) for the 2nd scenario when 50% of the data are offloaded. 

 
(A) 
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(B) 

 
(C) 

Fig. 24. DPoS algorithm (A, B, and C) for the 3rd scenario when 80% of the data are offloaded. 

 

Decentralized healthcare applications rely significantly on the DPoS algorithm, which enhances the effectiveness of 

consensus procedures, transaction processing, and network security. The performance is graphically represented through 

infographics that highlight critical metrics, including transaction processing speed, consensus-achieving strategies, and the 

block generation rate. Acquiring a thorough comprehension of the advantages and disadvantages of the algorithm is critical 

to integrate it seamlessly into healthcare applications. By conducting an examination of patterns and trends in outcomes, 

stakeholders are able to assess the potential benefits and challenges of the algorithm, thereby providing guidance for 

decision-making regarding its implementation. In decentralized healthcare environments, the efficacy of the DPoS 

algorithm is of the utmost importance, as it improves network security, consensus procedures, and transaction processing. 

5.3 Blockchain (BC1 and BC2) Output Data Analysis 

The data from two blockchain outputs are evaluated after offloading at 20%, 50%, and 80%. This approach examines the 

distribution and patterns of data from the decentralized offloading process in the healthcare sector. Furthermore, the 

assessment assesses the system's efficiency in processing and distributing data by testing different levels of offloading. The 

process commences by employing a data analysis methodology and providing a comprehensive explanation of the 

procedure for analysing blockchain output data after transferring data from the centralized system to decentralized nodes. 

The assessment assesses transaction volumes, processing times, data storage use, and network performance. A careful 

analysis may help us understand how decentralized design influences healthcare data processing and distribution. 

The results are employed as figures and histograms to visually illustrate the flow of output data in a blockchain. The graphs 

illustrate the distributions, trends, and patterns of decentralized offloading. Plot-style statistics display fluctuations in 

transaction volumes or processing times over some time, whereas histogram-style figures illustrate the distribution of data 

across different parameters. The findings for the initial 20% decline in data transmission are displayed in Figure 25 (A and 

B), which represent the BC1 and BC2 results. Figure 26 (A and B) displays the BC1 and BC2 results for the second situation 

when 50% of the data are sent. The results for BC1 and BC2 (A and B) in the third scenario, with 80% data transfer, are 

displayed in Figure 27 (A and B). 
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(A) Results of BC1 for the 1st scenario in the case of 20% data offloading, using histogram style. 

 
(B) Results of BC2 for the 1st scenario in the case of 20% data offloading, using histogram-style methods. 

Fig. 25. (A and B) Results for BC1 and BC2 for the 1st scenario in the case of 20% data offloading. 

 
(A) Results of BC1 for the 2nd scenario when 50% of the data are offloaded, according to a histogram. 

 
(B) Results of BC2 for the 2nd scenario in the case of 50% data offloading, using histogram style. 

Fig. 26. (A and B) Results for BC1 and BC2 for the 2nd scenario in the case of 50% data offloading. 
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(A) Results of BC1 for the 3rd scenario when 80% of the data are offloaded, according to a histogram. 

 
(B) Results of BC2 for the 3rd scenario in the case of 80% data offloading, using histogram style. 

Fig. 27. (A and B) Results for BC1 and BC2 for the 3rd scenario in the case of 80% data offloading. 

 

The visuals in the blockchain output data analysis are interpreted to understand the results. This interpretation examines 

data distribution trends, anomalies, and patterns and their effects on system performance. We can determine how 

decentralized offloading impacts healthcare data distribution, processing efficiency, and network performance by analysing 

the findings. 

Thus, blockchain output data analysis illuminates the effects of decentralized offloading on healthcare system performance. 

Additionally, the study shows how offloading data to decentralized nodes affects the data distribution, processing 

efficiency, and network performance. These insights are essential for understanding healthcare application decentralized 

architecture benefits and drawbacks. 

5.4. Limitations of study 

The study explores the implementation of a decentralized healthcare system via the delegated proof of stake (DPoS) 

algorithm and blockchain technology. However, this study has several limitations that need to be addressed in future 

research, including the following: 

a) The simulation of the health system conducted via MATLAB software does not fully represent the actual 

conditions of the health system. 

b) Challenges related to extensibility persist and become increasingly evident when millions of IoT devices or 

extensive healthcare systems are overseeing. 

c) It presents only the outcomes of synthetic and predefined scenarios, which may significantly diverge from actual 

healthcare data and circumstances. 

d) Energy consumption modelling considers the general power parameters of devices, which are not optimal for 

various healthcare systems. 

e) There is no comparison with certain other BFT consensus algorithms, nor is there an analysis of the advantages 

and disadvantages of merging this model with another. 

f) The research inadequately addresses the challenges of adopting compliance with standards such as the GDPR and 

HIPAA across several jurisdictions within global healthcare enterprises. 

g) The proposed framework design amalgamates many technologies, which may provide diverse technical, logistical, 

and financial challenges inside healthcare organizations throughout implementation. 
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6. COMPARISON WITH PREVIOUS STUDIES  

Tables 10 and 11 provide a comprehensive comparison of our approach to decentralized healthcare systems, highlighting 

its distinctive features and advancements. The table consists of rows representing various components of the system and 

columns comparing our approach with prior methods. The purpose is to evaluate the unique contributions, innovations, and 

improvements that set our approach apart from the current literature. This comprehensive comparison demonstrates the 

unique value proposition of our study in promoting decentralized healthcare system progress. 

 
TABLE X. COMPARISON OF THE NOVEL APPROACH WITH THOSE OF PREVIOUS STUDIES [34-38]. 

Aspect Novel Approach Previous Studies 

Scalability High Moderate 

Centralization of Power Low High 

Privacy Concerns Addressed Partially Addressed 

Data Storage Accesses Efficient Limited 

Regulatory Compliance Compliant Varied 

Decentralization Effectiveness Effective Limited Effect 

Data Integrity Security Robust Vulnerable 

Data Privacy Confidentiality Strong Weak 

Performance Metrics Optimal Mixed 

Technological Innovation Advanced Conventional 

Adoption in Practice Limited Established 

A comparative analysis of various studies on decentralized healthcare systems highlights their unique contributions, such 

as scalability, decentralization, security, privacy, and regulatory compliance. This table provides a comprehensive 

comparison tool, highlighting the methodology, security concerns, primary objectives, and year of publication. It serves as 

a tool to contextualize the study within the broader landscape of decentralized healthcare systems research, highlighting 

the unique contributions of each study. 

 
TABLE XI. COMPARATIVE ANALYSIS OF DECENTRALIZED HEALTHCARE SYSTEMS IN OUR STUDY AND OTHER STUDIES. 

Study 
Applied 

Application 
Methodology 

Security 

Concerns 
Objectives Comparison with Our Study Year 

[41] 

System for 

Managing and 

Sharing Medical 

Records 

System for 

Managing and 

Sharing Medical 

Records 

Confidentiality, 

integrity, 

availability, and 

privacy of data 

Development of a 

Distributed Ledger 

Technology (DLT)-

based Data 

Management 

Platform 

Improvement of a Distributed Ledger 

Technology (DLT)-based Data 

Management Platform in BC and 

employing a decentralized healthcare 

system using blockchain and DPoS 

algorithm, focusing on scalability, 

Decentralization, and security aspects. 

2020 

[42] 

RPM (Remote 

Patient 

Medicine) and 

Telemedicine 

Bridging the gap 

between blockchain 

and the healthcare 

industry 

Data collection, 

patient 

monitoring, 

privacy, and 

data security. 

Safe and reliable 

remote patient 

monitoring (RPM) 

using blockchain 

study explores a decentralized 

healthcare system, providing insights 

into scalability, centralization of 

power, privacy concerns, and 

regulatory compliance. 

2021 

[43] 

Electronic 

Health Record 

(EHR) System 

Blockchain 

automation for 

population-level 

data collection 

Data security, 

decentralization, 

data 

accessibility, 

integrity 

Improved EHR 

system security and 

usability with 

blockchain 

technology 

study investigates the performance of 

a decentralized healthcare system 

using blockchain and DPoS algorithm, 

addressing scalability and security 

challenges. 

2021 

[32] 
Data Storage & 

Security 

Improving 

technological 

advantages of 

blockchain 

applications 

Safety, 

authorization, 

integrity, and 

data transfer 

Development of 

secure data 

transmission and 

storage systems 

our study presents a decentralized 

healthcare system employing 

blockchain and DPoS algorithm, 

focusing on decentralization, security, 

and regulatory compliance. 

2022 

[33] 

Data Analysis, 

Computation on 

Edge and Cloud 

Building a 

blockchain-based 

social network 

Information 

safety, 

administration, 

dependability, 

accuracy 

Enhancing 

decision-making by 

combining 

blockchain with 

other platforms 

Your study evaluates a decentralized 

healthcare system using blockchain 

and DPoS algorithm, emphasizing 

scalability, decentralization, and data 

integrity. 

2023 

Our 

study 

Decentralized 

Healthcare 

System 

Utilizing 

blockchain and 

DPoS algorithm 

Privacy, 

decentralization, 

security, 

scalability 

Advancing 

decentralized 

healthcare systems 

Our study compares the performance 

metrics of the decentralized healthcare 

system under different scenarios, 

focusing on scalability, centralization, 

privacy, and regulatory compliance. 

2024 
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7. CONCLUSION  

In this study, we explore the implementation of a decentralized healthcare system that uses the DPoS algorithm and 

blockchain technology to address challenges associated with decentralization, privacy, and legal compliance. The 

decentralized system demonstrates that DPoS and blockchain technology possess superior attributes of scalability, 

uniqueness, and efficiency relative to a traditional centralized system. These recommendations would significantly benefit 

any organization intending to adopt the system, while the insights derived from this study would be crucial for evaluating 

the system's effectiveness. Blockchain technology and delegated proof of stake (DPoS) have been implemented across 

various business sectors; however, this research conceptualizes these technologies inside a decentralized Internet of Things 

(IoT) healthcare model for real-time applications. Medical data transfer addresses issues related to data privacy, security, 

and transmission. The new integration of these technologies constitutes an innovation in this field. This decentralized 

system improves security via secrecy, integrity, and scalability, making it feasible and sustainable for implementation. This 

research significantly contributes to the current understanding of blockchain applications in healthcare systems and offers 

guidance for the continued development of decentralized healthcare ecosystems. Nevertheless, the fundamental DPoS 

algorithm continues to exhibit deficiencies, particularly in terms of node and transaction scalability. Subsequent studies 

may explore enhancements to the DPoS algorithm or investigate alternative consensus methods that offer superior 

scalability without compromising security. Likewise, data-oblivious computing utilizing technologies such as zero-

knowledge proofs will enhance data security. Emerging advances in blockchain technology offer opportunities for the 

development of additional chains and protocols that facilitate the integration of different systems into a cohesive complex, 

addressing issues of scalability and interoperability. Future research may explore the application of machine learning and 

artificial intelligence in the development of diverse prognostic models and investigate how smart contracts might enhance 

healthcare optimization and patient treatment. 

Conflicts of interest 

The authors declare that they have no conflicts of interest. 

Funding 

No funding was received. 

Acknowledgement 

I want to thank everyone who helped with this work. 

 

References 

[1] B. Hammi, R. Khatoun, S. Zeadally, A. Fayad, and L. Khoukhi, "IoT technologies for smart cities," *IET Networks*, 

vol. 7, no. 1, pp. 1–3, Jan. 2018. 

[2] F. Wortmann and K. Flüchter, "Internet of things: technology and value added," *Business & Information Systems 

Engineering*, vol. 57, pp. 221–224, Jun. 2015. 

[3] S. Shukla, M. F. Hassan, M. K. Khan, L. T. Jung, and A. Awang, "An analytical model to minimize the latency in 

healthcare internet-of-things in fog computing environment," *PLoS One*, vol. 14, no. 11, p. e0224934, Nov. 2019. 

[4] A. Brogi and S. Forti, "QoS-aware deployment of IoT applications through the fog," *IEEE Internet of Things 

Journal*, vol. 4, no. 5, pp. 1185–1192, May 2017. 

[5] M. Alicherry and T. V. Lakshman, "Optimizing data access latencies in cloud systems by intelligent virtual machine 

placement," in *2013 Proceedings IEEE INFOCOM*, Apr. 2013, pp. 647–655. 

[6] S. Abirami and P. Chitra, "Energy-efficient edge based real-time healthcare support system," in *Advances in 

Computers*, vol. 117, no. 1, Elsevier, Jan. 2020, pp. 339–368. 

[7] T. Saba, K. Haseeb, I. Ahmed, and A. Rehman, "Secure and energy-efficient framework using Internet of Medical 

Things for e-healthcare," *Journal of Infection and Public Health*, vol. 13, no. 10, pp. 1567–1575, Oct. 2020. 

[8] N. Singh and A. K. Das, "Energy-efficient fuzzy data offloading for IoMT," *Computer Networks*, vol. 213, p. 

109127, Aug. 2022. 

[9] S. Y. Mohammed and M. Aljanabi, “Human-Centric IoT for Health Monitoring in the Healthcare 5.0 Framework 

Descriptive Analysis and Directions for Future Research”, EDRAAK, vol. 2023, pp. 21–26, Mar. 2023, doi: 

10.70470/EDRAAK/2023/005. 

[10] A. H. Sodhro et al., "Decentralized energy efficient model for data transmission in IoT-based healthcare system," in 

*2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring)*, Apr. 2021, pp. 1–5. 



 

 

316 Oleiwi et al, Mesopotamian Journal of Cybersecurity Vol.4,No.3, 291–317 

[11] S. Singh, S. Rathore, O. Alfarraj, A. Tolba, and B. Yoon, "A framework for privacy-preservation of IoT healthcare 

data using Federated Learning and blockchain technology," *Future Generation Computer Systems*, vol. 129, pp. 

380–388, Apr. 2022. 

[12] J. J. Kang et al., "An energy-efficient and secure data inference framework for internet of health things: a pilot study," 

*Sensors*, vol. 21, no. 1, p. 312, Jan. 2021. 

[13] Mohammad Aljanabi, “Safeguarding Connected Health: Leveraging Trustworthy AI Techniques to Harden Intrusion 

Detection Systems Against Data Poisoning Threats in IoMT Environments”, BJIoT, vol. 2023, pp. 31–37, May 2023. 

[14] O. Albahri, A. Alamleh, T. Al-Quraishi, and R. Thakkar, “Smart Real-Time IoT mHealth-based Conceptual 

Framework for Healthcare Services Provision during Network Failures ”, Applied Data Science and Analysis, vol. 

2023, pp. 110–117, Nov. 2023. 

[15] A. Sharma, Sarishma, R. Tomar, R. Chilamkurti, and B. G. Kim, "Blockchain based smart contracts for internet of 

medical things in e-healthcare," *Electronics*, vol. 9, no. 10, p. 1609, Oct. 2020. 

[16] H. S. Anbarasan and J. Natarajan, "Blockchain-based delay and energy harvest aware healthcare monitoring system 

in WBAN environment," *Sensors*, vol. 22, no. 15, p. 5763, Aug. 2022. 

[17] A. M. Shanshool, “Exploring the Role of Block-chain in IoT-Driven Healthcare Solutions”, BJN, vol. 2023, pp. 82–

88, Oct. 2023. 

[18] I.  Al Barazanchi and W. . Hashim, “Enhancing IoT Device Security through Blockchain Technology: A 

Decentralized Approach”, SHIFRA, vol. 2023, pp. 10–16, Feb. 2023, doi: 10.70470/SHIFRA/2023/002. 

[19] L. Liu and Z. Li, "Permissioned blockchain and deep reinforcement learning enabled security and energy efficient 

healthcare internet of things," *IEEE Access*, vol. 10, pp. 53640–53651, May 2022. 

[20] A. Lakhan et al., "Federated-learning based privacy preservation and fraud-enabled blockchain IoMT system for 

healthcare," *IEEE Journal of Biomedical and Health Informatics*, vol. 27, no. 2, pp. 664–672, Feb. 2022. 

[21] A. K. Bhardwaj, P. Dutta, and P. Chintale, “AI-Powered Anomaly Detection for Kubernetes Security: A Systematic 

Approach to Identifying Threats”, Babylonian Journal of Machine Learning, vol. 2024, pp. 142–148, Aug. 2024. 

[22] S. A. Abed, “Big Data and Artificial Intelligence on the Blockchain: A Review ”, Babylonian Journal of Artificial 

Intelligence, vol. 2023, pp. 1–4, Jan. 2023. 

[23] A. Lakhan et al., "Hybrid workload enabled and secure healthcare monitoring sensing framework in distributed fog-

cloud network," *Electronics*, vol. 10, no. 16, p. 1974, Aug. 2021. 

[24] A. Lakhan et al., "Smart-contract aware ethereum and client-fog-cloud healthcare system," *Sensors*, vol. 21, no. 

12, p. 4093, Jan. 2021. 

[25] H. Wu et al., "EEDTO: An energy-efficient dynamic task offloading algorithm for blockchain-enabled IoT-edge-

cloud orchestrated computing," *IEEE Internet of Things Journal*, vol. 8, no. 4, pp. 2163–2176, Oct. 2020. 

[26] S. Singh and D. Kumar, "Energy-efficient secure data fusion scheme for IoT-based healthcare system," *Future 

Generation Computer Systems*, vol. 143, pp. 15–29, Jun. 2023. 

[27] S. Jain and R. Doriya, "Security framework to healthcare robots for secure sharing of healthcare data from cloud," 

*International Journal of Information Technology*, vol. 14, no. 5, pp. 2429–2439, Aug. 2022. 

[28] V. Pawar and S. Sachdeva, "ParallelChain: a scalable healthcare framework with low‐energy consumption using 

blockchain," *International Transactions in Operational Research*, vol. 31, no. 6, pp. 3621–3649, Nov. 2024. 

[29] M. T. Quasim, F. Algarni, A. A. Radwan, and G. M. Alshmrani, "A blockchain-based secured healthcare framework," 

in *2020 International Conference on Computational Performance Evaluation (ComPE)*, Jul. 2020, pp. 386–391. 

[30] P. Hemalatha, "Monitoring and securing the healthcare data harnessing IoT and blockchain technology," *Turkish 

Journal of Computer and Mathematics Education (TURCOMAT)*, vol. 12, no. 2, pp. 2554–2561, Apr. 2021. 

[31] C. Singh et al., "Medi-Block record: Secure data sharing using blockchain technology," *Informatics in Medicine 

Unlocked*, vol. 24, p. 100624, Jan. 2021. 

[32] M. U. Chelladurai, S. Pandian, and K. Ramasamy, "A blockchain-based patient-centric electronic health record 

storage and integrity management for e-Health systems," *Health Policy and Technology*, vol. 10, no. 4, p. 100513, 

Dec. 2021. 

[33] M. Verdonck and G. Poels, "Decentralized data access with IPFS and smart contract permission management for 

electronic health records," in *Business Process Management Workshops: BPM 2020 International Workshops*, 

Springer International Publishing, 2020, pp. 5–16. 

[34] J. H. Park and J. H. Park, "Blockchain security in cloud computing: Use cases, challenges, and solutions," 

*Symmetry*, vol. 9, no. 8, p. 164, Aug. 2017. 

[35] A. R. Rajput, Q. Li, and M. T. Ahvanooey, "A blockchain-based secret-data sharing framework for personal health 

records in emergency condition," *Healthcare*, vol. 9, no. 2, p. 206, Feb. 2021. 

[36] Q. Xia et al., "BBDS: Blockchain-based data sharing for electronic medical records in cloud environments," 

*Information*, vol. 8, no. 2, p. 44, Apr. 2017. 



 

 

317 Oleiwi et al, Mesopotamian Journal of Cybersecurity Vol.4,No.3, 291–317 

[37] P. Zhang, J. White, D. C. Schmidt, G. Lenz, and S. T. Rosenbloom, "FHIRChain: applying blockchain to securely 

and scalably share clinical data," *Computational and Structural Biotechnology Journal*, vol. 16, pp. 267–278, Jan. 

2018. 

[38] T. Ahram, A. Sargolzaei, S. Sargolzaei, J. Daniels, and B. Amaba, "Blockchain technology innovations," in *2017 

IEEE Technology & Engineering Management Conference (TEMSCON)*, Jun. 2017, pp. 137–141. 

[39] E. M. Adere, "Blockchain in healthcare and IoT: A systematic literature review," *Array*, vol. 14, p. 100139, Jul. 

2022. 

[40] S. Angraal, H. M. Krumholz, and W. L. Schulz, "Blockchain technology: applications in health care," *Circulation: 

Cardiovascular Quality and Outcomes*, vol. 10, no. 9, p. e003800, Sep. 2017. 

[41] M. Banerjee, J. Lee, and K.-K. R. Choo, "A blockchain future for internet of things security: a position paper," 

*Digital Communications and Networks*, vol. 4, no. 3, pp. 149–160, Aug. 2018. 

[42] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, "An overview of blockchain technology: Architecture, consensus, 

and future trends," in *2017 IEEE International Congress on Big Data (BigData Congress)*, Jun. 2017, pp. 557–564. 

[43] A. Howell, T. Saber, and M. Bendechache, "Measuring node decentralisation in blockchain peer-to-peer networks," 

*Blockchain: Research and Applications*, vol. 4, no. 1, p. 100109, Mar. 2023. 

 

 

 

 

 
 

 

 

 

 

 


