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A B S T R A C T 

 

Colorizing grayscale videos is a challenging task that involves adding colors to monochromatic videos 

to make them appear as natural and realistic as possible, despite the absence of information about the 

original color distribution. This task is crucial for applications such as restoring historical videos and 

creating media content requiring realistic and accurate colorization. However, existing methods often 

face issues such as poor temporal stability, color distortions, and the need for extensive post 

processing under certain conditions. To address these challenges, this study proposes a novel 

approach comprising a pre-processing network and a source-reference network trained in an end-to-

end manner. The pre-processing network employs an encoder-decoder architecture enhanced with 

temporal convolutions and skip connections, enabling it to improve video quality, adapt to resolution 

changes, and leverage batch normalization (BN) and exponential linear unit  (ELU). The source-

reference network incorporates an encoder for reference image processing and a fusion module with 

residual blocks to combine feature maps through a source-reference attention mechanism. The final 

output is generated in the Lab color space and converted to the RGB format, ensuring high-quality 

video colorization with enhanced temporal stability. Experimental evaluations demonstrate that the 

proposed model achieves significant improvements in color realism and temporal stability, with a 

PSNR of 37.89 and an SSIM of 0.999982—which surpasses those of most state-of-the-art methods. 

These results confirm the effectiveness and applicability of the proposed method for video 

colorization tasks, making it a robust solution in the domain. 
 

 

 

1. INTRODUCTION 

Automated colorization refers to the process by which black-and-white images or videos are digitally transformed into 

color via artificial intelligence. This technique integrates advanced color vision algorithms with high-level image 

processing to achieve realistic and visually appealing results. 

Its importance is particularly evident in modern photography and filmmaking, where contemporary aesthetics demand 

diverse visual styles and interpretive techniques. Historically, the concept of colorization dates back to early black-and-

white movies and television programs [1]. This historical context highlights the ongoing evolution of colorization 

techniques to address new technological and creative needs. 

Despite significant advancements, video colorization still presents difficulties. Key issues include ensuring the temporal 

stability of color changes across frames and managing the computational complexity of video data, which is far greater 

than that of still images. A persistent challenge is achieving coherent colors across frames while accounting for object 

movements and dynamic scene changes [2]. Existing methods that optimize still images often fail to address temporal 

coherence comprehensively in videos [3]. This gap emphasizes the necessity for innovative approaches that ensure 

accurate color deposition and stable transitions in motion sequences. 

This research proposes a novel framework that addresses these challenges by introducing mechanisms for precise 

colorization of successive frames, ensuring smooth transitions between scenes, and managing diverse motion patterns. 

The proposed method is fully automated and minimizes human intervention, enhancing efficiency and usability [4]. 
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The primary objective of this research is to develop a robust framework for video colorization that achieves temporal 

stability, reduces color distortions, and handles video data efficiently. These improvements aim to overcome the 

limitations of traditional methods and provide an effective solution for large-scale applications. 

The outcomes of this study have broad implications for enhancing the realism and quality of visual media. By addressing 

fundamental challenges in video colorization and offering a comprehensive solution, this research contributes to 

historical video restoration, media production, and artistic endeavors [5][6]. This unified approach not only improves 

current practices but also sets a foundation for future advancements in automated colorization techniques. 

The remainder of the paper is organized as follows: Section Two reviews relevant previous studies. The theoretical 

background of the algorithms used in this work is presented in Section Three, followed by a description of the quality 

metrics employed in this study in Section Four. Section Five provides a detailed explanation of the proposed method. The 

results and discussion are presented in Section Six, and Section Seven concludes the paper. 

 

2. RELATED WORK 

K., Tejashwini, et al. A fully automated version of the colorization method was introduced; the task was formulated as a 
classification problem to increase the range of colors used. To address the nature of the task as not fully deterministic at the 
time when the training data were generated, class-rebalancing measures were used. In the testing phase, the system uses a 
CNN in a feed-forward structure after it has been trained on a database containing more than a million color images. To 
make the evaluation, the method accomplished the so-called “colorization Turing test”, and the result was that it cheated 
people in 32% of the cases, which was better than previous technologies did. Additionally, the approach proves to be 
useful as a pertaining task of self-supervised learning, which demonstrates competitive results in feature learning 
evaluation metrics. However, the method is best suited for single-image colorization, while temporal consistency within 
video sequences is lacking. This is because the approach fails to consider the order of consecutive frames, which is crucial 
for preserving color consistency across frames where these videos contain movements. Further development of these 
strategies for processing temporal dependencies would help address this flaw in methods that make it possible to colorize 
video sequences, although quite well, but not very smoothly and coherently [7]. 

Guangzi, Zhang et al. developed a variational autoencoder framework for the specific task of colorizing videos via 
spatiotemporal information to improve the colorization of black and white frames within the video sequence. To enhance 
temporal coherence, the method synchronizes semantic similarity with color spreading, directing colorization across the 
frames of a given timeline. The framework can convert a video frame to a desired different-dimensional representation 
space through an encoder network, whereas a decoder network translates the resulting latent features into RGB color 
channel images. In contrast to prior approaches, this strategy enables adequate treatment of temporal dependencies 
between frames and constant and accurate colouration of the video frames. Moreover, a specific loss function is used to 
enhance conductivity in terms of spatial and temporal qualities; there are significant improvements in video colorization. 
However, the method is still not completely adequate for handling more complex and rapidly changing scenes [8]. 

Yizhang Yang et al. proposed a video colorization method using a reference-based model to solve these issues. Unlike 
exemplar-based approaches that completely depend on color details in the reference frame only, this model adds an AB 
chrominance point to compensate for missing color data, hence increasing the color accuracy. Moreover, to utilize 
information generated from warped images, a bidirectional optical flow propagation network is integrated, further 
improving temporal smoothing across frames. The experimental outcomes show that the proposed method is superior to 
the most closely related benchmarks in terms of colorization quality and consistency across datasets. While this model 
improves temporal consistency and color accuracy to a great degree, it remains frame-dependent—the quality of the 
reference frame. When the reference frame is unhelpful in dynamic scenes, the model may fail to sustain high accuracy in 
color [9]. 

Siqi, Chen, et al. proposed a video colorization approach that incorporates references and long-term spatiotemporal 
contextual information. The method introduces a CNN-transformer block to enhance spatial dependencies by integrating 
local texture and structural features, along with a double-head nonlocal operation to refine feature performance. For 
temporal consistency, a linkage subnet is used to transfer motion details between consecutive frames, improving frame-to-
frame transitions. Experiments show that the approach achieves vibrant colorization and reduced motion blur, 
outperforming existing methods. However, challenges remain in handling rapid motion and frequent scene changes, where 
the linkage subnet struggles to maintain continuity. Expanding the temporal context or incorporating advanced motion 
analysis could address these limitations, enabling more realistic and stable colorization for highly dynamic video 
sequences. The method struggles with fast-moving and complex scenes, limiting its ability to deliver consistent 
colorization under such conditions. Enhancements in motion analysis and temporal context are needed to bridge this gap 
[10]. 
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3. THEORETICAL BACKGROUND 

The theoretical background encompasses a variety of algorithms that together contribute to the achievement of the desired 
objective. These algorithms include the following: 

3.1   Residual blocks 

A fundamental residual block combines a simple structure, which ensures high speed, with a deep neural network, which is 

desirable for the block. The proposed method incorporates this architecture because it has the potential to manage the 

vanishing gradient problem, thus allowing gradients to propagate throughout the network. However, residual blocks help 

networks retain identity mapping as well as other corrections that help in generalization in addition to other corrections that 

enable the model to learn other patterns. Fig. 1 illustrates the block structure, which comprises the following steps: 

•  A series of layers consists of convolutional layers that are used in the task of feature extraction from the input. 

Typically, in a residual block, two layers of convolution with a kernel size of 3 × 3 and a padding of 1 are ned. 

The number of layers, the dimensions of the kernel, and other parameters can be set according to the application 

or the problem [11][13]. 

• Batch normalization: Batch normalization, which is used after each convolutional layer, is also a critical feature, 

as it helps improve and speed up the training process through normalization of the input data for the next layer. 

Its main goal is to solve a problem called internal covariate shift, which results from fluctuations in the input 

distribution to a layer during training[14]. 

•  Nonlinear activation functions, especially the rectified linear unit (ReLU), are widely used in residual blocks. 

Like batch normalization, ReLU is applied after the first and positioned after the block after the skip connection. 

The introduction of nonlinearity is another primary benefit when ReLU is used since it helps in obtaining 

complex and nonlinear data patterns in a given set[15]. 

• Skip (shortcut) connections: The basis of the design of residual blocks is the use of connections between two 

blocks called shortcut connections. These connections are used to add the input of the block to the output of the 

last batch normalization layer. In this way, gradients can pass more effectively through a network and therefore 

solve the vanishing gradient problem and increase or extend the depth of the neural network. 

 

 
Fig. 1. Residual block 

In the residual block, before applying the activation function to the output of this layer, the input given to the block is 

concatenated with the output generated by these layers. This ensures that the neural network can memorize not only the 

identity function but also any corrections that need to be made to the entire loss, which helps the network to generalize 

and understand other higher-order patterns [12]. 

https://arxiv.org/abs/1512.03385v1
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3.2   Encoder-Decoder Network 

An encoder-decoder is a type of neural network model that is particularly applicable to sequence-to-sequence learning 

models, such as machine translation and image captioning. It comprises two main components: the encoder and the 

decoder, as illustrated in Fig. 2. The encoder transforms the input sequences to generate the context vectors, and the 

decoder makes use of the context vector to create output sequences. The encoding process encompasses the process of 

transforming input data into a quantitative form while preserving the interrelationships of the data structure. The decoder, 

on the other hand, reconstructs the encoded representation back into its original form or a similar output. To achieve this, 

attention mechanisms are often employed to establish relationships between the encoded data and the reconstructed output, 

enhancing the accuracy of the generated sequences  [15]. 

 
Fig. 2. Encoder-decoder architecture 

3.3    Multi-Layer Feature Fusion for Local and Global Features (MFLL) 

In the development of this proposal, we have outlined two approaches to use MFLL on the features of CNNs of various 

levels. The first is known as intralayer fusion, which attempts to increase the number of local components of the CNN. In 

the next layer of the architecture, the strengthened features are delivered. The improvement of features’ partial information 

enhances the ability of CNNs to extract feature details. As shown in Fig. 3, the feature maps of Layer1 and Layer2 include 

several convolution sublayers. The module subsequently transmits the result to Layer 3 and therefore improves the local 

feature information of Layers 1 and 2. In general, it is possible to utilize several types of modules to enhance these or other 

local characteristics. 

 
Fig. 3. Two intralayer fusion modules work to enhance different parts of the local parts. 

The second approach is to improve the features of the global information, known as interlayer fusion. While forward 

propagating the CNN, some feature information is pooled, and multilayer feature fusion combines the feature information 

of the previous layers into the fused feature map through interlayer fusion and fuses the global features, enhancing the 

diversity of the final feature maps. Hence, it can reclaim and/or offset the loss of the feature. Fig. 4 shows that the module 

takes feature maps from three different groups of convolution layers. The module then compiles them and sends them to a 

classifier to obtain a classification result. Indeed, it is often a single fusion module that is applied in the CNN[16]. 

 
Fig. 4. Interlayer fusion to enhance the global feature 
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3.4 Exponential linear unit 

 The exponential linear unit (ELU) is a type of activation function designed to increase the training efficiency of deep 

neural networks. ELUs mitigate the vanishing gradient problem by acting linearly for positive inputs and allowing negative 

outputs, which brings the mean activation closer to zero. This reduction in computational complexity aids in training the 

model more quickly. This is because ELUs have properties such as centring the activations around zero and include a 

saturation plane for negatives as opposed to ReLU and its variants such as leaky ReLU. These characteristics allow ELUs 

to train models with better representations and improve the learning rate and generalizability, especially in neural networks 

that are deeper than five layers, making them offer state-of-the-art performance in different applications [17]. 

The ELU is mathematically expressed by the following equation: the exponential linear unit (ELU) is defined as 

f(q) = {
q, q ≥ 0

α ∗ exp(q) − 1, q < 0
                                                                                    (1) 

3.5 Trilinear up sampling 

In CNNs, feature map resolution can be increased through trilinear up sampling of feature maps. This is especially helpful 

in operations requiring 3D data as input, including medical volumetric imaging or video frame processing. The up 

sampling process consists of the proper interpolation of the feature map values to obtain a new feature map with a higher 

resolution[18]. 

Concerning CNNs, trilinear up sampling is a certain form of trilinear interpolation usually employed in operations that 

gradually introduce spatial dimensions through several steps or layers. The trilinear up sampling in the CNN involves the 

following: 

•  Feature Map Preparation: The input feature map is described in terms of height, width, and channel, whereas 

the depth dimension can be considered another spatial dimension in trilinear interpolation. 

•  Grid creation: In the up sampled feature map, new pixel values need to be predicted, and a grid of points is 

formed for this purpose. 

•  Interpolation: Trilinear interpolation is performed at every point in the up sampled grid (calculating pixel 

values from nearby known pixels of the original feature map). The interpolation determines the value of each 

point on the basis of how far it is from nearby points in all three dimensions. 

•  Weighting and Summing: The weights are determined by the distance of a new point to known points in that 

feature map. A weighted sum of the points with some weight on the basis of the distance from the Tuple to 

predict its value 

3.6   Source-reference attention layer 

The source-reference attention layer, also known as the cross-modal attention layer or cross-modal interaction layer, is an 

important component in neural networks that enables the incorporation of information from reference feature maps into 

source feature maps. It is especially effective in those cases when data from another but connected input (the reference) can 

be beneficial in representing the primary input (the source)  [19]. 

Steps detail how the source‒reference attention layer functions[20]: 

• Projection into Common Feature Space: 

▪ The source and reference feature maps are linearly transformed to create three different projections: 

Queries (𝑄), Keys (𝐾), and Values (𝑉). 

▪ Queries (𝑄): Projected from source feature maps via a function 𝑓𝑞, typically a convolution or linear 

layer. 

𝑄=𝑓𝑞(ℎ𝑠)                                                                                                   (2) 
▪ Keys (𝐾) and Values (𝑉): Projected from reference feature maps via functions 𝑓𝑘 and 𝑓𝑣. 

𝐾=𝑓𝑘(ℎ𝑟)                                                                                                    (3) 
𝑉=𝑓𝑣(ℎ𝑟)                                                                                                    (4) 

▪ All projections (𝑄, 𝐾, 𝑉) typically share a common dimension 𝑑. 

• Attention Score Computation: 
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▪ The similarity scores (attention scores) between each pair of projected source and reference features are 

computed. This can be done via a dot product: 

 

Aij = Qi. Kj
T                                                                                           (5) 

▪ These scores are normalized to obtain weights that sum to 1 across the reference dimension. This is 

usually achieved via the Softmax function: 

 

                                     𝛼𝑖𝑗 =
exp (𝐴𝑖𝑗)

∑ exp (𝐴𝑖𝑗)𝑗
                                                                                           (6) 

• Weighted aggregation: 

▪ The attention scores are used to compute a weighted sum of the reference features (𝑉) for each source 

feature location: 

                                       ℎ𝑠𝑖
′ = 𝛼𝑖𝑗𝑉𝑗                                                                                           (7) 

 

▪ This step integrates the relevant information from the reference feature maps into the source feature 

maps. 

• Combining with Source Features: 

▪ The transformed source features (ℎ𝑠′) are combined with the source features (ℎ𝑠). This combination is 

often performed via elementwise addition: 

                             ℎ𝑠
′′ = ℎ𝑠

′ ⊕ ℎ𝑠                                                                                      (8) 
▪ This operation preserves the local information from the source features while enhancing it with the 

contextual information from the reference features. 

 

4. QUALITY METRICS 

In the realm of image processing algorithm development, video quality measurement (VQM) plays a significant role. The 

use of VQM is crucial in assessing the efficacy of processed videos. Video quality denotes a property of a video that 

gauges the degradation of the processed video to an ideal video [21][22]. The tools used in this proposal to measure model 

performance are as follows: 

4.1   Peak signal-to-noise ratio (PSNR) 

This metric has been extensively utilized in numerous image and video processing applications for the quantitative 

assessment of the similarity or dissimilarity between two images or videos (modified and original) of identical structure. 

This metric is specified through Eq. (9). 

PSNR = 10 log10 (
M2

MSE
)                                                                             (9) 

The determination of the value of M is contingent upon the structure of the image or video being utilized. In the case of an 

8-bit image, the value of M is set at 255. An uphigh value of the peak signal-to-noise ratio (PSNR) indicates that a 

reconstruction represents higher quality. 

4.2   Average Difference (AD) 

 It is used to calculate the average change between the resulting colored image and the original image. AD can be 

mathematically expressed by Eq. (10). 

                                AD =
1

XY
∑ ∑ [K(p, q) − Q(p, q)]Y

q=1
X
p=1                                                           (10) 

Zero is the optimal numerical value for AD. 

4.3   Root mean square error (RMSE) 

Similar to the mean squared error, but with the additional step of taking the square root of the result. 

 RMSE = √
1

𝑋𝑌
∑ ∑ (𝐾(𝑝, 𝑞) − 𝑄(𝑝, 𝑞))2𝑌

𝑞=1
𝑋
𝑝=1                                                       (11) 

A smaller numerical value of the root mean square error (RMSE) indicates a better outcome. 
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4.4   Maximum difference (MD) 

 The maximum error signifies the difference between the original image and the image after coloring. 

                            MD = max|K(p, q) − Q(p, q)|                                                                      (12) 

The image quality decreases as the MD value increases. 

4.5  Structural Content (SC) 

 It computes how similar two images are 

SC  =    
∑ ∑ (𝑄(𝑝, 𝑞))2𝑌

𝑞=1
𝑋
𝑝=1

∑ ∑ (𝐾(𝑝, 𝑞))2𝑌
𝑞=1

𝑋
𝑝=1

                                                                                  (13) 

A higher value of SC indicates that the image is of poor quality. 

4.6   Normalized absolute error (NAE) 

 It also computes how similar two images are 

                                NAE =
∑ ∑ |Y

q=1
X
p=1 K(p,q)−Q(p,q)|

∑ ∑ K(p,q)Y
q=1

X
p=1

                                                                                  (14) 

The highest-quality image is achieved when the NAE approaches zero. 

4.7   Normalized Cross-Correlation (NCC) 

 The measure indicates the contrast between the modified image and the original image. The model is presented as follows: 

NCC =   ∑ ∑
𝐾(𝑝, 𝑞) ∗ 𝑄(𝑝, 𝑞)

(𝐾(𝑝, 𝑞))2

𝑌

𝑞=1

𝑋

𝑝=1
                                                                  (15) 

4.8   Structure Similarity Index (SSIM) 

 The SSIM index assesses how similar a tested image X is to the original image Y visually via a formula. 

SSIM(p, q) = [𝐾(𝑝, 𝑞)]𝛼 . [𝑄(𝑝, 𝑞)]𝛽 . [𝑊(𝑝, 𝑞)]𝛾                                                               (16) 
where α, β, and γ are the parameters that determine the significance of each component. 

K(p, q) = (2 ∗ Mp ∗ Mq + S1)/(Mp
2 + Mq

2 + S1)                                                            (17) 

Q(p, q) = (2 ∗ σp ∗ σq + S2)/(σp
2 + σq

2 + S2)                                                              (18) 

W(p, q) = (σpq + S3)/(σp ∗ σq + S3)                                                                       (19) 

where the constants 𝑆1, 𝑆2   and 𝑆3 are utilized to prevent any instabilities that may average from the pixel value (𝑀𝑝
2 +

𝑀𝑞
2), standard deviation (𝜎𝑝

2 + 𝜎𝑞
2) or (𝜎𝑝 ∗ 𝜎𝑞) approaches zero. The SSIM (p, q) varies between 0 (indicating 

dissimilarity). 1 (representing identical patches). 

4.9   Pearson correlation coefficient (PCC) 

The utilization of a statistical formula known as the Pearson correlation coefficient (PCC) is instrumental in assessing the 

strength of the relationship between two variables. This formula yields a value that falls within the range of [-1, 1]. 

PCC =
p(∑ KQ) − ∑ K ∗ ∑ Q

√[p ∑ K2 − (∑ K)2] ∗ [p ∑ Q2 − (∑ Q)2]
                                                             (20) 

A positive value of the correlation coefficient signifies a positive correlation between the variables, whereas a negative 

value implies a negative correlation between the variables. 

5. PROPOSED METHOD 

The proposed approach for video colorization is structured into three main phases: preprocessing, reference image 

processing, and source-reference network application. These phases march together to handle images and videos within the 

shortest time possible without considering the size of the image or the video. Below is a more detailed and clarified 

breakdown of each phase. 
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5.1 First phase: Preprocessing 

The main objective of the preprocessing step is the process of eliminating the input monochrome video noise in addition to 

making adjustments to the video before the colorization step begins. This phase guarantees that the frames used in the 

production of the actual video have been designed to provide accurate colorization. The process is implemented in an 

encoder‒decoder framework with eight convolutional layers, four in the encoder section and four in the decoder section. 

This is followed by batch normalization and an exponential linear unit activation function for each convolutional layer. 

The different phases of the many stages involved in preprocessing are shown in Fig. 5. 

Fig. 5. Flowchart of the proposed method at the preprocessing stage. 

Preprocessing consists of three main stages: 

• First stage: Encoding 

While encoding, every frame in a video is subjected to feature extraction via 3 by 3 convolutional layers. To maintain 

equal dimensions of the input and output, padding is reproduced, and a step of 2 pixels is used to reduce the frames’ 

resolution without losing their important characteristics. 

•   Second Stage: Decoding 

During decoding, the features from the encoding stage are again passed through some transformations to reconstruct the 

frames of the video. The strategy implemented here is trilinear up sampling and 3×3 convolution but replicates padding. 

There is a 1-pixel stride used to fine-tune the resolution, whereas connections between equal stages of the encoder and 

decoder networks minimize the noise in the up sampling step and focus on preserving the more relevant importance. 
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•   Third Stage: Output 

After processing all frames of the video, it outputs a video that can be considered temporally coherent and that is ready for 

the next colorization step. 

5.2  Second phase: Reference image processing 

Reference image processing consists of seven stages, starting with the input of reference images and ending with the final 

processed images. This phase aims to unify and enhance the features of the reference images. The entire process of this 

phase is illustrated in Fig. 6. 

Fig. 6.  Process reference images 

 

The stages of reference image processing are as follows: 

• First Stage: Initialization 

In this stage, the reference image(s) are input into the encoder to start processing. 

• Second Stage: Encoding Processing 

Each reference image passes through six layers, where each layer includes the following steps: 

▪ 3x3 Convolution: Convolution is applied via a 3x3 kernel with a stride of 2 to reduce the dimensions of 

the image and replicate padding to maintain consistent input and output sizes. 
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▪ Batch normalization: The output from the convolution layer is batch normalized to speed up and 

stabilize the training process. 

▪ ELU Activation: The outputs are then activated via the ELU function to improve the learning 

capability and avoid the vanishing gradient problem. 

• Third Stage: Feature Map Unification 

After extracting the feature maps from each layer, their sizes are unified to match the size of the image produced 

by the fourth layer. This ensures consistent dimensions across all layers for the reference images. 

• Fourth Stage: Multilayer Feature Fusion 

Both local and global features are combined through a specialized module in the fusion process, which includes 

the following steps: 

▪ Intralayer Fusion: Feature maps from successive layers (second, third, fourth, fifth, and sixth) are 

combined to produce an image (A). 

▪ Interlayer Fusion: Feature maps from non-consecutive layers (second, fourth, and sixth) are combined 

to produce an image (B). 

▪ Combining Images, A and B: Images (A) and (B) are summed to produce a combined feature map. 

• Fifth Stage: Repeating the Process for All Reference Images 

Each reference image is processed through the aforementioned stages to ensure feature extraction and preparation for 

the next stage. 

• Sixth Stage: Residual Block Processing 

After feature fusion, the reference images are fed into the residual blocks in two steps: 

▪ Residual Block 1: Includes convolution, batch normalization, and ELU activation to enhance the 

features. 

o Convolution: Convolutional layers are applied to extract essential features from the reference 

images. 

o Batch normalization (BN): BN normalizes the activations to stabilize and accelerate the 

training process. 

o Exponential Linear Unit (ELU) Activation: Introducing nonlinearity to help the network 

learn complex patterns. 

                   This block enhances the initial features extracted from the reference images. 

▪ Residual Block 2: This block repeats the same steps as residual block 1: convolution, batch 

normalization, and ELU activation, in addition to further refining the features and improving their quality and 

accuracy. The use of residual blocks with these operations ensures that the features extracted from the 

reference images are not only enhanced but also further refined, leading to more accurate and robust results in 

the subsequent processing phases. 

• Seventh Stage: Final output 

After all the reference images are processed through the residual blocks, the final processed reference images 

with dimensions (H, W, channels) are obtained. 

 

5.3 Third phase: Source-Reference Network 

The source-reference network integrates the color information from the reference images into the processed video 

frames. This phase is crucial for achieving accurate colorization while maintaining temporal coherence. The entire 

process is visually represented in Fig. 7, which clarifies the sequential stages involved. 
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 Fig. 7. Process Video and Colorization 

 

The source-reference network  consists of three main stages: 

•  First Stage: Video Frame Processing 

After noise removal and enhancement in the preprocessing phase, the video is divided into frames. These frames 

are processed similarly to the reference images to match their size and features, ensuring compatibility with the 

colorization stages. 

•  Second Stage: Source-Reference Attention 

The input to this stage consists of both the processed video frames from the first stage and the processed 

reference images from the second phase. These are fed into the source-reference attention layer. The process 

begins by converting the reference image(s) into two different sets of dimensions: one with dimensions (H*W, 

Channel) and the other with dimensions (Channel, H*W). Similarly, the processed video frames are transformed 

into frames with dimensions (H*W, Channel). 

Next, the reference images with dimensions (channel, H*W) are multiplied by the video frames with dimensions 

(H*W, channel) (matrix multiplication) to compute attention weights. These attention weights are then 

normalized via the Softmax function. After normalization, the attention weights are multiplied by the reference 

images in the dimensions (H*W, Channel) to compute the transformed source feature maps. Finally, the 
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transformed source features are combined with the frame features of dimensions (H, W, Channel). After 

processing a frame, the next frame is fed into the source-reference attention layer, and the process is repeated 

until all frames are processed. 

Once all frames have been processed via the first reference image, the next reference image is input into the 

source-reference attention layer, and all frames are processed again. This cycle continues until all frames have 

been processed using all reference images. 

Following this merging process, the features are subjected to further processing through the source-reference 

attention layer to ensure temporal consistency before being converted into chrominance channels. Each frame is 

then fed into the decoder stage, which consists of three layers. Each layer involves the following steps: applying 

trilinear up sampling, performing convolution with kernel sizes of 3x3, applying replicate padding to ensure 

consistent input‒output sizes with strides of one pixel, and applying batch normalization and the ELU activation 

function. After processing a frame, the next frame is fed into the decoder, and the process is repeated until all 

frames are processed. 

• Third Stage: Processing and Output 

After the source-reference attention stage, the features are further processed to ensure temporal consistency. A 

video with color channels (A and B) in the Lab color space is produced, which is then combined with the 

luminance channel (L) from the denoised and quality-enhanced grayscale video in the preprocessing network. 

The final step involves converting the video from the Lab color space to the RGB format, resulting in a fully 

colored video that maintains color accuracy and temporal coherence. 

 

6. RESULTS AND DISCUSSION  

The model for video colorization in this study is trained and tested on the YouTube-8 M dataset. Various scenes from the 

dataset were sampled, and in total, 1,569 videos (10,243,010 frames) were carefully annotated to exclude irrelevant 

content, such as gameplay and monochrome footage. The data were then partitioned to enable structured model 

development. For training the model, 1,219 videos with 7,993,132 frames were utilized. For the validation process, 50 

videos with 321,306 frames were used. For testing, 300 videos with 1,928,572 frames were used. This segmentation 

provided a good foundation for the training process, parameter adjustment, and overall assessment of model performance 

concerning generalization. The specifications used to train the models included 100 epochs, a batch size of 16, and a frame 

size of 224 × 224. 

Various tests were conducted to evaluate the efficacy of the proposed algorithm. Fig. 8 illustrates the outcomes of 

colorizing a set of grayscale frames and compares the peak signal-to-noise ratios (PSNR) of these colorized frames to those 

of the ground truth images. The PSNR values fall within an acceptable range for the colorization process, indicating the 

algorithm's effectiveness. Additionally, there is a notable visual resemblance between the ground truth and colorized 

images. These results are considered very promising for blind colorization, demonstrating the algorithm's ability to produce 

high-quality colorized frames without prior color information. 

 

 
Fig. 8. (a) Grayscale Frame Colorization Using a Reference Image 
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Fig. 8. (b) Greyscale frame colorization via two reference images 

 
Fig. 8. (c) Grayscale frame colorization using three reference images 

 
Fig. 8. (d) Grayscale frame colorization using four reference images 

 
       Fig. 8. (e) Grayscale frame colorization using five reference images 

Fig. 8. PSNR Values for Videos Colorized via the Proposed Method with One, Two, Three, Four, and Five Reference Images. Subfigures (a) through (e) 
Demonstrate greyscale frame colorization via five reference images. 
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The proposed algorithm was then applied, and various grayscale videos were used to determine its accuracy in terms of 

quantitative measurements and objective visual comparisons. The PSNR was used as an important parameter to evaluate 

the accuracy of the colorization step performed by the script we designed. For reliability, the evaluation used grayscale 

videos obtained from the colored videos and allowed for side-by-side comparisons with the colorization results and the 

ground truth videos. This approach improved the reliability of the PSNR analysis because Fig. 8 shows that the colorized 

videos are very similar to the ground truth, confirming the success of the proposed method. One of the main features 

affected by the choice of reference images was the quality of the colorized images. 

The quality of the colorized videos was assessed via various metrics, as summarized in Table I. The results indicate 

predominantly positive performance, with most metrics demonstrating a strong resemblance between the colorized videos 

and their ground truths. Achieving accurate colorization in a fully automated manner, especially without prior knowledge 

of the original colors, poses significant challenges. However, the metrics in Table I underscore the effectiveness and 

reliability of the proposed method. These results validate its ability to replicate the true colors of the original video, even in 

a blind colorization scenario, showcasing its potential for high-quality automated video colorization. 

TABLE I.  THE MEASURE OF VIDEO QUALITY AFTER THE COLORIZATION PROCEDURE. 

 

 

 

 

 

 

 

 

 

We conducted a detailed visual comparison of our results with those illustrated in Fig. 9, which showcases the outputs of 

other studies. Our method demonstrated superior performance, with colorized videos exhibiting more realistic and 

consistent colorization than existing techniques do. This visual comparison underscores the effectiveness of our proposed 

algorithm in achieving better colorization quality. The improved results validate the robustness of our approach in 

addressing the challenges of video colorization. 

 

 

Fig. 9. Visual comparison of the colorization process for various methods. 

Number of 

references 
AD RMSE MD SC NAE NCC SSIM PCC 

1 0.45 4.443 1.362 0.945 0.893 0.887 0.980 0.984 

2 0.31 3.719 0.481 0.902 0.732 0.896 0.987 0.989 

3 0.25 3.372 0.254 0.821 0.624 0.99 0.993 0.993 

4 0.22 3.340 0.131 0.758 0.518 0.993 0.996 0.995 

5 0.14 3.328 0.138 0.673 0.357 0.998 0.998 0.997 
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The superior quality of the proposed method is further corroborated by the PSNR and SSIM metrics summarized in Table 

II. These metrics quantify the difference between the colorized videos and their ground truths, indicating how closely the 

recovered videos align with the original-colored videos. The results clearly demonstrate that our proposed method 

achieves the highest SSIM value of 0.999982 and PSNR of 37.89, surpassing all other existing techniques. For example, 

studies [22] and [26] reported SSIM values of 0.963565 and 0.98229 and PSNR values of 34.57 and 35.56, which are 

significantly lower than those achieved by our approach. 

As detailed in the analysis, our method excels in maintaining structural consistency and enhancing perceptual appearance. 

While the closest competitor attained an SSIM of 0.999959 and a PSNR of 36.98 [29], our method provides a slight yet 

significant improvement in accurately representing the true colors of videos. These advancements affirm the ability of our 

approach to address limitations in prior methods, such as suboptimal color quality and lack of temporal continuity. 

By comparing the PSNR, SSIM values, and visual quality, we establish that the proposed algorithm outperforms state-of-

the-art methods. This robust performance highlights its reliability and capability as a fully automated video colorization 

solution. These results lay a strong foundation for the method's real-world application in producing highly accurate and 

visually consistent colorizations of grayscale videos. 

TABLE II.  COMPARISON OF VIDEO QUALITY AFTER THE COLORIZATION PROCEDURE USING PSNR AND SSIM MEASURES 

 

7. CONCLUSION 

In conclusion, the proposed methodology presents a robust and efficient framework for video colorization by integrating 

three key phases: preprocessing, reference image processing, and source-reference network application. It also uses 

techniques such as multilayer feature fusion, bidirectional optical flow, and attention-based source–reference color 

matching to ensure color accuracy as well as temporal continuity over frames in the video sequence. This trade-off 

between color accuracy and temporal stability greatly improves the quality of colorized videos. However, there are some 

weaknesses associated with this approach, the principal of which is the necessity of using reference images; inadequate or 

low-quality references might result in erroneous colorization. However, the method has strengths in solving two 

important problems related to video colorization: high color accuracy and temporal consistency. Some of the main 

contributions of this work are as follows: Compared with existing methods, enhanced attention mechanisms and source-

reference matching substantially enhance performance. The results of this research will help to expand the development 

of more accurate and faster video colorization techniques for different tasks. 
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NO Reference SSIM PSNR 

1 [23] 0.963565 34.57 

2 [24] 0.982004 35.31 

3 [25] 0.96376 35.12 

4 [26] 0.963755 34.81 

5 [27] 0.98229 35.56 

6 [28] 0.999852 36.5 

7 [10] 0.987278 36.21 

8 [29] 0.987129 35.8 

9 [30] 0.999959 36.98 

10 Our 0.999982 37.89 
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