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A B S T R A C T  
 

Healthcare monitoring Cloud-IoT systems use data mining and machine learning methods to analyse 
patient data in real-time from linked devices. By offering insights for the early diagnosis of anomalies 
and individualized treatment suggestions, this strategy improves healthcare management. In this research 
first the Collect and Load the Clevant Heart Disease Dataset for Data Collection Process. Next, 
preprocess the loaded data using the Synthetic Minority Oversampling Technique (SMOTE), and then 
the feature extraction process is done using the Principal Component Analysis (PCA) Method. In this 
case, the characteristic must be extracted by feeding a specific column. The classification procedure is 
then carried out using Generative Adversarial Networks (GAN) and an optimization approach called 
Adaptive Moment Estimation. This is where the model executes GAN operations, and the output will be 
produced. The data is then transferred to an edge-cloud environment to minimize storage problems and 
provide instant access to critical data. This process starts with the encryption and decryption of data using 
Homomorphic encryption with the Laplacian technique. In addition, have taken the generated values 
from the GAN network as original values and encrypt them using Homomorphic encryption with the 
Laplacian technique. Next, the routing process is done using the leach protocol to optimize energy 
consumption and communication efficiency. The leach protocol is used to route among the data to divide 
the data into clusters and perform energy consumption. Finally, the simulation of this research is 
conducted by Python – 3.9.6 network simulator, and the performance of the proposed model is estimated 
based on various performance metrics such as accuracy at 90%, precision at 94%, authentication time, 
throughput at 90%, and packet delivery ratio with 94% this demonstrated that the suggested effort 
produced better results both in terms of quantitative and qualitative aspects. 

 

1. INTRODUCTION 

One industry recognized as a critical component for national growth and development is the healthcare industry [1].            

The effect of an Internet of Things (IoT)-based healthcare system on people and society is significant. It is important to the 

pharmaceutical business and scientific community. Because of their complexity and heterogeneity, data are more difficult 

to comprehend and investigate [2]. The advancements in science and technology have coincided with progress in the 

healthcare sector. The development of information and communication technology (ICT) has paved the way for creative 

solutions in a wide range of business sectors, such as logistics, transportation, healthcare, and agriculture. One significant 

factor propelling ICT technical growth is the IoT, which is guiding future industries toward automation and decentralized 

intelligence [3]. A certain number of servers that may be utilized by the demands of the client are safeguarded by the cloud 

computing provider. The growth of these devices has been very rapid, and they have significantly transformed people's 

daily lives at every level [4]. 

In genetic biology research, cloud computing has been shown to be a viable and affordable method for integrating and 

analysing enormous amounts of data [5]. Data processing in the cloud is virtualized and is a productive approach to control 

and data monitoring in real time. The link that entails data streams is what these industrial devices intend. Through the use 

of big data, new patterns or noteworthy trends are identified. A wide range of unstructured data sources creates challenges 

in integrating information for analysis. The amount of data generated by IoT-enabled devices is massive. The combination 

of cloud computing with these devices provides new networking, scalability, and storage possibilities. These devices' 

restricted processing power is insufficient to handle vast amounts of healthcare data. Numerous stakeholders obtain 

infrastructure services and applications via cloud computing [6]. Considering unique identities (UIDs) and the capacity to 

transmit data across a network without the need for people or human-to-computer contact, these devices are systems of 

interconnected computing devices. 
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The internet of Medical Things (IoMT) is the real-world integration of IoT-enabled devices with medical technologies. The 

IoT facilitates the remote examination of healthcare devices and app data by transferring them to medical IT servers. To 

address patients' medical conditions and assist them in avoiding any more dire situations, medical professionals may access 

patients' health information remotely in real time via any mobile application or online platform thanks to the IoMT [7]. 

This computing technique offers consumers software and infrastructure services in addition to the services that customers 

seek over the internet. Given the noteworthy expansion of cloud computing, the number of users and requests is rising 

quickly. Consequently, it is critical to increase the speed and precision of cloud computing [8]. Even though today's 

dynamic global society depends heavily on data generated by these device applications, effectively using this information 

is still difficult in the medical field [9]. IoMT gadget sensors, together with human contact with these sensors, are thought 

to be a major source of data from which machine learning (ML) algorithms may extract characteristics to identify and learn 

practical patterns. Many uses in healthcare and elder care, including identifying activities for medical evaluation, fall 

detection, anxiety detection, tracking one's fitness, vital sign monitoring, and illness diagnosis, may benefit greatly from 

its usage [10]. Systems based on IoT-enabled devices and machine learning are effective because of developments in 

sensing, processing, spectrum utilization, and ML. Microelectronic advancements have made small, inexpensive medical 

sensors conceivable, which has revolutionized medical services and made these solutions viable [11]. 

Many efforts have been made to provide patient data remotely without visiting hospitals because of recent advancements 

in wireless sensor networks and the Internet of Things. It helps experts decide the best course of action to take or dispatch 

a certain medical assistance team. The transfer of vital patient information in an emergency may have a major influence on 

patient survival. Cloud computing has revolutionized computation and storage, opening new avenues for innovation in 

Internet of Things-based health monitoring systems [12][20]. Cloud-based and IoT-enabled device apps perform better 

than do conventional apps in terms of precision and effectiveness. Among the applications based on the cloud and these 

device technologies were financial services, healthcare, and defense. Remote locations may access medical records via 

cloud-based device solutions. Healthcare apps promptly gather data and modify the severity of medical factors [13]. The 

robotics industry uses cutting-edge technology to increase the overall sector's economic competitiveness. In the automation 

sector, monitoring systems play a critical role in increasing productivity, cutting costs, providing early warning systems, 

forecasting illness, and many other functions. Systems for monitoring are integrated with new technologies such as ML, 

cloud computing, and the IoT to improve their performance [14]. Many wireless applications utilize large datasets and 

analyse them with advanced processing techniques for greater accuracy and efficiency [15]. 

The main purpose of data mining methods (such as association rule mining, classification, and clustering) is to analyse data 

and find hidden patterns. Large private or public organizations in related or unrelated fields used to work together to perform 

data mining on aggregated data from all cooperative organizations (or participants) to extract helpful information for shared 

advantages. 

Because the collaborative players operate in a dispersed environment, each cooperative participant must exchange specific 

data to perform data mining [16][30]. The main goal of this research is to utilize data mining and ML algorithms to improve 

healthcare monitoring in the cloud-IoT, which can hinder the following issues: 

• Impact of Privacy and Security: Existing methods have inadequate privacy and security measures in healthcare 

data that can lead to unauthorized access, breaches, and potential misuse of sensitive patient information. 

• Increased latency and bandwidth: The existing method does not minimize the high latency and bandwidth issues 

that can impede timely access to critical patient information and real-time communication among healthcare 

professionals. 

• Insufficient Storage: Previous methods have inadequate storage capacity that poses challenges in managing the 

continuous influx of patient data, limiting historical records and hindering comprehensive longitudinal analysis. 

• Imbalanced class and data annotation: Class imbalance in healthcare datasets and a shortage of annotated data 

for specialized conditions hinder the development of accurate and inclusive machine learning models. 
 

2. RELATED WORKS 

This section presents a literature review on the use of data mining and machines for healthcare monitoring in the cloud-

IoT. The authors of [17] utilized “IoT, fog, and cloud technologies”, and the heart disease detection system was intelligent 

and effective. The obtained healthcare IoT data are preprocessed via a fuzzy inference system and filtering technique. The 

deep learning-recurrent neural network (DL-RNN) model of the “gated recurrent unit (GRU)” is then used at the fog layer 

for forecasting. In contrast to the outcomes of the GRU method, the recommended fuzzy inference system with an upgraded 

GRU exactly forecasts the danger of a heart attack from data from IoT-enabled device patients and electronic health records 

(EHRs). Moreover, fog computing increases the danger of security and illegal access because data are processed and kept 

across several edge devices. This can be avoided by setting up fog nodes with tight access control guidelines, hardware that 

is impossible to tamper with, and protection against physical damage and site-based attacks. Methods for authentication 
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and trust that were created before the emergence of fog nodes and heterogeneous device nodes are outdated. Therefore, a 

new framework for users, services, node authentication, and trust needs to be created. A secure way to offload tasks while 

guaranteeing their accuracy and integrity is required since offloading work to fog nodes has the potential to harm personal 

data. The user can access several fog nodes that might be sensitive. It is essential to safeguard private information 

confidentiality via proper privacy-preserving measures. 

The authors of [18] reported that the data of cardiac patients are handled by a health observing system built on AI and these 

devices. The heart patient's behaviors are tracked by the system, which helps patients remain cognizant of their state. 

Moreover, the scheme can use ML algorithms to categorize diseases. However, the primary research constraint is that the 

suggested system gathers information from various sources and transfers it to the cloud for additional processing. Different 

useful healthcare technologies that are controlled by electronic devices such as phones and tablets, which are popular among 

medicinal professionals, can be added to these device-based systems to increase their capacity. These gadgets only have 

basic computing power and can store data locally. These devices also have poor security, which puts patient data privacy 

and confidentiality at risk. IoT-enabled devices that are worn on the body or implanted can monitor patients continuously 

and help identify potential health problems early on. 

The authors of [19] proposed a prediction framework that uses ML techniques to monitor the real-time data of sensor nodes 

in a medical background. An IoT-enabled device smart hospital environment has been created that uses various sensors, 

including air quality, temperature, humidity, flame, and current sensors, to monitor and operate appliances via the internet. 

Three key features of these device-generated sensor data are their massive number, organized nature, and real-time nature. 

Predicting early defects in an IoT context is the primary goal of this research to guarantee the correctness, fidelity, 

dependability, and integrity of devices that are enabled by these devices. “Using a decision tree, K-nearest neighbor, 

Gaussian naive Bayes, and RF methodologies”, the suggested error estimate model was assessed; however, on the given 

dataset, RF demonstrated the maximum accuracy compared with the other methods. The outcomes demonstrated the 

effectiveness of using machine learning techniques on IoT-based sensors to display the hospital automation method. Among 

these techniques, random forest was shown to have the highest accuracy. The suggested model could be useful to the user 

in deciding on the suggested course of action and managing unforeseen losses caused by errors made throughout the 

automated process. However, security becomes a significant concern when there are several IoT devices, so it is important 

to consider their security. 

The authors of [21] proposed a lightweight authentication method employing completely homomorphic encryption with a 

privacy-preserving schema. This method allows for safe online access to patient data and the sharing of that data in an 

encrypted format with stakeholders for various reasons. The suggested authentication method for the internet of Medical 

Things is simple to use and resistant to any network assault. However, a significant drawback of the suggested 

authentication method is its high message transfer rate. This raises the price of communication. It can be decreased in the 

future by the use of more potent challenge‒response techniques. 

The authors of [22] addresses related security issues, and this article suggested an authentication mechanism for wireless 

body area networks that employs certificate-less cryptography. Burrows–Abadi–Needham logic is used in a formal security 

study, which demonstrates the suggested protocol's resistance to common assaults. Furthermore, they use the Automatic 

Verification Security Protocol and evaluation model tool for safety exploration and the real-or-random model for 

mathematical evidence. The suggested approach is more functional and less expensive than the current protocols are, 

according to a thorough analysis. However, even under the best circumstances, their plan involves using a centralized 

server, which introduces latency. 

The authors in [23] raised the bar for ensuring better healthcare services while also achieving the visualization and 

accountability of healthcare users," They attempted to highlight in this article the importance of machine learning-based 

IoT devices for patient monitoring in cloud environments. Additionally, they reported that patients’ level of proficiency 

using the platform was high in emergencies in particular and nearly the same in all other circumstances. As a result, their 

technology was more accurate in every usability test on the basis of patients' experiences, especially in emergencies. The 

limitation of this work is that despite the benefits, there are trust, privacy, and security concerns. These challenges must be 

resolved earlier, so healthcare suppliers and actors can completely embrace the suggested system. 

The authors of [24] presented a "cross-architecture IoMT malware detection and classification system based on byte 

sequences extracted from Executable and Linkable Format", formerly termed ‘Extensible Linking Format files use an 

attention-based multidimensional DL technique’. The DL approach streamlines the task of developing characteristics and 

retrieving them from unorganized byte patterns. Furthermore, the recommendation process makes it easier to classify the 

ELF file's CPU architecture. 

The authors of [25] explored various FL programs in diverse IoT domains, such as clever towns, healthcare, commercial 

IoT, and clever grid systems. It investigates how FL can cope with the demanding situations posed via the allotted nature 

of IoT information, which includes statistics heterogeneity, privacy issues, and communication constraints. A large portion 

of the survey is dedicated to analysing the methodologies and algorithms used in federated mastering for dispensed 
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selection-making in these devices. This encompasses a dialogue on federated optimization techniques, communique-

efficient algorithms, and privacy-retaining mechanisms. The survey also delves into the function of side computing in 

facilitating efficient FL in IoT-enabled devices, considering the resource constraints inherent in facet gadgets. Furthermore, 

the paper reviews the contemporary modern-day federated learning frameworks and systems tailor-made for these device 

environments. It evaluates their ability to cope with real-global challenges and provides scalable solutions for disbursed 

decision-making. The survey concludes by identifying open research challenges and potential avenues for future traits in 

federated learning for these devices, emphasizing the need for novel algorithms, robust safety features, and standardized 

frameworks. 

This paper improves on prior research by addressing fundamental obstacles in healthcare monitoring systems that combine 

cloud computing and the IoT. Previous research has shown the promise of the IoT and cloud technologies in improving 

healthcare services but has faced challenges such as a lack of privacy and security, high latency, limited storage, and dataset 

imbalances. To address these restrictions, this study presents multiple sophisticated methods, such as homomorphic 

encryption utilizing the Laplacian technique for strong data protection, the synthetic minority oversampling technique and 

principal component analysis for managing class imbalances and extracting features, and the merging of edge-cloud 

architectures to increase data transmission and storage efficiency. Furthermore, integrating generative adversarial networks 

with adaptive moment estimation optimization improves the precision and dependability of machine learning models, 

outperforming conventional methods. The significance of this study is its ability to offer a healthcare monitoring system 

that is more secure, efficient, and scalable, guaranteeing real-time management of patient data with the utmost privacy and 

accuracy, which is crucial in today's healthcare settings. 
 

3. PROPOSED METHOD 

The main purpose of the proposed method is to use ML and data mining techniques to enhance the overall performance of 

the cloud-based healthcare monitoring system. Fig. 1 illustrates the overall architecture of the proposed architecture. 

Important steps are taken as part of this process, including the following: 

• Data collection 

• Pre-Processing 

• Classification 

• Data transmission in the edge-Cloud 

➢ Authentication 

➢ Routing 

➢ Storage 

• Healthcare monitoring in the IoT 

 

Fig 1. Overall architecture of the proposed architecture. 
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3.1 Data Collection 
In the beginning stage, first, the Cleveland heart disease dataset, which is a large and broad repository that includes 303 

patient records and 13 variables, is gathered. Additional investigations and ML applications in the field of cardiovascular 

health are provided by this dataset. Table 1. Represents the data attributes. 

 
TABLE  I. DATASET ATTRIBUTES  

S.no Attributes Attributes size 

1 Dataset size 303 

2 Number of features 13 

3 Distribution of positive case 70-30(47.25%), 80-20(49.18%) 

4 Distribution of negative case 70-30(52.75%), 80-20(50.82%) 

 

3.2  Pre-Processing 
After the dataset is collected, the SMOTE is used to address the class imbalance in the dataset. Then, to enhance minority 

class illustration, this technique is used to produce a more robust and balanced dataset. After preprocessing, the features 

extracted via principal component analysis (PCA) were “age, sex, chest pain type, resting blood pressure, cholesterol, 

fasting blood sugar, resting electrocardiography, maximum heart rate achieved, exercised-induced angina, old peak, slope, 

num, thal and ca”. 

 

3.2.1 Synthetic minority oversampling technique (SMOTE) 

To overcome the class imbalance dataset, the SMOTE. To enhance minority class representation, this technique produces 

a more robust and balanced dataset. 

It is one of the most exaggerated techniques. This technique creates a synthetic minority class sample generated along the 

line that connects one of its neighbors "k–nearest neighbor", which is a member of the minority class samples with randomly 

selected minority class samples. SMOTE employs a regressive approach to selection and search. Among the k closest 

neighbors, a threshold number of samples is chosen to create new fake minority class samples. The number of synthetic 

minority samples that must be produced determines the threshold's value. The procedure is repeated until the necessary 

number of synthetic minority class samples is produced. The SMOTE method artificially generates additional minority 

class samples in the space of features rather than the information space to equalize the distribution of classes. This expands 

the minority class's decision-making space. A new synthetic minority class sample is formed in SMOTE and is located on 

the line segment between    𝑦𝑖  And �̅� here𝑦𝑖 , �̅� ∈ 𝑀𝑚𝑖𝑛 can be described as,  

 

𝑦𝑠𝑦𝑛 =  𝑦𝑖  +  (�̅� −  𝑦𝑖).× 𝑟𝑎𝑛𝑑(0,1)                                                                   (1) 

Where, 

𝑦𝑖   is the minority class sample, which is to be oversampled 

where �̅� is another minority sample that is usually designated from the 𝑀𝑚𝑖𝑛  samples near 𝑦𝑖 . 

The symbol .× represents elementwise multiplication 

𝑟𝑎𝑛𝑑(0,1) Specifies a random number within the interval (0,1). 

Despite its ability to alleviate class imbalance by creating artificial samples, SMOTE may have certain disadvantages that 

can affect the effectiveness of the model. A potential issue is that SMOTE can add noise by generating artificial instances 

that do not truly represent the actual distribution of the minority category, resulting in artificial data and the possibility of 

excessive fitting. This could decrease the model's ability to accurately predict outcomes on unseen data. To address these 

problems, SMOTE can be coupled with methods such as Tomek links or edited nearest neighbors (ENNs) to eliminate 

noisy or duplicate samples. Furthermore, fine-tuning SMOTE settings, including the quantity of nearest neighbors 

employed, can assist in producing a wider variety of highly realistic artificial examples. By recognizing and addressing 

these possible downsides, this research offers a more even and sturdy method for managing unbalanced datasets. 

 

3.2.2 Principal component analysis 

After the balanced datasets, the features are extracted via PCA, and then, the features of fasting resting electrocardiography, 

maximum heart rate achieved, exercise-induced angina, old peak, slope, num, thal, and ca”. The selected characteristics, 

such as age, sex, type of chest pain, resting blood pressure, and cholesterol levels, are all important clinical markers of heart 

health. All of these characteristics are strongly associated with risk factors for heart disease, which is crucial for developing 

accurate prediction models. By addressing the importance of these characteristics, the authors can show that the selection 

was not random but rather influenced by their established link to heart disease results. This explanation enhances the section  
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by demonstrating that the selected features for PCA are not only important for reducing dimensions but also necessary for 

creating a model that accurately identifies the key predictors of heart disease. 

The goal of this is to create a new feature set with fewer dimensions than the original dataset. In doing so, a D-dimensional 

dataset would be changed into a new, lesser D-dimensional dataset. where𝑑 <= 𝐷. 
 
Consider𝐷 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑑𝑎𝑡𝑎𝑠𝑒𝑡   

 𝑦 =  (𝑦1 , 𝑦2 , 𝑦3 , … . , 𝑦𝑀)                                                                               (2) 

 

The following procedures are used to reduce the dimensions of the data via PCA: 

The first step computes the mean of Y via the following formula: 

 

(𝑦) =  
1

𝑀
 ∑ . (𝑦𝑗)𝑀

𝑗=1                                                                                    (3) 

 

This will support both the covariance calculation and data standardization. To permit an output free from bias, 

standardization scales the data such that the variables and values fall within a specified range. 

The second step computes the covariance matrix as 

𝐶𝑜𝑣(𝑦) =  
1

𝑀
 ∑ . (𝑦𝑗 − 𝑦𝑗′)𝑀

𝑦=1 (𝑦𝑗 −  𝑦𝑗′)𝑆                                                                 (4) 

 

To determine the dependencies and correlations between the features, the covariance matrix is used. The last phase is the 

spectral decomposition of the covariance matrix via eigenvectors 𝜉1, 𝜉2, … . . , 𝜉𝐸 and eigenvalues 𝜇1, 𝜇2, … , 𝜇𝐸. The 

eigenvalues are sorted as𝜇1 >=  𝜇2 > = ⋯ > =  𝜇2 

This gives: 

𝑍 =  (𝑧1, 𝑧2, 𝑧3, … . , 𝑧𝑞)                                                                                   (5) 

 

In this way, Z has the primary components and is the lower d-dimensional dataset. This is provided by the following 

formula: 

 

(𝑍 =  (𝜉𝑆1(𝑦𝑗 − 𝑦𝑗′), 𝜉𝑆2(𝑦𝑗 − 𝑦𝑗′), 𝜉𝑆3(𝑦𝑗 −  𝑦𝑗′), … . , 𝜉𝑆𝑒(𝑦𝑗 − 𝑦𝑗′))𝑆)                                   (6) 

 

Z, which contains primary components, is the new dimensional representation for the original dataset Y. 

Upon conducting PCA on the balanced dataset, which contains important attributes such as age, sex, and type of chest pain, 

the dimensionality decreases from D to a lower-dimensional form. This procedure includes finding the average for 

normalization, determining the covariance matrix to study feature relationships, and conducting spectral decomposition 

with eigenvectors and eigenvalues to detect the main components. Nevertheless, PCA has drawbacks such as being 

sensitive to outliers and assuming linear relationships between features, leading to potential impacts on its usefulness and 

the precision of the model produced. 

 

3.3 Classification 
GANs can be utilized to generate realistic and diverse samples of the data distribution, improving the model's ability to 

understand and classify different patterns in the dataset. “Adam is an optimization algorithm” that familiarizes the learning 

rates for each parameter through training. Adam optimization improves the effectiveness of the training process for these 

devices, enabling quicker convergence and improved handling of the complex relationships within the data. Combining 

generative adversarial networks with adaptive moment estimation optimization involves integrating the adversarial training 

of GANs with the adaptive learning rates provided by the Adam optimization algorithm. This synergy enhances the overall 

performance of these models for data classification. These methods produce diverse and realistic illustrations of different 

cardiac health types, and Adam optimization safeguards effective training, resulting in a more sophisticated and precise 

classification of data into high, normal, and medium classes. 

 

3.3.1 Generative adversarial networks 

GANs can be exploited to produce realistic and diverse samples for data delivery, improving the framework's ability to 

identify the variability of patterns in the dataset. Fig. 2 shows a block diagram of these devices. The figure of the generative 

adversarial network illustrates how the generator and discriminator components cooperate. The generator produces artificial 

data samples that emulate genuine data, whereas the discriminator compares these samples with correct data and 

discriminates among true and generated inputs. While in training, the generator struggles to improve its results to deceive 
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the discriminator, which in turn continues to enhance its ability to identify counterfeit samples. This oppositional technique 

leads to the generator making increasingly more true data as time progresses. The figure illustrates how the generator's 

results are input into the discriminator, which in turn gives input back to the generator, enabling an ongoing process of 

learning and enhancement. 

Exploiting these models in classification tasks can face several challenges, such as mode collapse, leading to a reduction 

in the variability of produced samples, and training instability, which may hinder effective learning. Moreover, GANs 

frequently request significant computational resources and current problems in the evaluation and optimization of 

hyperparameters, which could influence overall efficiency. 

The two networks that make up these devices are the generator and discriminator. Both networks work together and 

compete with each other at the same time. The discriminator network can recognize the phony data that look genuine after 

a sizable number of training cycles, and the "generator network" can create fake data that are real. Once false data are 

generated, training and prediction can be performed on real data. The generator network is divided into three levels: the 

first "hidden layer", which has "21 neurons and an Elu activation function" specified in equation (7), receives "input random 

noise". 

The second "hidden layer" is the next layer. It has "24 neurons and an Elu activation function". The last layer and the output 

layer are the generator network that calculates the fictitious samples. It has 25 neurons in the layer, and their function is 

sigmoid activation. Once the false samples are created, they are put into the “discriminator network”, which likewise has 

3 unique layers, and added to the genuine dataset. 

 

𝑧 =  {
𝑦                 𝑤ℎ𝑒𝑛     𝑦 ≥ 0   

𝛽(𝑒𝑦 − 1)    𝑤ℎ𝑒𝑛              𝑦 < 0                      
                                               (7) 

 

where 𝛽 is a variable that may be used to control the point of saturation of the negative Elu section. 

The “discriminator network”, which is also made up of 3 separate layers, receives both the real dataset and the bogus 

sample that was constructed from 16 neurons in the first buried layers and is triggered by an “Elu activation function”. The 

2nd “hidden layer”, which has eight neurons overall and is also triggered by an “Elu activation function”, comes next. One 

neuron with a “sigmoid activation function” that can discriminate between actual and bogus inputs makes up the final 

output layer. The discriminator's output is utilized to calculate the “loss function that these models” employ. As a result, 

the generator's parameters update more slowly, whereas the discriminator's parameters update more quickly. The generator 

may create a fresh realistic dataset, and the discriminator can no longer distinguish between real and fake data after the 

generator and discriminator have been trained for a particular number of periods. 

In the training procedure of generative adversarial networks, the generator and discriminator systems are adjusted to 

improve their effectiveness. Typically, the discriminator is updated more often than the generator is, sometimes multiple 

times per generator update. The purpose of this is that the discriminator obligation excels at discriminating between real 

and fake samples to efficiently lead the generator. The updates it receives are determined by a loss function that assesses 

its exactness in correctly classifying real and synthetic information. On the other hand, the generator is usually only updated 

once after several updates to the discriminator. The updates of the generator are focused on the feedback from the 

discriminator to make data that are problematic for the discriminator to distinguish from real data. This input is employed 

to change the generator's scenery to improve the authenticity of the produced samples. The gradients calculated from the 

loss functions of every system guide the updates, allowing the discriminator to increase its classification ability and the 

generator to improve the quality of its outputs. 

 

3.3.2 Adaptive moment estimation optimization 

“Adam is an optimization algorithm” that adapts the learning rates for each parameter through training. Adam optimization 

improves the effectiveness of the training process for the GAN-enabled model, enabling quicker convergence and improved 

handling of the complex relationships within the data. 

It is an optimization algorithm that uses adaptive estimates of lower-order moments and makes use of “stochastic gradient 

data (GD)” for the objective function. By combining the gains of “AdaGrad and RMSProp”, the Adam method calculates 

the learning rates from the approximations of the 1st and 2nd gradient moments. One obtains the initial momentum, or mean, 

as follows: 

𝑛𝑗 =  𝛽1𝑛𝑗−1 +  (1 − 𝛽1)
𝜕𝐶

𝜕𝑊
                                                                        (8) 

 

The second momentum is computed as follows: 

𝛾𝑗 = 𝛽2𝛾𝑗−1 + (1 −  𝛽2) (
𝜕𝐶

𝜕𝑊
)

2

                                                                    (9) 
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𝛽1, 𝛽2 represents the mean speed at which the momentum moves. 
𝜕𝐶

𝜕𝑊
 is the weight-dependent cost function with parameter w. 

𝑛𝑗  𝑎𝑛𝑑 𝛾𝑗   are biased near 0 when 𝛽1, 𝛽2 is nearly one. 

The Adam method takes advantage of the “corrected bias” estimate of the 1st and 2nd moments in the following ways to 

address these biases: 

�̂�𝑗 =  
𝑛𝑗

(1 − 𝛽1)⁄                                                                                (10) 

𝛾𝑗 =  
𝛾𝑗 

(1 − 𝛽2)⁄                                                                                (11) 

The Adam update rule makes use of these instances in the following ways: 

 

𝑊𝑗+1 =  𝑊𝑗 −  𝛼
�̂�𝑗

√�̂�𝑗+ 𝜀
                                                                           (12) 

 

where 𝜀 is utilized to prevent division into zero scenarios and where 𝛼 is the learning rate. 

 

 

 

                                                                          Fig 2. Block diagram of the GAN. 

 

4. DATA TRANSMISSION AND STORAGE IN EDGE CLOUD 

By utilizing a smooth integration of edge computing and cloud storage, the classified data are effectively sent to the edge-

cloud environment. This reduces storage issues and guarantees immediate access to vital information. By using an edge-

cloud architecture for storage, the strain on centralized cloud systems is lessened. This method combines the scalability of 

cloud storage with the real-time processing performance of edge devices to maximize storage for the constant influx of 

patient data. 

To lessen the strain on the cloud master’s station processing and storage, the cloud edge collaboration structure is suggested. 

Situated near a data source, the edge layer is a networked intelligent agent and offers local or nearby intelligent decision-

making and services. The goal of this study is to improve cloud collaboration by breaking down the edge computation layer 

into three sublayers: “edge computing software as a service (EC-SaaS)”, “edge computing platform as a service (EC-

PaaS)”, and “edge computing infrastructure as a service (EC-IaaS)”, as shown in Fig. 3. 

The fundamental open platform, or EC-IaaS layer, consists of AI, storage, exchange of information, and system service 

abilities in addition to the operating system, hardware, and container and communication openness. EC-PaaS realizes the 

administration and use of applications and offers a backplane for all kinds of operating software. Simultaneously, to fulfil 

the technical “plug-and-play” prerequisites in the healthcare system (HS) apparatus, the “plug-and-play service” is used as 

a “software layer” that serves as the foundation for further applications. The Data Centre, a crucial part of EC-PaaS, is 

intimately linked to the gathering, processing, transfer, and computation of data as well as other HS business operations. 

Applications are developed and deployed by the EC-Sass layer to integrate healthcare system (HIS) business requirements. 
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It is a particular application of HIS edge computing technology that provides “data proxy services” to facilitate seamless 

data interchange support operation and maintenance management through the Cloud-Edge-Client (CEC) framework. The 

“state perception and execution control unit” of the HS is referred to as the terminal layer. Sensing technology is used to 

track, gather, and interpret fundamental healthcare data, including wearable devices, gear status, and IHS equipment data. 

Strong and reliable organizational support for the administration and operation of the HS is provided by the cloud-

management-edge-terminal design, which also offers flexible flexibility to variations in “internal and external needs”. 

When used in conjunction with the CEC platform, real-time processing of HS transactions and resource scheduling enable 

the achievement of an active sense of a patient's physical state. Furthermore, the CEC platform expedites the realization of 

serviceable transformation and business change in an economical way and enhances the efficiency of construction and 

maintenance. 

The system consists of a host computer, an edge gateway, and a series of edge devices. The host computer is used to activate 

the edge and gateway devices so that they can process the input feature map. “Edge devices” and “Edge gateway” devices 

are linked to exchange information with one another. 

All the IoT gadgets in the network are denoted as E, and D signifies the exchange of information edges between the devices: 

EE represents the edge device, and GE represents the edge gateway. 

This is presented as 

The overall network is expressed as: 

𝑀 =  [𝐸, 𝐷]                                                                                 (13) 

 

This equation illustrates the holistic structure of the edge-cloud system. It shows the hierarchical layout, which consists of 

the host computer, edge gateway, and edge devices. The primary computer is in charge of organizing tasks, even as the 

threshold gateway handles neighborhood processing and device conversation. The edge devices perform real-time sensing 

and data gathering. 

A group of linked devices is verified as: 

𝐸 =  [𝐸𝐸𝑖 , 𝐺𝐸𝑖 , 𝐻𝑜𝑠𝑡]                                                                          (14) 

 

The network's communication edges are denoted by D, and the “number of IoT devices and edge computing devices” 

determines the value of |D|. E represents all IoT devices in the system. This equation highlights the scale of the device by 

depicting the general quantity of interconnected devices. Comprehending this organization is essential for comparing the 

network's ability and effectiveness. 

The maximum values of |D| are provided as follows in the equation if |E| = n. 

N is the number of devices 

|𝐷| = 0 <  |D|  <  
𝑛(𝑛−1)

2
                                                                       (15) 

 

The equation provides an understanding of how linked the network is and how much information is shared between devices. 

It aids in understanding the level of connectivity between devices and the possibility of communication delays. 

Let us denote the latency as 𝛿 , which includes the computational latency (𝛿𝑐𝑙) and network latency(𝛿𝑛𝑙) 

 

𝛿 =  𝛿𝑐𝑙 + 𝛿𝑛𝑙                                                                                (16) 

 

This equation separates latency into two parts: computational and network aspects. It aids in pinpointing the origins of time 

wasted in the system. Computational latency involves the duration for which devices handle data, whereas network latency 

refers to the pauses in data transmission. 

In this approach, the network latency (𝛿𝑛𝑙) is zero, as no data are sent to the cloud network. Therefore, the system latency 

 

𝛿 =  𝛿𝑐𝑙                                                                                     (17) 

 

The computation latency (𝛿𝑐𝑙) of IoT devices is mostly determined by how the input is processed, which in turn affects 

how busy each processor is. In this particular method, network latency is eliminated because no data are transmitted to the 

cloud network. Hence, the delay is solely related to computations. This streamlining highlights the effectiveness of the 

edge-cloud system, which reduces the communication lag. 
Estimated at time t, the computational latency is computed as follows, taking into account the job assignment indication(𝛽). 

𝛿𝑐𝑙 = 𝛽 (
𝑧𝑖

𝑦𝑖
)                                                                                   (18) 

where zi is the computational complexity of k and where 𝑦𝑖 is the computational capability of k. This formula calculates 

the processing delay by taking into account the work to be done and the capabilities of the processor. It shows how the time 
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taken to process varies on the basis of the workload and the power of the devices being used. This assists in assessing how 

well edge devices perform in different scenarios. 

Therefore, the estimate of inference latency 𝛿𝑖𝑙 for the IoT edge network may be found by: 

 

𝛿𝑖𝑙 =  𝛿𝑐𝑙                                                                                         (19) 

 

Computational latency impacts inference latency, which is affected by input processing and device workload. 

Understanding how fast the system can deliver real-time insights and responses relies on this equation. 

This can reveal how effectively the suggested framework functions with real-time intelligent devices. 

 

 
Fig. 3. Diagram of the hospital system edge layer. 

4.1 Encryption and Decryption of Data 
Homomorphic encryption with the Laplacian technique is used to strengthen data security during transmission. By 

protecting patient privacy and preventing illegal access, this cryptographic method guarantees the security of critical 

healthcare data. 

 

4.1.1 Homomorphic encryption 

A cryptographic technique known as homomorphic encryption enables cipher texts to be arithmetized by third parties 

without the need for decryption. It operates on clear text communications and yields the same outcome as encrypting. 

In formal terms, an encryption system is deemed homomorphic over an operation ∗ if it is capable of supporting the 

following attributes: 

 

𝐸(𝑛1)  ∗  𝐸(𝑛2)  = 𝐸 (𝑛1  ∗  𝑛2 )                                                                  (20) 

 

Where 𝑛1, 𝑛2 belongs to N, the set of all possible messages, and E is the encryption technique. 
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The four algorithms that make up an HE scheme are KeyGen, Enc, Dec, and Eval. For the asymmetric configuration, 

“KeyGen” makes a pair (public key, private key), whereas for the symmetric version, it generates a secret key. The 

decryption algorithm is called Dec, whereas the encryption method is called Enc. Conventional cryptosystems use the three 

algorithms KeyGen, Enc, and Dec; however, for homomorphic encryption schemes, an extra method known as the Eval 

algorithm is needed. The algorithm is defined as follows: 

 

𝐸𝑣𝑎𝑙 ( 𝑓, 𝐺1, 𝐺2) = 𝑓(𝑛1 , 𝑛2 )                                                                        (21) 

 

Where f is a function that may be added or multiplied and where Dec (𝐺1) = m1 and Dec (𝐺1) =𝑛2. 

He may be divided into three categories: partially homomorphic encryption (PHE), somewhat homomorphic encryption 

(SWHE), and fully homomorphic encryption (FHE). These categories are based on the quantity (limited or limitless) and 

the kind of operation “(addition or multiplication)”. PHE permits only one type of operation to be carried out indefinitely. 

Refer to encryption as additive homomorphic encryption (AHE) when the operation involves addition, as in the “Paillier 

scheme”. A scheme is multiplicative when it involves multiplication, as in the case of the RSA scheme. The SWHE permits 

both kinds of operations, but only a certain number of them. However, FHE permits an infinite number of both kinds of 

operations. The overall system performance can be greatly affected by the computational expenses of homomorphic 

encryption (HE). Generating keys, encrypting, and decrypting in HE can be more resource intensive than traditional 

cryptography because of the intricate number-theoretic algorithms and the necessity of upholding homomorphic properties. 

The Eval algorithm is very intense, especially in fully homomorphic encryption systems that allow both addition and 

multiplication, as it computes encrypted data. The added computational load may result in extended processing durations, 

increased resource usage, and decreased throughput, impacting system responsiveness and scalability. To reduce these 

effects, optimized schemes using homomorphic encryption, hardware acceleration, a combination of different methods, 

and effective algorithms can be used to maintain a balance between security and performance, ensuring that the system 

meets its operational needs. 

 

4.1.2 Laplace mechanism 

To ensure (𝜗, 𝛾)-DP, the Laplacian mechanism that adds noise samples from 𝐿 (0, 𝛼) must meet the required and sufficient 

conditions[1 − 𝑒𝑥𝑝 (
1

2
  (𝜗 − 

∆1
𝛼⁄ ))]

+

≤  𝛾. As seen in the following Lemma, the Laplace mechanism, in contrast to the 

Gaussian mechanism, is also capable of guaranteeing pure DP because of the exponential tails of the noise distribution. 

Lemma: The Laplace technique ensures that 𝛾 is differentially private for  𝛾 ≥  
∆1

𝛼⁄ , where ∆1 is the query's 𝑙1 sensitivity, 

by adding K-independent noise samples from 𝐿 (0, 𝛼) to each coordinate of the query answer. 

Hence, the lowest amount of noise required for 𝛾-DP is represented by the Laplace noise of scale 
∆1

 𝛾⁄ . Notably, the 

conventional Laplace processes introduce noise by relying on only one sensitivity measure, failing to consider the 

possibility of varying sensitivity for each query answer coordinate. 

 

4.2 Routing  

After encryption and decryption in IoT-enabled healthcare monitoring, the “Low Energy Adaptive Clustering Hierarchy 

(LEACH) protocol” is used for effective data routing. Although emphasis is placed on cluster heads and the importance of 

energy levels, a more organized explanation of the implementation of the LEACH protocol would enhance understanding. 

The procedure starts by randomly choosing a cluster head (CH) depending on the node energy levels and Euclidean 

distance. The energy needed for the CH function is calculated to ensure that the node can manage the workload. The nodes 

closest to the CH are organized on the basis of their Euclidean distance, and their energy levels are monitored continuously. 

If the CH runs out, a fresh CH is chosen, and the cycle continues, improving energy efficiency and guaranteeing effective 

data transmission in the IoT-supported healthcare monitoring system. By optimizing energy consumption and 

communication efficiency, this protocol increases the network's data transmission reliability. Fig. 4 represents the clustering 

process. 
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Fig.  4. Clustering process. 

• LEACH protocol 

The weights given to the nodes determine who is the cluster leader. The weight of each node is determined by the specific 

energy level of the sensor node. Thus, in addition to the Euclidean distance, the cluster head must also meet the energy 

weightage requirement. Only when the cluster head's weight exceeds the predetermined threshold is it chosen. The primary 

goal of adjusting the node's weight is to enable it to oversee the cluster head's workload. It is necessary to compute the 

energy needed to convey the combined data. 

The energy that the cluster head needs is 

 

𝐹𝐶𝐻 = 𝑚 (𝐾 ∗  (𝐹𝑒𝑙𝑒𝑐 + 𝐹𝑔𝑡 ∗  𝑐2))    𝑓𝑜𝑟 𝑐 < 0, 

𝐹𝐶𝐻 = 𝑚 (𝐾 ∗ (𝐹𝑒𝑙𝑒𝑐 +  𝐹𝑎𝑚𝑝 ∗  𝑐4))    𝑓𝑜𝑟 𝑐 ≥ 0   .                                                  (22) 

 

In this case, 𝐹𝐶𝐻 represents the energy used by the cluster head n denotes the number of nodes allocated to the cluster, 𝑘 

represents the message bits, 𝐹𝑒𝑙𝑒𝑐 signifies the energy needed to send and receive the data bit, 𝐹𝑔𝑡  and 𝐹𝑎𝑚𝑝 denote the 

parameters for computing the L-bit message when transmitting over free space multipath propagation, and 𝑐  indicates the 

transmitting distance towards the sink node. 

Using the k-means method, the cluster head selection may be represented by the following equation: 

 

𝐺 =  ∑ ∑ (𝑧𝑖 −  ℎ𝑑)𝑧∈𝑓𝑑

2𝑛
𝑑                                                                        (23) 

 

Z is a cluster mote, h is the head to be chosen, d is the “number of clusters”, and G is the function of the k-means algorithm. 

The Euclidean distance can be given by 

 

𝑐{𝑧𝑖 −  ℎ𝑑} =  (𝑧𝑖 −  ℎ𝑑)2                                                                       (24) 

 

where 𝑐  is the Euclidean distance of the nodes in the cluster. 

Let 𝑦 =  {𝑦1, 𝑦2, … . , 𝑦𝑛} be the quantity of sensors placed across the network. 
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       LEACH protocol algorithm 

1. Determine how much energy the node needs to function as the CH. 

2. First, choose the CH at random from the available nodes. 

3. The following action repeatedly determines the Euclidean distance between the nodes. 

4. Now, equation (24) is used to choose the nodes that have the same Euclidean distance. 

5. Check the node's energy level after that; it should be able to perform the CH task. 

6. Choose it to be the cluster head if its energy can function as one; in this case,  ≥ 𝐹𝐶𝐻. 

7. Reject it if not. 

8. Now, add the nodes for that specific set of rounds to that specific CH. 

9. Several rounds are completed or the procedure is terminated if the CH is lethal. 

10. Send a request message once again to modify the nodes' energy level and Euclidean distance. 

11. Continue from 3 until every node is deceased. 

The outcome of the entire procedure is an extensive Internet of Things healthcare monitoring system. To offer effective 

and timely patient care, the combined technology allows on-demand access to stored data, real-time classification 

variations, and rapid responses to healthcare notices. The choice technique in the LEACH protocol is intricately planned 

to increase energy allocation and prolong the network's lifetime. The primary step's random selection of CHs is vital, as it 

prevents specific nodes from continually carrying the energy load, thus safeguarding a balanced distribution of energy 

consumption throughout the system. Chance variability supports the prevention of premature energy exhaustion in various 

nodes and ultimately increases the total lifetime of the system. Subsequent operations, such as finding the energy needed 

to utilize a CH function and calculating the Euclidean distance, ensure that a given CH can carry out its burden without 

failure and sustain reliable communication with nodes in a cluster. The protocol adapts to changing variations by 

permanently monitoring energy levels and distances, ensuring a robust and efficient system. This organized approach of 

choosing and reallocating CHs supports decreased energy loss, avoids system congestion, and ensures the uninterrupted, 

dependable functioning of these devices’ healthcare monitoring systems. 

 

5. RESULTS AND DISCUSSION 

The recommended learning approach's performance evaluation experimentation analysis is accessible in this part. There 

are 2 subsections in this section: a simulation study and a comparative analysis. 

5.1 Simulation Setup 

To simulate the proposed research method, python-3.9.6 is utilized. This tool is efficient and provides all specifications for 

the proposed technique. Table 2 presents the system specifications. 

TABLE II.  SYSTEM SPECIFICATION.  

Software specification OS Windows 10-(64 bit) 

Tool Python – 3.9.6 

Hardware specification RAM 4 GB 

Hard Disk 500  

 

5.2 Comparative Analysis 

This section compares the proposed method to several current methods, such as the Backtracking Search-Based Deep 

Neural Network (BS-DNN) [26], the Substitution-Ceaser cipher and improved Elliptical Curve Cryptography (SCC-IECC) 

[27], the use of a blockchain as a trusted, secure, and transparent Distributed Ledger Technology (BC-STDLT) [28], and 

the "Modified-RPL (Routing Protocol for Low Power and Lossy Networks) method [29], to assess its effectiveness via 

performance metrics such as the number of epochs vs. accuracy (%), the number of epochs vs. precision (%), the number 

of Users vs. authentication time(s), the number of users vs. throughput (%), and the number of users vs. packet delivery 

ratios (%). 

A. Evaluating the Impact of Preprocessing Techniques and Training-Testing Splits on Classification 

Performance. 

This case study examines in depth a classification model that uses both a discriminator and generator to investigate the 

impact of preprocessing methods and various training‒testing splits on model effectiveness. The objective is to decide 

which data partition—70--30 or 80--20—produces superior outcomes in terms of model correctness and consistency. 
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B. Data Preprocessing and Model Setup. 

Before investigating the model performance, the dataset is subjected to conventional preprocessing steps, which involve 

characteristic scaling via the use of `StandardScaler` to standardize the information. The data then fall under two major 

heads as input characteristics and result categories. This ensures that the data reach the model uniformly, which is one of 

the basic necessities in obtaining reliable results. 

1) 70–30 Training–Testing Split 

The data of the case study are divided into 70% for training and 30% for testing. This was done because the model had to 

train for 200 epochs, where the loss capabilities of the discriminators as well as generators were tracked. The effects of the 

division act as a starting line for evaluating the model's ability to generalize new information on the basis of a small amount 

of training data. 

Loss of Discriminator: The discriminator's ability to distinguish between real data and generated data. 

Loss of the generator: The potential of the generator to create data that are labelled actual with the aid of the discriminator. 

Test loss assesses how well the discriminator performs on the test dataset, representing the model's ability to generalize. 

The findings from this separation are crucial for determining the model's performance, with the maximum amount of data 

used for training and substantial help in testing. 

2) 80–20 Training–Testing Split 

In the second case, 80--20 split was used, with 80% of the data used for training and the remaining 20% for testing. This 

division yields additional training data, which could result in a stronger model, but it additionally reduces the scale of the 

test set, potentially impacting the accuracy of the generalization measurements. 

Loss of the discriminator: With expanded data in training, an improvement in the study of the discriminator that can cause 

a lower loss is expected. 

Generator Loss: Maximizing training data could improve the generator's performance, resulting in the generation of more 

authentic samples. 

Test Loss: Evaluating the test loss in this situation involves evaluating whether the model's ability to generalize is improved 

or compromised with a smaller test set. 

 

C. Comparison and Best Practices 

Following the experiments using both 70–30 and 80–20 splits, the results are assessed to identify the optimal method for 

confirming the experimental findings. The factors that were taken into consideration were model generalization, i.e., the 

model's performance on the data it has not been trained on. Consistency: The stability of the loss metrics over different 

epochs. 

Efficiency is the equilibrium between the size of training data and the reliability of testing. 

70--30 Division: Commonly more effective when aiming to avoid model overfitting and ensuring enough testing data for 

generalization assessment. 80-20 Split: Beneficial for enhancing model performance, especially with limited data, by 

maximizing the training data. 

The decision on whether to use a 70–30 or 80–20 split is based on the particular needs of the study. If reliability testing is 

prioritized, a split of 70--30 could be more suitable. Nonetheless, in cases where there is a lack of data in the dataset and 

the model requires additional training data, an 80--20 split may prove to be advantageous. 

 

5.2.1 Number of epochs vs. accuracy (%) 

The accuracy of a model often improves as the number of epochs increases. This is because more epochs enable the model 

to match the data more effectively by repeatedly fine-tuning its parameters. Equation (25) is used to determine the ratio of 

accurate forecasts (positive and negative) among all forecasts made. In cloud-IoT healthcare monitoring, having more 

epochs generally results in a better model, enhancing its ability to classify data accurately and consequently increasing the 

accuracy. This may be stated mathematically as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                              (25) 

 

Positive instances that are correctly identified (e.g., cases of a health condition) are referred to as true positives (TPs). 

TN refers to the accurate identification of negative instances, such as cases where the health condition is not present. 
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False positives (FPs): the quantity of inaccurate positive forecasts (such as cases where the model mistakenly labels a health 

issue). 

Incorrectly predicting a health condition as not existing is known as a false negative (FN). 

Increased epochs facilitate the optimization process, potentially leading to higher accuracy in healthcare monitoring tasks 

within Cloud-IoT environments. 

 

TABLE  III. NUMERICAL OUTCOMES OF ACCURACY (%)  

(x-axis) – Number of epochs Accuracy (%)- (y-axis) 

BS-

DNN 

Bi-LSTM-FIS Proposed 

1 70 71 73 

20 72 74 75 

40 74 75 77 

60 75 77 79 

80 75 76 77 

100 75 77 79 

120 74 76 80 

140 76 80 82 

160 79 81 83 

180 83 85 87 

200 85 87 90 

 

 
 

Fig.  5. Number of epochs vs. accuracy (%). 
 

The comparison of the suggested model with the BS-DNN and Bi-LSTM-FIS models, as shown in Table 3 and Fig. 5, 

demonstrates the continuously superior performance of the suggested model throughout all training epochs. The suggested 

model, which begins with a slightly higher initial accuracy of 73% in epoch 1 than 70% for BS-DNN and 71% for Bi-

LSTM-FIS, continues to outperform the other models during training. At the 20th epoch, the suggested model reached 75% 

accuracy, whereas BS-DNN and Bi-LSTM-FIS had lower accuracies of 72% and 74%, respectively. This initial benefit 

indicates that the proposed model is better at capturing key data trends from the beginning. Through training, the proposed 

model reliably outperforms the other models, attaining 79% accuracy at epoch 100, compared with 76% accuracy for BS-

DNN and 78% accuracy for Bi-LSTM-FIS. The learning capability and adaptability of the proposed model are emphasized 

by its consistent improvement in terms of accuracy, with the ability to outperform the other models. At epoch 200, the 

proposed model reaches its peak accuracy of 90%, which is especially superior to the best accuracies of 85% for BS-DNN 

and 87% for Bi-LSTM-FIS. The proposed model constantly outperforms in all epochs, thereby showing a good learning 

process, robust design, and improved generalization capabilities, which makes it a reliable and effective choice for real-

world applications where precision and model performance are at risk. 
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5.2.2 Number of epochs vs. precision (%) 

Precision is the measure of accuracy in positive predictions. The model's ability to correctly distinguish true positives from 

false positives highlights its effectiveness. As the number of epochs increases, the model's accuracy improves, showing 

that there is an enhanced reorganization of genuine health conditions and decreased false alerts. This is especially crucial 

in healthcare monitoring, as precise accuracy assures that the model can accurately detect significant health concerns 

without needless notification. The precision in mathematics is defined as equation (26): 

 

Precision =  
TP

TP+FP
                                                                                (26) 

 

The model's ability to identify genuine positive instances improves with more iterations across epochs, leading to increased 

accuracy in healthcare monitoring activities in Cloud-IoT contexts. 

 
TABLE  IV.   NUMERICAL OUTCOMES OF PRECISION (%).  

(x-axis) – Number of epochs Precision (%)- (y-axis) 

BS-

DNN 

Bi-LSTM-FIS Proposed 

1 75 74 76 

20 76 77 79 

40 77 79 81 

60 79 82 83 

80 80 81 83.7 

100 79 82 85 

120 82 84 86 

140 83 85 87 

160 82 85 89 

180 88 89 91 

200 86 90 94 

 

 
 

Fig.  6. Number of epochs vs. precision (%) 
 

The evaluation of accuracy, shown in Fig. 6 and Table 4, highlights the continual dominance of the suggested model over 

BS-DNN and Bi-LSTM-FIS during training. Commencing from epoch 1, the suggested model displays a superior initial 

accuracy of 76%, as opposed to 75% of BS-DNN and 74% of Bi-LSTM-FIS, showing a more robust foundational 

efficiency. The early lead increases further as the model is trained, maintaining steady performance from epochs 1 to 20. 

At the 20th epoch, the proposed model attains a precision rate of 79%, surpassing BS-DNN's 76% and Bi-LSTM-FIS's 

77%. During the training process, every model exhibits enhanced accuracy, but the suggested model stands out with a 

notable increase, achieving a precision of 94% by epoch 200, in contrast to 86% for BS-DNN and 90% for Bi-LSTM-FIS. 

The notable and consistent difference in accuracy between the suggested model and the current models during the training 

process demonstrates both the efficacy of the suggested method and its ability to improve practical accuracy in real-life 

scenarios. This learning in performance raises how the proposed model can make use of training to achieve good results, 

therefore making it a more enticing option for tasks with needful accuracy. 
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This exploration can steer future work in developing monitoring tools that are more trustworthy and efficient by illustrating 

that models that provide better accuracy actually will be able to identify the right real health issues and reduce false alarms. 

In actual implementation, the results may lead to enhanced patient outcomes through providing more exact and timely 

treatments and, in future investigations, may motivate further investigation into balancing computational efficiency with 

model effectiveness in time-constrained health conditions. 
 

5.2.3 Number of Users vs. authentication time(s) 

Because it takes more computing power to authorize identifications for every user, the authentication time (s) frequently 

increases as the number of users increases. This connection may be categorized as follows: 
 

𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 =  𝐵𝑎𝑠𝑒 𝑡𝑖𝑚𝑒  +  𝑢𝑠𝑒𝑟 𝑐𝑜𝑢𝑛𝑡 ×  𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 𝑝𝑒𝑟 𝑢𝑠𝑒𝑟                                   (27) 

 

 
Fig.  7. Number of users vs. authentication time(s). 

 

 

where: 

The essential processing time for verification is represented by base time. 

The measure of users trying to validate is known as the "user count." 

The additional time needed for every user above and above the basic time is called "overhead per user." 

In Cloud-IoT organizations, the verification time tends to increase linearly with the number of users, affecting organization 

responsiveness. 

Figure 7 shows how the verification time decreases with increasing number of users, revealing a noticeable pattern. This 

unexpected result indicates that the recommended method enhances verification procedures more efficiently than do the 

present approaches, such as Bi-LSTM-FIS and SCC-IECC. As the number of users increases, the recommended technique 

effectively reduces the authentication time, possibly because of improved algorithms or optimized processing approaches 

that simplify user verification. On the other hand, the present techniques lack the same efficiency, resulting in longer 

authentication times with more users. The proposed method's performance edge shows its improved scalability and 

efficacy, making it a more practical option for scenarios with growing user populations. 

 

5.2.4 Number of users vs. throughput (%) 

There is frequently a nonlinear connection between the throughput (%) and the number of users. As additional users sign 

up, throughput first increases, taking advantage of parallelism and spreading the problem. However, owing to resource 

saturation and the struggle for organizational resources, throughput may eventually stagnate or even decrease. This 

partnership may be summarized as follows: 

 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =  
𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 

𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 
 × 100%                                                        (28) 

 

Higher throughput is initially correlated with more users; however, in Cloud-IoT contexts, throughput% may be impacted 

if a system struggles to maintain the same level of efficiency beyond a particular threshold. 
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TABLE  V. NUMERICAL OYTCOMES OF THROUGHPUT (%)  

(x-axis) – Number of users Throughput (%)- (y-axis) 

BC-

STDLT 

Bi-LSTM-FIS Proposed 

1 70 72 73 

50 73 75 79 

100 78 80 82 

150 81 83 85 

200 83 85 87 

250 84 86 88 

300 82 85 90 

 

 
 

Fig.  8. Number of users vs. throughput (%). 

 

Fig. 8 and Table 5 present a thorough analysis of throughput performance for BC-STDLT, Bi-LSTM-FIS, and the suggested 

model at different numbers of users. As more users join, the performance of all the models fluctuates significantly, with 

the suggested model consistently surpassing the other models. Beginning with one user, the suggested model reaches a 

throughput of 73%, exceeding BC-STDLT at 70% and Bi-LSTM-FIS at 72%. This early benefit becomes increasingly 

evident with a greater number of users. For example, when there are 50 users, the suggested model achieves a throughput 

of 79%, which is notably greater than BC-STDLT's 73% and Bi-LSTM-FIS's 75%. This pattern perserves as more user 

connections, demonstrating the greater scalability of the suggested model. When the user count reaches 300, the 

recommended model achieves a peak throughput of 90%, superior BC-STDLT at 82%, and Bi-LSTM-FIS at 85%. The 

continuous enhancement in processing volume highlights the efficacy of the recommended model in managing higher user 

volumes, positioning it as a more flexible and productive option for high-traffic settings. The model's ability to maintain 

high performance as the user base increases is clearly shown through both numerical data and graphical illustration, further 

endorsing its appropriateness for applications that require strong throughput at dissimilar user levels. 

 
 

5.2.5 Number of users vs. packet delivery ratio (%) 

The packet delivery ratio (%) frequently decreases as the user base increases. This is because when the user base increases, 

there is a greater chance of system congestion, collisions, and interference, all of which might cause packet loss. Similarly, 

the relationship may be summarized as follows: 

𝑃𝑎𝑐𝑘𝑒𝑡 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑖𝑜 =  
𝑆𝑢𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑠𝑒𝑛𝑡 𝑝𝑎𝑐𝑒𝑡𝑠
 × 100%                                             (29) 

 

As the number of users grows in the Cloud-IoT, the packet delivery ratio (%) fails because of the higher probability of 

packet loss due to network traffic or collisions. 
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TABLE  VI. NUMERICAL OUTCOMES OF THE PACKET DELIVERY RATIO (%)  

(x-axis) – Number of users Packet Delivery ratio (%)- (y-axis) 

Modified-

RPL 

Bi-LSTM-FIS Proposed 

1 78 81 85 

50 82 85 87 

100 85 86 89 

150 86 87 90 

200 88 90 92 

250 89 91 93 

300 91 92 94 

 

 
Fig.  9.  Number of users vs. Packet delivery ratio (%) 

 

Fig. 9 and Table 6 display an evaluation of the packet delivery ratio (PDR) between several user counts for Modified-RPL, 

Bi-LSTM-FIS, and the recommended model. The data show that as more users are added, the PDR expands for all the 

models, but the recommended model consistently performs better than the other models do. Beginning with a single user, 

the proposed model achieves 85% PDR, exceeding both Modified-RPL at 78% and Bi-LSTM-FIS at 81%. This initial 

benefit perserves as the number of users increases. When the number of users reaches 50, the proposed model reaches 87% 

packet delivery, in contrast to 82% for Modified-RPL and 85% for Bi-LSTM-FIS. This pattern persists as more users 

connect, highlighting the greater scalability and efficiency of the proposed model. Significantly, the suggested model attains 

an inspiring 94% PDR with 300 users, which is notably higher than those of Modified-RPL's 91% and Bi-LSTM-FIS's 

92%. The proposed model has a consistently higher PDR with disparate user counts, which means that the model can handle 

increasingly demanding systems well, thus being a more dependable and scalable option to use in atmospheres where 

maintaining a high packet delivery ratio is vital. This demonstration shows that the model is more capable of managing 

higher user loads and safeguards effective and precise data transmission, thus confirming the appropriateness of the model 

for applications with high demand. 

 

5.2.6 Confusion matrix 

The performance of the classification model was tested via a confusion matrix that provided an extensive overview of the 

outcomes of each of the training and testing set classifications. The confusion matrix gives us the opportunity to look at the 

TP, TN, FP, and FN, thus providing even more exhaustive information about the strengths and weaknesses of our classifier, 

more than what a basic precision metric may show. 

A confusion matrix is particularly useful when dealing with imbalanced classes or unequal fault costs. The investigation of 

the confusion matrix can hence cause adjustments to the model. The critical errors, for example, lowering false positives 

within a fraud detection mechanism, can be reduced. 

For both the 70–30 and 80–20 train‒test splits, in this exploration, the confusion matrix was considered. These divisions 

involve various ratios of the dataset allocated for training and testing, enabling us to assess the model's resilience in different 

scenarios. 
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Fig.  10. Confusion matrix 70--30 

 

Fig. 10 shows that the model accurately recognized [47.25%] positive samples and [52.75%] negative samples, 

demonstrating its efficacy with this particular division of data. Nevertheless, the rate of false positives indicates that certain 

negative cases were mistakenly identified as positive, which could have significant implications depending on the specific 

use case. 

 
Fig.  11. Confusion matrix 80-20 

 

Fig. 11 represents the 80--20 division; the model showed a slightly varied performance, with a true positive rate of [49.18%] 

and a false positive rate of [50.82%]. This change highlights how crucial it is to choose the right split between training and 

test data, as the model's accuracy may vary depending on the proportions used for training. Table 7 presents a comparison 

with other machine learning algorithms. 
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TABLE  VII. COMPARISON OF THE PROPOSED METHOD WITH OTHER MACHINE LEARNING METHODS  

 Method Accuracy (%) 

1.  Fuzzy temporal neural classifier [31] 88 

2.  CNN [1] 77 

3.  Decision Tree [32] 85 

4.  Particle swarm intelligence [33] 80.85 

5.  Proposed 90 

 

The proposed research therefore brings many new ideas to the fore, making it unique compared with the prevailing methods 

in healthcare monitoring systems combined with the Cloud-IoT. The use of homomorphic encryption and the Laplacian 

approach is an important innovation that enhances data privacy and safety by providing strong safety for sensitive health 

information in transmission. The incorporation of SMOTE and PCA balances the class distribution, thereby improving 

feature selection for good accuracy and dependability of machine learning models. Significant achievements include 

incorporating edge-cloud design into data transmission and storage, increasing storage efficiency, and enabling instant 

access to critical data. The proposed model includes a GAN with Adam optimization to improve classification accuracy. 

These improvements enhance the efficacy and extensibility of monitoring organizations within healthcare systems while 

having impactful practical outcomes and more accurate and timely diagnostics and treatments that will lead to better patient 

care. The results of this learning can lead to advances in safe, effective, and scalable healthcare monitoring options. 

 

6. CONCLUSION 

First, to begin the data collection process, the relevant heart disease dataset is gathered and loaded. The SMOTE is then 

used to preprocess the loaded data, and the PCA Method” is used to extract features. In this case, to extract the feature, a 

specific column must be fed. A target was included as an illustration. Next, the adaptive moment estimation optimization 

approach in conjunction with GANs is used to carry out the classification procedure. In this case, the model is trained to 

perform GAN operations, and the model generates the intended result. This is where the transaction loss between the 

discriminator and generator is shown. The data are then sent to an edge-cloud environment, which minimizes storage 

problems and ensures quick access to critical data. The first step in this procedure is the encryption and decryption of data 

via the Laplacian method of homomorphic encryption. The Laplacian method of homomorphic encryption was used to 

encrypt the initial values generated by the GAN network. The Leach protocol is then used in the routing process to 

maximize communication efficiency and energy usage. In this case, the data are routed via the leach protocol to separate 

the data into clusters and calculate energy usage. The data are then kept on a server with edge-cloud architecture. Finally, 

the proposed methods perform better than the existing methods do by comparing the results of the proposed method to 

several current methods, such as the BS-DNN [26], SCC-IECC [27], the BC-STDLT [28], and "modified-RPL (routing 

protocol for low-power and lossy networks) [29], which yield better ratios, as shown in Tables 3 to 6 and Figs. 4 to 7. 

In the future, improving the encryption and security framework by combining quantum-resistant cryptographic methods 

would be beneficial. Advancements in quantum computing may expose current encryption techniques, such as 

homomorphic encryption, to quantum attacks. By integrating quantum-resistant algorithms, healthcare monitoring systems 

in Cloud-IoT environments could be greatly enhanced in terms of security and durability, guaranteeing the safety of patient 

data against new quantum threats. This enhancement increases the system's ability to withstand and stay ahead of changing 

cybersecurity threats. 
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