

*Corresponding author. Email: yahya@tu.edu.iq

Research Article

Enhanced Android Malware Detection through Artificial Neural Networks Technique

Mustafa Abdulfattah Habeeb 1, , Yahya Layth Khaleel 1, *,

1 College of Computer Science and Mathematics, Tikrit University, Iraq.

A R T I C L E I N F O

Article History

Received 17 Oct 2024

Accepted 10 Jan 2025

Published 03 Feb 2025

Keywords

Malicious

Threats

Cybersecurity

Smartphones

Artificial intelligence

Machine learning

ANN

A B S T R A C T

Android devices are rapidly being used, which makes it easy for the malware threat to rise to higher

levels. This ever-growing problem has prompted the need to enhance detection systems as far as these

devices are concerned. Standard techniques of machine learning (ML) are sufficient from the point of

view of their speed for searching patterns and behaviors of contemporary malware; however, it is more

important to have effectively enhanced methods. The purpose of this paper is to expand the utilization of

Android malware identification via artificial neural networks (ANNs) and compare its efficiency with

that of other ML methods. An ANN is used in this study, and the results are compared against those of

several other types of ML, including logistic regression (LR), k-nearest neighbors (KNN), extremely

randomized trees (extra trees), gradient boosting (GBM), adaptive boosting (AdaBoost), and categorical

boosting (CatBoost). The six evaluation values include training accuracy, testing accuracy, average

accuracy, precision, recall and the F1 score. The ANN model performed well, with training and testing

accuracies of 0. 99 and an average accuracy of 0. 99, precision of 0. 99, recall of 0. 98, whereas the F1

score, which is an average of both precision and recall, was 0. 99. Related studies based on conventional

ML methods are also highly efficient, with some accuracy and an F1 score of 0. 95 and 0. 96. On the

other hand, the ANN model ranked the best in the assessed measures. Thus, this study focuses on the

reliability of ANNs for improving mobile security systems against next-generation malware and their

applicability to secured Android smartphones. The reason behind the high accuracy of the ANN model

is the enhanced learning ability of the ANN, which helps it learn the characteristics and dynamics of

malware better than traditional ML models do.

1. INTRODUCTION

Malware is a general term that is used to refer to a vast category of malicious programs a programmer can create with the

aim of damaging or compromising computers or networks [1]. These include viruses [2], worms [3], Trojan horses [4],

ransomware [5], spyware [6], and adware [7]. The various types of malware all have a particular intent of several forms of

dishonesty: identity theft [8], fiscal fraud [9], denial of services [10], or espionage [11]. The advancement and usage of

malware attacks have increased in recent years, and as a result, an individual, business, and even a government organization

does not remain untouched by it [12]. The goals of malware generation are multiple. Hackers operate toward acquiring

financial benefits by stealing important information, embezzlement and ransomware [13]. Some are interested in altering

the user’s experience [14], threatening their security, gaining information about them or even promoting political views

[2]. New connections and the general expansion of the digital economy increased new entry points for threat actors [15].

The Android operating system, the most commonly used mobile device across the globe, has now become a favorite among

malware developers. The Android, which is an open development platform that is very popular in the market, is a primary

target for hackers [16][35]. The android malware can be transmitted through applications, online sites, documents,

downloadable applications in the mail and via short message services (SMSs) [17]. The previous methods of approach in

malware detection for only Android include the following: signature detection, heuristic detection and behavioral detection.

Signature-based detection uses a search for well-known patterns of the malware code [2].

While being very efficient at combating well-known malware, it is not good at dealing with newer, unknown strains of

viruses. Heuristic analysis involves the processes of searching for behaviors or characteristics that may be associated with

malicious software, but it is normally riddled with inaccuracies. The behavior-based detection approach observes the

actions performed by applications to detect malicious action; this type of detection can be quite resource-consuming and,

Mesopotamian journal of Cybersecurity

Vol.5,No.1, pp. 62–77

DOI: https://doi.org/10.58496/MJCS/2025/005; ISSN: 2958-6542

https://mesopotamian.press/journals/index.php/cybersecurity

https://mesopotamian.press
https://orcid.org/0009-0007-6946-6756
https://orcid.org/0000-0003-4331-677X
https://creativecommons.org/licenses/by/4.0/
https://mesopotamian.press/journals/index.php/cybersecurity
https://doi.org/10.58496/MJCS/2025/005
https://mesopotamian.press/journals/index.php/cybersecurity

63 Habeeb et al, Mesopotamian Journal of Cybersecurity Vol 5, No.1 , 2025, 62–77

as a result, might slow down the device [18][50]. Sophistication in malware continues to increase, which makes it difficult

for it to be detected by normal security measures. Polymorphic and metamorphic malware can change their code to avoid

being distinguished by signature detection, whereas smart malware can imitate the behaviors of legitimate apps to escape

heuristic and behavior-based detection [2]. This shows an increased level of complexity as a result of which appropriate

and flexible mechanisms to detect threats have also evolved more. Techniques in artificial intelligence (AI), machine

learning (ML), and deep learning (DL) have become major assets in the confrontation with malicious applications [19]–

[21]. AI-enabled malware detection involves applying a high level of sophistication where the AI software works through

a large number of data inputs to discern a given behavior pattern and what is malicious or not. This is because, unlike

criminal techniques used in the past, which can easily be detected by common antimalware software, AI can learn from

new data, which is an advantage given the ever-evolving malware.

The increases in the number, variety, and complexity of various types of malwares require the application of new and better

models of detection to guarantee adequate security for smartphones using the Android operating system. Many approaches,

such as signature, heuristic and behavior-based approaches, have been deemed incapable of capturing the sophistication,

flexibility and advancement of present-day malware. These methods fail, as they are confronted with polymorphic and

metamorphic malware that changes their code or disguises themselves as other programs in an attempt to avoid detection.

Hence, in the face of these heuristics, AI, ML, and DL are vital assets in combating malicious software. ML helps analyze

and compare massive amounts of data and determine signs of a threat, which increases the efficiency of malware detection.

The following work aims to investigate the use of improving the identification and filtering of android malware and its

efficiency against commonly used ML techniques. The findings of our study show that ANNs are superior to other

classifiers in the context of malware detection, which indicates that they can help enhance the frameworks of mobile

security. Therefore, with the use of the currently available enhanced capabilities of ANNs, this work contributes to ongoing

research on more precise and accurate techniques for detecting malware on the Android operating system.

1.1. Problem Statement

The identification of viruses in systems utilizing the Android OS is an important issue because of the prevalence of the

smartphone and the advancement of malware. Signature-based and heuristic detection are some of the most commonly

used methods that are not effective in detecting new evolving threats that include polymorphic and metamorphic malware.

Due to these limitations, there is a need to work out other efficient methods that will help in identifying these threats and

stop them. This paper seeks to fill this gap by analyzing the application of Artificial Neural Networks (ANNs) in the

identification of Android malware with an ambition of increasing accuracy and reliability of the outcome than the traditional

methods of machine learning process for achieving the same goal.

1.2. Motivation and Contribution

The rationale for this research is found in the increased occurrence and sophistication of Android malwares that present

great threats to the privacy and integrity of users’ data. Traditional approaches to detection prove quite difficult to update

at the same rate as that of the malware tactics. To the best of the authors knowledge, this paper makes a significant

contribution to the existing literature by harnessing ANNs, which are endowed with the ability of fast learning and

flexibility, for malware detection. From this paper, the reader gets an assessment of the performance of the ANN model

against other ML techniques highlighting the fact that the ANN model performs well in distinguishing the malicious

applications. Furthermore, the paper includes the recommendations and guidelines on the application of ANNs in

cybersecurity, noting the essential characteristic that their advantages could decrease the threat of malware which infiltrate

Android systems.

2. RELATED WORK

Over the years, there have been different papers written by researchers and scholars in the area of Android security,

including areas of malware analysis, detection, and vulnerability of Android applications. For example, DL techniques

were used to propose a system in [22] for Android malware detection. In this way, the system achieves an accuracy of 95.

31% accuracy in identifying Malware features extracted from Manifest files and Java files of the Android platform. It

employs a deep neural network (DNN) and other features, including permission combinations, intent filters, invalid

certificates, Android package kit (APK) files present in the asset folder, and application programming interface (API) calls.

[23] specialize in ML algorithms, including Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Linear

Discriminant Analysis (LDA), Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNNs) and LSTMs

(CNN-LSTM), and autoencoder (AE), for the identification of threats in Android mobile devices. The algorithms are

64 Habeeb et al, Mesopotamian Journal of Cybersecurity Vol 5, No.1 , 2025, 62–77

evaluated on two datasets and obtain very high accuracy, where the CICAndMal2017 dataset is used for SVM and the

Drebin dataset is used for LSTM. A comparison with other security systems reveals that the SVM, LSTM, and CNN-

LSTM algorithms can be effectively used in the detection of malware in the Android ecosystem. In [24], the authors focused

on the classification of Android malware by using DNNs. Researchers have suggested an algorithm for classifying malware

that is inclusive in lib. Thus, files are predicted via the CNN-LSTM network. They also measure the effectiveness of their

proposed method with other familiar ML algorithms, including SVM, KNN, and random forest (RF). The accuracy level

of the system is 98% in identifying the occurrence of malware.

In contrast, [25] focused on similarity-based Android malware detection via the Hamming distance of static binary features.

The authors introduce four malware detection methods: the first nearest neighbors (FNN), all nearest neighbors (ANN),

weighted all nearest neighbors (WANN), and k-medoid-based nearest neighbors (KMNN) algorithms. These methods aim

at generating an alarm when a malevolent application is found in Android, hence eradicating the spread of malware. All

the aforementioned methods were benchmarked on three datasets, namely, Drebin, Contagio and Genome, with accuracies

above 90%.

Finally, [26] presented the biosentinel neural network (BSNN), which is a new DL model that is hybrid in nature and

especially aimed at improving the ability to detect malware, specifically zero-day threats. The nature and components of

the proposed BSNN model include the integration of a graph neural network (GNN) for feature extraction and a transformer

for sequential data processing. They achieve a better accuracy of 93. 16% with a precision of 90. 89%, recall of 88. 19%

and an F1 score of 90. 45% greater than traditional methods.

All these studies enrich the field of malware detection and emphasize the growing complexity of this process as well as the

need for constant invention. Although older methods, such as traditional ML, have yielded promising outcomes, more

flexible and effective ideas that can efficiently handle the modern threats launched by malware are needed. Thus, our work

improves upon these basic works by utilizing ANNs for better detection precision and robustness, which will overcome the

deficits of the current approaches and move Android malware detection to the next level. The purpose of this study is to

present an extensive assessment of ANN abilities and establish a potential line of development for enhancing Android

devices’ protection against malware attacks.

3. MALWARE DETECTION IN AI

Notably, malware detection has improved substantially and has been widely impacted by the use of AI and ML. It is

generally observed that traditional approaches such as signature-based and heuristic detection fail to identify the new

generation of intelligent malware [27], [28]. AI has enormous scalability and changeability, as it is based on algorithms

that process large amounts of data and identify signs of illicit actions [29]–[32].

AI and its detection are usually conducted with the help of the training of ML models where feature sets extracted from

both normal and anomalous programs are used. These features could be static properties such as the size of a file, metadata,

and dynamic behavior such as API calls and network traffic. More specifically, logistic regression (LR), support vector

machines (SVMs) and, last but not least, neural networks are distinguished supervised learning techniques that are

frequently used and promise high accuracy in the classification of malware [27], [29], [33]–[36].

ML is categorized into subfields. DL, which uses neural networks with more than one layer, such as CNNs and recurrent

neural networks (RNNs), can learn intricate features from scratch, thus improving detection. Other methods of learning

without supervision include clustering and anomaly detection; new forms of malware can be detected since they are out of

the usually perceived average behavior [37]–[43].

Conversely, AI-based malware detection is not without problems, some of which are evasion techniques and adversarial

attacks. Persistent training makes ML models less vulnerable to new threats, whereas proper explainable AI models are

very important for understanding and preventing threats [44]. The particular feature of AI as a system is its ability to learn

and develop; thus, applications of AI have increased cybersecurity and fight against malicious software [45]–[51].

4. SUGGESTED METHODOLOGY

The suggested methodology used for malware detection via an ANN is shown in Figure 1, which depicts a series of steps:

data collection, exploratory data analysis (EDA), preprocessing, model development, and model evaluation.

65 Habeeb et al, Mesopotamian Journal of Cybersecurity Vol 5, No.1 , 2025, 62–77

Fig. 1. Steps of the methodology.

4.1. Data collection

The data for this study were collected form [52]. This dataset is categorized and optimized for use in identifying and

studying malware attacks that affect the Android operating system. It includes features extracted from Android applications

with comprehensive information about their operations. The dataset consists of 4464 Android application balanced samples,

whereby the samples are labeled either as malware or benign: Malware=56.74% and Benign= 43.26%, as illustrated in

Figure 2. These labels are essential for supervised learning models because they help the algorithm detect patterns related

to the malware as well as regular applications.

Fig. 2. Category distribution.

4.2. EDA

In an effort to better understand the structure of the given dataset and discover associations capable of improving the

performance of the considered models for detecting malware, an initial analysis of the data general characteristics was

performed, or an exploratory data analysis (EDA) was performed [53]. This part provides a description of the dataset and

the results of the analysis that are directly correlated with it.

The obtained dataset is rather rich and contains all the features which can be extracted. Drawing from this stock, we will

categorize these features as in the Figure 3:

66 Habeeb et al, Mesopotamian Journal of Cybersecurity Vol 5, No.1 , 2025, 62–77

Fig. 3. Features of the dataset.

1. Permission Features: Authorization grants given by a user to an application and defines the resources and data the

user wants the application to use. Examples include:

• Location: Access to coarse and fine locations.

• Camera: Permission to use the device's camera.

• Microphone: Access to the microphone.

• Contacts, SMS, Calendar, Storage: Permissions to access and modify contacts, send and receive SMS,

manage calendar events, and read/write to storage.

2. System features: Aspects concerning the activities of system functions, as well as controls, which include the

following:

• Hardware Access.

• System Settings.

• System Services.

3. Security-related features: Items related to security functions and activities involving the following:

• Permission Management: Granting and revoking permissions.

• Authentication: Methods for verifying user identity.

• Encryption: Cryptographic operations for securing data.

• Security Policy Enforcement: Implementing security policies.

4. Communication features: The following aspects of communication are at the center of technological advances:

• SMS: Sending and receiving messages.

• Phone Calls: Making and receiving calls.

• Network State: Accessing and managing network connections.

67 Habeeb et al, Mesopotamian Journal of Cybersecurity Vol 5, No.1 , 2025, 62–77

5. Data Access Features: Some of the areas related to data access and manipulation that define its capabilities include

the following:

• External Storage: Reading and writing to external storage.

• Databases: Accessing and manipulating databases.

• User Information: Accessing contacts and call logs.

• App-specific Data: Managing data specific to the application

6. App Lifecycle Features: Aspects related to the application life cycle, which include the following:

• Installation and Uninstallation: Managing app installations and removals.

• App Startup and Shutdown: Handling app launches and closures.

• App Updates: Managing updates.

• App Permissions: Handling permission requests and changes.

7. Device Control Features: Manipulation features associated with a device’s actions and configuration

characteristics, including the following:

• System Settings: Changing various system settings.

• Audio settings: Modifying audio configurations.

• Device Display: Controlling the display settings.

• Power Management: Managing device power.

8. Miscellaneous features: Other characteristics, such as the following:

• System Logs: Accessing system logs.

• System Services and Components: Using services such as cameras and location managers.

• System Events: Handling events such as incoming calls, boot completed.

• System UI Components: Interacting with system user interface components.

These aspects and their interactions are the most fundamental in regard to the nature of Android malware and how it can

be detected by ML algorithms. These findings will be useful in feature selection and model training in the sections that

follow in this research.

4.3. Preprocessing

After the dataset is loaded into a data structure suitable for analysis via Python, the preprocessing in this study includes

two steps:

• Splitting the dataset: To ensure that the model can generalize well to new data, the dataset is divided into two

parts: the training dataset and the testing dataset. The training data constitute 70% of the total data used to train

the ANN model. Hence, 30% is the testing set that is used in the assessment of the performance of the model for

malware detection. This split allows the determination of the degree to which the model’s performance can be

generalized to other data.

• Label encoding: The labels are then converted into numerical forms with the help of a label encoder. Label

encoding helps in transforming specific categorical labels into a format that can be given to ML algorithms for

better and improved forecasts. In this context, the label encoder maps each label to a different integer (e.g., the

label ‘malware’ may be encoded as 1, and the label ‘benign’ may be encoded as 0). This step is important because

most neural networks and other popular ML algorithms accept numerical data for processing.

4.4. Model development

The DL model used for detecting Android malware in this study is an ANN [54]. The model is structured to classify inputs

into one of two labels: malware or benign. The ANN is built via a sequential model from the Keras library and consists of

several layers designed to process the input features and produce a binary classification output, as explained in Figure 4

below:

68 Habeeb et al, Mesopotamian Journal of Cybersecurity Vol 5, No.1 , 2025, 62–77

Fig. 4. ANN proposed Model.

• Input Layer: The input layer is defined to take in data that have the shape of 327 features. This means that every

record in the dataset under consideration is described by a 327-feature vector.

• Batch normalization layer: This layer helps normalize the parameters that are passed on to the next layer, hence

reducing the internal covariate shift, which in turn makes the network train faster and more stable.

• Dense Layer 1: This layer has 128 neurons, and the activation function used here is the ReLU or rectified linear

unit. This type of layer calculates the weighted sum of the inputs, applies the addition of a bias to it and then

applies the ReLU activation function to provide nonlinearity to our model to help the model learn more complex

functions.

• Dense Layer 2: This layer includes 64 neurons, and the activation function that is implemented is Swis, which is

a smooth, nonmonotonic activation function that can sometimes be outperformed by ReLU because it can yield

small negative gradients.

• Dense Layer 3: This layer contains 32 neurons, and the activation function used is ReLU. Similar to the first dense

layer, ReLU activation is applied to introduce further nonlinearity and complexity.

• Dense Layer: This layer contains 16 neurons, and the activation function used is swish. This layer also uses a

swish activation function, which contributes to the network's ability to learn more complex patterns.

• Output Layer: This layer contains 1 neuron, and the activation function used is sigmoid. The sigmoid activation

function outputs a value between 0 and 1, making it suitable for binary classification tasks. It effectively assigns

probabilities to the two classes (malware or benign).

The model is trained for 500 epochs, meaning that the entire training dataset is passed forward and backward through the

neural network 500 times. This helps the model learn and adjust the weights to minimize the loss. The training process uses

a batch size of 32, meaning that the model updates its weights after processing every 32 samples from the training dataset.

This helps in managing memory more efficiently and often leads to faster convergence.

4.5. Model evaluation

After training, we need to evaluate the suggested model via several metrics to ensure its effectiveness, as presented in Table

1 below.

69 Habeeb et al, Mesopotamian Journal of Cybersecurity Vol 5, No.1 , 2025, 62–77

TABLE I. METRICS FOR EVALUATING MODEL PERFORMANCE

Terms Description

TP Number of samples or the population of samples which was correctly
segmented as malicious

TN The total number of samples that were correctly classified onto the

benign class

FP Number of incorrectly classified samples as a result of the observed
distinction of malice

FN Erroneously classified samples in minority class

Confusion Matrix TP FP

FN TN

Accuracy (TP+TN)/(TP+TN+FP+FN)

Precision TP/(TP+FP)

Recall TP/(TP+FN)

F1-Score 2*((precision*recall)/(precision +recall))

ROC-AUC ROC Curve: A graphical representation that shows the diagnostic

performance of a binary classification system.
AUC: Denotes the area beneath the ROC curve.

This table provides definitions and descriptions of the key terms and metrics used in evaluating the performance of a binary

classifier. It includes true positives (TPs), the number of samples correctly identified as malicious, and true negatives (TNs),

the number of samples accurately classified as benign. False positives (FPs) are incorrectly classified as malicious, whereas

false negatives (FNs) are benign samples misclassified as malicious. The confusion matrix is displayed as a 2x2 table of

TP, FP, FN, and TN. Accuracy measures the overall correctness of the model and is calculated as

(TP+TN)/(TP+TN+FP+FN) [55]. Precision, defined as TP/(TP+FP), indicates the proportion of true positives among the

predicted positives. Recall, calculated as TP/(TP+FN), measures the model’s ability to detect positive samples. The F1

score, which combines precision and recall, is computed as 2*((precision*recall)/(precision+recall)) [56]. Finally, the

receiver operating characteristic-area under the curve (ROC-AUC) provides a graphical plot (ROC curve) illustrating the

diagnostic ability of the classifier, with the AUC representing the area under this curve. In addition, the fitting involves

checking how well the model generalizes to new data, ensuring that it is not overfitting (too tailored to training data) or

underfitting (too simplistic). Together, these metrics provide a comprehensive view of the proposed model's performance

and areas for improvement.

5. RESULT AND DISCUSSION

The ANN model demonstrates exceptional performance and fitting, as evidenced by its uniformly high metrics. Both the

training and test accuracies stand at 0.99, indicating that the model generalizes extremely well from training to unseen data,

with no significant signs of overfitting, as presented in Figure 5. The precision rate of 0.99 suggests that the model is highly

reliable in its positive predictions, which is critical in applications where false positives are costly, such as malware

detection. The recall of 0.98, though slightly lower than that of the other metrics, still shows that the model successfully

identifies most positive instances, which is vital for minimizing false negatives. The F1 score, 0.99, underscores the model's

balanced performance in terms of precision and recall, confirming its ability to manage the trade-offs between identifying

as many relevant instances as possible while maintaining accuracy.

Fig. 5. Fitting of the ANN model.

70 Habeeb et al, Mesopotamian Journal of Cybersecurity Vol 5, No.1 , 2025, 62–77

Now, we compare the ANN model with several traditional ML methods and find that the ANN outperforms the other ML

methods listed in Table 2 across nearly all the metrics.

TABLE II. COMPARISON BETWEEN THE RESULTS OF TRADITIONAL ML METHODS AND THE PROPOSED ANN MODEL

Method Train accuracy Test accuracy Accuracy Precision Recall F1-score

LR 0.96 0.96 0.96 0.96 0.96 0.96

KNN 0.94 0.92 0.93 0.93 0.94 0.93

ExtraTrees 0.99 0.95 0.95 0.96 0.95 0.95

GBM 0.97 0.96 0.96 0.97 0.96 0.96

AdaBoost 0.96 0.95 0.96 0.96 0.96 0.96

CatBoost 0.98 0.96 0.96 0.96 0.96 0.96

ANN 0.99 0.99 0.99 0.99 0.98 0.99

Table 2 provides a comparative analysis of various ML models used for Android malware detection, showing their

performance in terms of training accuracy, test accuracy, overall accuracy, precision, recall, and F1 score. The models

evaluated include logistic regression (LR), k-nearest neighbors (KNN), extremely randomized trees (extra trees), gradient

boosting (GBM), adaptive boosting (AdaBoost), categorical boosting (CatBoost), and ANN. LR and the GBM demonstrate

strong performance, with both achieving 0.96 in test accuracy and an F1 score of 0.96. KNN, albeit lower, with a test

accuracy of 0.92. Even at this stage, it retains a reasonably good F1 score of 0. 93. The extra trees achieved a training

accuracy of 0.99, whereas the test accuracy reached 0.95. In addition, both AdaBoost and CatBoost yield good results, with

test accuracies and F1 scores of 0.95 and 0.96, respectively. However, the ANN model has a massive lead and records the

highest test accuracy of 0. 99 and an F1 score of 0. 99. This improved performance signifies that ANNs are the best tool

for improving Android malware detection because they are precise in identifying vicious programs. The high accuracy

values demonstrated by the ANN model prove that it can be a useful instrument for developing types of innovative mobile

security techniques, as presented in Figure 6.

Fig. 6. Results of the ANN model

The generalization capability of the chosen ANN model shows promising performance in regard to extended use for

different types of malware and the Android context. On the basis of the results, the ANN model's superior performance,

marked by high training and testing accuracies (both 0.99), indicates its robust ability to capture intricate patterns and

behaviors inherent to different malware types. This heightened learning capability ensures that the ANN can effectively

distinguish between benign and malicious applications across diverse datasets. Figure 7 displays confusion matrices for six

different ML approach ANN models.

71 Habeeb et al, Mesopotamian Journal of Cybersecurity Vol 5, No.1 , 2025, 62–77

Fig. 7. Confusion matrices

The ANN model shows strong performance, with 1788 TPs, 1309 TNs, 17 FPs, and 10 FNs. This indicates high accuracy

and low misclassification rates. LR also performs well but has higher misclassification rates, with 739 TPs, 559 TNs, 21

FPs, and 31 FNs. The KNN model has 717 TPs, 539 TNs, 51 FPs, and 43 FNs, indicating slightly lower performance than

ANN and LR. The extra trees model performs comparably to the LR model, with 737 TPs, 553 TNs, 27 FPs, and 33 FNs.

The GBM shows robust performance similar to that of the ANN, with 731 TPs, 540 TNs, 20 FPs, and 29 FNs. AdaBoost

72 Habeeb et al, Mesopotamian Journal of Cybersecurity Vol 5, No.1 , 2025, 62–77

has 735 TPs, 552 TNs, 28 FPs, and 25 FNs, showing balanced performance but with slightly higher FNs than the ANN.

Finally, CatBoost has 731 TPs, 519 TNs, 21 FPs, and 29 FNs, performing similarly to the GBM and showing strong

predictive capabilities. While all the models demonstrate reasonable performance, the ANN appears to have the highest

accuracy and the lowest misclassification rate, making it the most effective model in this comparison.

Figure 8 presents ROC curves for two approaches: traditional ML approaches and an ANN approach. The ROC curve on

the left shows the performance of various ML models, with an AUC of 0.99. This high AUC indicates that the ML models

have excellent discrimination capabilities between the positive and negative classes, with minimal false positive rates. On

the right side of the figure, the ROC curve for the ANN approach is plotted, with an AUC of 1.00. This indicates that the

ANN model is well capable of classifying the positive and the negative classes without any mistakes. The ROC curve in

the case of the ANN is close to the curve with the y-axis, which means that it achieves a high true positive rate even at very

low false positive rates. Overall, the performance of the ML models is rather high, with an AUC of 0. 99, whereas the other

classifiers fail to do so, with an average AUC of 0. 99, while the ANN approach for classifying the given dataset has an

impeccable AUC of 1.00, which demonstrates the ability of the proposed approach to classify the given data more

accurately.

Fig. 8. ROC curves of the traditional ML techniques and the ANN technique

Overall, the ANN technique reveals higher accuracy; moreover, this result is obtained regardless of the choice of a specific

subset of data, which indicates the robustness and reliability of detection. This makes it appropriate for environments that

involve many risks; hence, high levels of precision are needed in regard to the results of malware detection.

6. LIMITATIONS AND FUTURE WORK

Despite the fact that this research shows how ANNs can be efficiently used for detecting Android malware, several

limitations are inherent and should be considered in further investigations.

6.1. Limitations

• Dataset Limitations:

Despite the fact that the data set used in our study is rather extensive, it is possible that the study does not cover

all the types of malware and their actions. It has a specific drawback of the features and samples that it has been

trained on might not include all the potential variants of the real-world malware, which in turn may affect its

ability to deal with the new and emerging threats. This is the major shortcoming of the model, when the model is

73 Habeeb et al, Mesopotamian Journal of Cybersecurity Vol 5, No.1 , 2025, 62–77

presented with new strains of malware that it has not been exposed to before, there is a possibility of reduced

detection.

• Computational Resource Requirements:

The process of training and deploying deep learning models especially ANNs is a very computational intensive

process. High computational power and memory are not always the best for all situations especially when the

device in use is a mobile phone. This may be a disadvantage in extending the use of the proposed method,

especially when the computing power is an issue in the target application area.

• Overfitting Concerns:

Overfitting means if the training data is not very diverse even though it could give high accuracy. This is known

as overfitting where the model learns the characteristics of the training data and noise in it and does not work well

on new data. This means that when the model is applied in real life situations where the data may slightly vary

from the training data, this may lead to a reduction in the model’s accuracy.

• Adversarial Attacks:

These include Adversarial attacks where the attackers alter the input data to deceive the model which includes

ANNs and other forms of AI and ML [57], [58]. This is a well-known problem in cybersecurity since the opponents

can craft inputs that will not be blocked. The study does not discuss how the proposed ANN model will avoid the

adverse manipulation from the attackers.

6.2. Future Work

• Expanding the Dataset:

The future work will include the expansion of the presented dataset and the variety of malware and characteristics.

It could entail data collection from various sources including new types of malwares to enhance the model’s ability

to apply transfer learning to other types of threats. In addition, It can describe the dynamic characteristics of the

behavior to give more details regarding the malware’s attributes.

• Optimizing Model Architecture:

For the future work, since it can be considered as one of the drawbacks of the paper that the computational power

has not been fully utilized, which might attempt to further fine-tune the architecture of the ANN.

• Enhancing Robustness Against Adversarial Attacks:

For the further research, it is advisable to extend the work on the methods that may improve the robustness of the

ANN model against the adversarial attack. This may involve the consideration of certain strategies that could be

of help in fighting the problem, such as the adversarial training that involve presenting the model to normal data

as well as the contaminated data and or the development of specific measures to fight against adversarial data.

• Other security systems and application integration:

Future research should be carried out on the proposed model of ANN for other security systems and to compare

the results in real environment. Some of the practical uses of applying the model could involve bringing in the

cybersecurity firms to explain the model’s efficiency at recognizing malware on Android OS in several conditions.

• Explainability and Interpretability:

One of the other areas that could be further investigated in this research is the improvement of the interpretability

of the outcomes and the developed ANN model. Hence, it is crucial to understand how the model arrives at such

conclusions to gain the trust of the users and improve the model’s performance. For the interpretation of the

model’s choice, it can employ SHAP, which stands for SHapley Additive exPlanations or LIME, which is the

acronym for Local Interpretable Model-agnostic Explanations.

Therefore, extending these future directions and overcoming the mentioned limitations, the contribution of the research

can be in the enhancement of the Android malware detection techniques and provision of better and more practical tools

for this purpose that finally leads to the enhancement of the mobile devices security.

7. CONCLUSION

This paper aims to provide an in-depth investigation of how the use of ANNs can improve the detection of Android malware

in comparison with other known ML methods. The types of data analysis performed in the study included the use of an

ANN model and comparisons with other forms of ML methods. By observing the results, it is found that the ANN model

outperforms the considered models in all the observed aspects. The general enhancement in the learning aptitude of the

ANN model makes it successful in this area. The use of a neural network structure for the model results in the identification

of the patterns typical of modern malware being more effective than conventional ML. This learning ability and adaptation

74 Habeeb et al, Mesopotamian Journal of Cybersecurity Vol 5, No.1 , 2025, 62–77

capability make the detection and differentiation of the new generation of Android malware simpler with the help of the

ANN-based approach.

The overall significance of the study’s findings for mobile security science is large. Therefore, the use of ANN-based

detection systems can be employed to present a dependable and defendable strategy to counter the rising Android

smartphone threat in the form of malware. With the help of the ANN, which is the basis for the suggested approach, even

the most complex and concealed malicious programs are easy to detect and eliminate. Furthermore, on the basis of the

better performance of the ANN model illustrated in this paper, the ANN model can be viewed as a useful tool for security

researchers and practitioners in designing future generation Android malware detection systems. The possibility of

achieving a high degree of accuracy and speed in applying classification reveals great potential for enhancing the security

of the Android environment, thus safeguarding users, companies, and even governmental structures from the harm caused

by malware. Adaptability is a major advantage that can be tagged to the ANN-based approach, which forms the core of the

review. However, concerning the type of Android malware that will be developed in the future, the model comprising a

neural network will be capable of being updated and trained again. Thus, flexibility is essential for the security system, and

this aspect makes it possible to improve it to prevent newly appeared malware threats, which makes it a valuable and

effective solution for the protection of Android devices in the future.

As stated above, this study has some shortcomings, despite yielding positive results. First, although the dataset used is large

and diverse, it is still a sample of overall malware and could contain somewhat diverse kinds and actions of malware, so

the results may not be universal. Second, it might determine that this model can be influenced by the movement of malware

where the pattern is frequently changed so that it is not easily detected. Moreover, the work is based mainly on the static

and dynamic attributes of the applications, which may not include all the potential indicators of malicious activities. Finally,

the computational power that is needed to train these high-level neural networks can be very intensive and hence may not

be feasible for implementation in real-world scenarios that may be characterized by limited computational power.

Future research should overcome these limitations by using more diverse datasets containing increased numbers of various

types of malware and their behaviors. Improving the model to incorporate new and variant malware threats will be relevant.

Researchers should also consider enhancing the detection of the proposed features with information in the context with

which it is being used as well as other patterns of user behavior. Furthermore, advancements in training algorithms and

feature architectures require effort to reduce the training complexities related to the ANN automated malware detection

system. Finally, research in making the models understandable would be crucial to enhance the use of these models, given

that the users need to comprehend the manner in which the models arrive at certain decisions.

Conflicts Of Interest

The author's paper clearly states that no conflicts of interest exist in relation to the research or its publication.

Funding

The absence of any funding statements or disclosures in the paper suggests that the authors had no institutional or sponsor

backing.

Acknowledgment

The authors is grateful to the institution for their collaboration and provision of necessary facilities that contributed to the
successful completion of this research.y

References

[1] S. Sibi Chakkaravarthy, D. Sangeetha, and V. Vaidehi, “A Survey on malware analysis and mitigation techniques,”

Comput. Sci. Rev., vol. 32, pp. 1–23, May 2019, doi: 10.1016/j.cosrev.2019.01.002.

[2] O. Aslan and R. Samet, “A Comprehensive Review on Malware Detection Approaches,” IEEE Access, vol. 8, pp.

6249–6271, 2020, doi: 10.1109/ACCESS.2019.2963724.

[3] J. Singh and J. Singh, “A survey on machine learning-based malware detection in executable files,” J. Syst. Archit.,

vol. 112, p. 101861, 2021, doi: 10.1016/j.sysarc.2020.101861.

[4] Z. Huang, Q. Wang, Y. Chen, and X. Jiang, “A Survey on Machine Learning against Hardware Trojan Attacks:

Recent Advances and Challenges,” IEEE Access, vol. 8, pp. 10796–10826, 2020, doi:

10.1109/ACCESS.2020.2965016.

[5] A. Alqahtani and F. T. Sheldon, “A Survey of Crypto Ransomware Attack Detection Methodologies: An Evolving

Outlook,” Sensors, vol. 22, no. 5, p. 1837, 2022, doi: 10.3390/s22051837.

75 Habeeb et al, Mesopotamian Journal of Cybersecurity Vol 5, No.1 , 2025, 62–77

[6] K. M. E. NarasimaMallikarajunan, S. R. Preethi, S. Selvalakshmi, and N. Nithish, “Detection of spyware in software

using virtual environment,” in Proceedings of the International Conference on Trends in Electronics and

Informatics, ICOEI 2019, IEEE, 2019, pp. 1138–1142. doi: 10.1109/icoei.2019.8862547.

[7] E. Arul and A. Punidha, “Adware Attack Detection on IoT Devices Using Deep Logistic Regression SVM (DL-

SVM-IoT),” in Congress on Intelligent Systems: Proceedings of CIS 2020, Volume 1, Springer, 2021, pp. 167–176.

doi: 10.1007/978-981-33-6981-8_14.

[8] I. Guedes, M. Martins, and C. S. Cardoso, “Exploring the determinants of victimization and fear of online identity

theft: an empirical study,” Secur. J., vol. 36, no. 3, pp. 472–497, 2023, doi: 10.1057/s41284-022-00350-5.

[9] N. K. Gyamfi and J.-D. Abdulai, “Bank Fraud Detection Using Support Vector Machine,” in 2018 IEEE 9th Annual

Information Technology, Electronics and Mobile Communication Conference (IEMCON), 2018, pp. 37–41. doi:

10.1109/IEMCON.2018.8614994.

[10] X. M. Zhang, Q. L. Han, X. Ge, and L. Ding, “Resilient Control Design Based on a Sampled-Data Model for a Class

of Networked Control Systems under Denial-of-Service Attacks,” IEEE Trans. Cybern., vol. 50, no. 8, pp. 3616–

3626, 2020, doi: 10.1109/TCYB.2019.2956137.

[11] R. Rivera, L. Pazmiño, F. Becerra, and J. Barriga, “An Analysis of Cyber Espionage Process,” in Smart Innovation,

Systems and Technologies, Springer, 2022, pp. 3–14. doi: 10.1007/978-981-16-4884-7_1.

[12] J. DiMaggio, “The art of cyberwarfare : an investigator’s guide to espionage, ransomware, and organized

cybercrime,” p. 254.

[13] M. Wade, “Digital hostages: Leveraging ransomware attacks in cyberspace,” Bus. Horiz., vol. 64, no. 6, pp. 787–

797, 2021, doi: 10.1016/j.bushor.2021.07.014.

[14] C. Beaman, A. Barkworth, T. D. Akande, S. Hakak, and M. K. Khan, “Ransomware: Recent advances, analysis,

challenges and future research directions,” Comput. Secur., vol. 111, p. 102490, 2021, doi:

https://doi.org/10.1016/j.cose.2021.102490.

[15] I. Stellios, P. Kotzanikolaou, M. Psarakis, C. Alcaraz, and J. Lopez, “A survey of iot-enabled cyberattacks: Assessing

attack paths to critical infrastructures and services,” IEEE Commun. Surv. Tutorials, vol. 20, no. 4, pp. 3453–3495,

2018, doi: 10.1109/COMST.2018.2855563.

[16] K. Bakour, H. M. Ünver, and R. Ghanem, “The Android malware detection systems between hope and reality,” SN

Appl. Sci., vol. 1, no. 9, p. 1120, Sep. 2019, doi: 10.1007/s42452-019-1124-x.

[17] A. Qamar, A. Karim, and V. Chang, “Mobile malware attacks: Review, taxonomy & future directions,” Futur.

Gener. Comput. Syst., vol. 97, pp. 887–909, Aug. 2019, doi: 10.1016/j.future.2019.03.007.

[18] A. V. Pandit and D. Mondal, “Real-Time Malware Detection on IoT Devices using Behavior-Based Analysis and

Neural Networks,” Res. J. Comput. Syst. Eng., vol. 4, no. 2, pp. 117–129, Dec. 2023, doi: 10.52710/rjcse.82.

[19] A. S. Albahri et al., “A systematic review of trustworthy artificial intelligence applications in natural disasters,”

Comput. Electr. Eng., vol. 118, p. 109409, 2024, doi: 10.1016/j.compeleceng.2024.109409.

[20] M. A. Habeeb, Y. L. Khaleel, and A. S. Albahri, “Toward Smart Bicycle Safety: Leveraging Machine Learning

Models and Optimal Lighting Solutions,” in Proceedings of the Third International Conference on Innovations in

Computing Research (ICR’24), K. Daimi and A. Al Sadoon, Eds., Cham: Springer Nature Switzerland, 2024, pp.

120–131.

[21] L. A. E. Al-saeedi et al., “Artificial Intelligence and Cybersecurity in Face Sale Contracts: Legal Issues and

Frameworks ,” Mesopotamian J. CyberSecurity, vol. 4, no. 2 SE-Articles, pp. 129–142, Aug. 2024, doi:

10.58496/MJCS/2024/0012.

[22] A. Naway and Y. LI, “Using Deep Neural Network for Android Malware Detection.” 2019.

[23] H. Alkahtani and T. H. H. Aldhyani, “Artificial Intelligence Algorithms for Malware Detection in Android-Operated

Mobile Devices,” Sensors, vol. 22, no. 6, p. 2268, Mar. 2022, doi: 10.3390/s22062268.

[24] S. Hosseini, A. E. Nezhad, and H. Seilani, “Android malware classification using convolutional neural network and

LSTM,” J. Comput. Virol. Hacking Tech., vol. 17, no. 4, pp. 307–318, Dec. 2021, doi: 10.1007/s11416-021-00385-

z.

[25] R. Taheri, M. Ghahramani, R. Javidan, M. Shojafar, Z. Pooranian, and M. Conti, “Similarity-based Android malware

detection using Hamming distance of static binary features,” Futur. Gener. Comput. Syst., vol. 105, pp. 230–247,

2020, doi: 10.1016/j.future.2019.11.034.

[26] D. S. Rani, K. Gnaneshwar, K. Sampurnima Pattem, S. Sekhar, G. B. Krishna, and S. Kakarla, “Advancing Android

Malware Detection with BioSentinel Neural Network using Hybrid Deep Learning Techniques,” in 2024 11th

International Conference on Computing for Sustainable Global Development (INDIACom), IEEE, Feb. 2024, pp.

1754–1760. doi: 10.23919/INDIACom61295.2024.10498302.

76 Habeeb et al, Mesopotamian Journal of Cybersecurity Vol 5, No.1 , 2025, 62–77

[27] A. A. Almazroi and N. Ayub, “Deep learning hybridization for improved malware detection in smart Internet of

Things,” Sci. Rep., vol. 14, no. 1, 2024, doi: 10.1038/s41598-024-57864-8.

[28] M. A. Hossain and M. S. Islam, “Enhanced detection of obfuscated malware in memory dumps: a machine learning

approach for advanced cybersecurity,” Cybersecurity, vol. 7, no. 1, 2024, doi: 10.1186/s42400-024-00205-z.

[29] A. Mahindru et al., “PermDroid a framework developed using proposed feature selection approach and machine

learning techniques for Android malware detection,” Sci. Rep., vol. 14, no. 1, 2024, doi: 10.1038/s41598-024-60982-

y.

[30] S. I. Mihali and Ștefania L. Niță, “Credit Card Fraud Detection based on Random Forest Model,” in 2024 17th

International Conference on Development and Application Systems, DAS 2024 - Proceedings, 2024, pp. 111–114.

doi: 10.1109/DAS61944.2024.10541240.

[31] B. K. Sedraoui, A. Benmachiche, A. Makhlouf, and C. Chemam, “Intrusion Detection with deep learning: A

literature review,” in PAIS 2024 - Proceedings: 6th International Conference on Pattern Analysis and Intelligent

Systems, 2024, pp. 1–8. doi: 10.1109/PAIS62114.2024.10541191.

[32] A. Sheneamer, “Visualized Malware Images using Hybrid Ensemble Deep Transfer Learning,” in Proceedings -

2024 7th International Conference on Information and Computer Technologies, ICICT 2024, 2024, pp. 7–12. doi:

10.1109/ICICT62343.2024.00008.

[33] W. Z. A. Zakaria, N. M. K. M. Alta, M. F. Abdollah, O. Abdollah, and S. M. W. M. S. M. M. Yassin, “Early

Detection of Windows Cryptographic Ransomware Based on PreAttack API Calls Features and Machine Learning,”

J. Adv. Res. Appl. Sci. Eng. Technol., vol. 39, no. 2, pp. 110–131, 2024, doi: 10.37934/araset.39.2.110131.

[34] R. A. Yunmar, S. S. Kusumawardani, W. Widyawan, and F. Mohsen, “Detecting Android Malware by Mining

Enhanced System Call Graphs,” Int. J. Comput. Netw. Inf. Secur., vol. 16, no. 2, pp. 28–41, 2024, doi:

10.5815/ijcnis.2024.02.03.

[35] S. salman Qasim and S. M. NSAIF , Trans., “Advancements in Time Series-Based Detection Systems for Distributed

Denial-of-Service (DDoS) Attacks: A Comprehensive Review”, BJN, vol. 2024, pp. 9–17, Jan. 2024, doi:

10.58496/BJN/2024/002.

[36] C. C. Moreira, D. C. Moreira, and C. Sales, “A comprehensive analysis combining structural features for detection

of new ransomware families,” J. Inf. Secur. Appl., vol. 81, 2024, doi: 10.1016/j.jisa.2024.103716.

[37] S. A. Hamad, Q. Z. Sheng, and W. E. Zhang, Security Framework for The Internet of Things Applications. CRC

Press, 2024. doi: 10.1201/9781003478683.

[38] H. Zhao, C. Zi, Y. Liu, C. Zhang, Y. Zhou, and J. Li, “Weakly Supervised Anomaly Detection via Knowledge-Data

Alignment,” in WWW 2024 - Proceedings of the ACM Web Conference, Association for Computing Machinery, Inc,

2024, pp. 4083–4094. doi: 10.1145/3589334.3645429.

[39] K. Shaukat, S. Luo, and V. Varadharajan, “A novel machine learning approach for detecting first-time-appeared

malware,” Eng. Appl. Artif. Intell., vol. 131, p. 107801, 2024, doi: 10.1016/j.engappai.2023.107801.

[40] R. Liao and S. Wang, “Malicious domain detection based on semi-supervised learning and parameter optimization,”

IET Commun., vol. 18, no. 6, pp. 386–397, 2024, doi: 10.1049/cmu2.12739.

[41] M. Fleming and O. Olukoya, “A temporal analysis and evaluation of fuzzy hashing algorithms for Android malware

analysis,” Forensic Sci. Int. Digit. Investig., vol. 49, 2024, doi: 10.1016/j.fsidi.2024.301770.

[42] A. Mondal, A. Ghosh, S. Karmakar, M. H. Mahalat, S. Roy, and B. Sen, “Identification of Hardware Trojan in Gate-

Level Netlist,” J. Circuits, Syst. Comput., vol. 33, no. 9, 2024, doi: 10.1142/S0218126624300058.

[43] A. Saihood, M. A. Al-Shaher, and M. A. Fadhel, “A New Tiger Beetle Algorithm for Cybersecurity, Medical Image

Segmentation and Other Global Problems Optimization,” Mesopotamian J. CyberSecurity, vol. 2024, pp. 17–46,

2024, doi: 10.58496/MJCS/2024/003.

[44] A. S. Albahri, Y. L. Khaleel, and M. A. Habeeb, “The Considerations of Trustworthy AI Components in Generative

AI; A Letter to Editor,” Appl. Data Sci. Anal., vol. 2023, pp. 108–109, 2023, doi: 10.58496/adsa/2023/009.

[45] A. Galli, V. La Gatta, V. Moscato, M. Postiglione, and G. Sperlì, “Explainability in AI-based behavioral malware

detection systems,” Comput. Secur., vol. 141, 2024, doi: 10.1016/j.cose.2024.103842.

[46] S. Gulmez, A. Gorgulu Kakisim, and I. Sogukpinar, “XRan: Explainable deep learning-based ransomware detection

using dynamic analysis,” Comput. Secur., vol. 139, 2024, doi: 10.1016/j.cose.2024.103703.

[47] J. Mitchell, N. McLaughlin, and J. Martinez-del-Rincon, “Generating sparse explanations for malicious Android

opcode sequences using hierarchical LIME,” Comput. Secur., vol. 137, 2024, doi: 10.1016/j.cose.2023.103637.

[48] S. R. Sindiramutty et al., Explainable AI for Cybersecurity. 2024. doi: 10.4018/978-1-6684-6361-1.ch002.

[49] O. Arreche, T. R. Guntur, J. W. Roberts, and M. Abdallah, “E-XAI: Evaluating Black-Box Explainable AI

Frameworks for Network Intrusion Detection,” IEEE Access, vol. 12, pp. 23954–23988, 2024, doi:

77 Habeeb et al, Mesopotamian Journal of Cybersecurity Vol 5, No.1 , 2025, 62–77

10.1109/ACCESS.2024.3365140.

[50] D. Zaman and M. Mazinani, “Cybersecurity in Smart Grids: Protecting Critical Infrastructure from Cyber Attacks”,

SHIFRA, vol. 2023, pp. 86–94, Aug. 2023, doi: 10.70470/SHIFRA/2023/010.

[51] M. AL-Essa, G. Andresini, A. Appice, and D. Malerba, “PANACEA: a neural model ensemble for cyber-threat

detection,” Mach. Learn., 2024, doi: 10.1007/s10994-023-06470-2.

[52] PCSL, “Android Malware Detection Test,” 2014. https://www.kaggle.com/datasets/dannyrevaldo/android-malware-

detection-dataset

[53] E. Camizuli and E. J. Carranza, “Exploratory Data Analysis,” in The Encyclopedia of Archaeological Sciences,

Wiley, 2018, pp. 1–7. doi: 10.1002/9781119188230.saseas0271.

[54] M. G. M. Abdolrasol et al., “Artificial Neural Networks Based Optimization Techniques: A Review,” Electronics,

vol. 10, no. 21, 2021, doi: 10.3390/electronics10212689.

[55] F. K. H. Mihna, M. A. Habeeb, Y. L. Khaleel, Y. H. Ali, and L. A. E. Al-Saeedi, “Using Information Technology

for Comprehensive Analysis and Prediction in Forensic Evidence,” Mesopotamian J. CyberSecurity, vol. 4, no. 1,

pp. 4–16, 2024, doi: 10.58496/MJCS/2024/002.

[56] H. M. Abdulfattah, K. Y. Layth, and A. A. Raheem, “Enhancing Security and Performance in Vehicular Adhoc

Networks: A Machine Learning Approach to Combat Adversarial Attacks,” Mesopotamian J. Comput. Sci., vol.

2024, pp. 122–133, 2024, doi: 10.58496/MJCSC/2024/010.

[57] Y. L. Khaleel, M. A. Habeeb, A. S. Albahri, T. Al-Quraishi, O. S. Albahri, and A. H. Alamoodi, “Network and

cybersecurity applications of defense in adversarial attacks: A state-of-the-art using machine learning and deep

learning methods,” J. Intell. Syst., vol. 33, no. 1, 2024, doi: 10.1515/jisys-2024-0153.

[58] Y. L. Khaleel, H. M. Abdulfattah, and H. Alnabulsi, “Adversarial Attacks in Machine Learning: Key Insights and

Defense Approaches,” Appl. Data Sci. Anal., vol. 2024, pp. 121–147, 2024, doi: 10.58496/ADSA/2024/011.

