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A B S T R A C T 
 

The Internet of Things (IoT) is an expanding domain that can revolutionize different industries. 
Nevertheless, security is among the multiple challenges that it encounters. A major threat in the IoT 
environment is spoofing attacks, a type of cyber threat in which malicious actors masquerade as 
legitimate entities. 
This research aims to develop an effective technique for detecting spoofing attacks for IoT security by 
utilizing feature-importance methods. The suggested methodology involves three stages: preprocessing, 
selection of important features, and classification. The feature importance determines the most significant 
characteristics that play a role in detecting spoofing attacks. This is achieved via two techniques: decision 
tree (DT) and mutual information (MI). For classification, adaptive boosting (AdaBoost), XGBoost and 
categorical boosting (CatBoosting) are used to categorize incoming data as normal or spoofing. The 
experimental results indicate the efficiency of the suggested approach for correctly identifying spoofing 
attacks with high accuracy, fewer false positives, and reduced time needed. By utilizing feature 
importance and robust classification algorithms, the system can accurately differentiate between 
legitimate and malicious IoT traffic, thereby improving the overall security of IoT networks. The 
CatBoost classifier outperformed the AdaBoost and XGBoost classifiers in terms of accuracy.

1. INTRODUCTION 

The Internet of Things (IoT) has fundamentally transformed our interaction with the physical world by linking billions of 

devices and producing an enormous quantity of data. However, this poses notable security problems. IoT devices may have 

limited resources and security capabilities, which makes them susceptible to attackers. A spoofing attack is a significant 

cyber threat that poses a particularly high risk to IoT systems [1, 2]. 
A spoofing attack occurs when malicious actors masquerade as trustworthy entities, tricking and directing IoT devices or 

networks into carrying out unauthorized activities [3]. Attackers employ forged identities to illegally gain access to 

confidential data, disrupt crucial functions, or even execute coordinated attacks on other networks. The increasing number 

of spoofing attacks emphasizes the necessity for robust mechanisms to detect these attacks, which are specifically designed 

for the IoT environment [4, 5]. 

Feature importance approaches have emerged as effective tools for improving the accuracy of spoofing detection in IoT 

networks. These techniques enable the identification of the most relevant attributes provided by IoT devices, enabling a more 

targeted and effective analysis. Machine learning (ML) methods can increase accuracy and minimize computational 

complexity by selecting the most informative features, as demonstrated in [6-8], making them better suited for real-time 

detection of intrusions in resource-limited IoT scenarios[27].  

This work investigates the effectiveness of feature importance methods when combined with categorical boosting (CatBoost), 

adaptive boosting (AdaBoost) and XGBoost classifiers for spoofing attack detection in the IoT domain. The proposed 

approach tries to produce an accurate solution by using the strengths of feature importance techniques (decision tree (DT) and 

mutual information (MI)). This paper offers the following contributions: 

1. Application of multiclassification techniques to identify and categorize spoofing attacks.
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2. Two feature selection techniques (decision trees (DTs) and mutual information (MI)) are used to optimize spoofing 

attack detection. 

3. Identification of the Optimal Feature Set: This research finds the optimal features influencing the prediction 

accuracy for spoofing attacks. 

4. This contributes to efficient model development by reducing complexity without sacrificing performance. 

5. Comparative analysis of feature selection methods: A comparison between the DT and MI techniques was 

conducted, highlighting strengths and weaknesses in the spoofing detection context. The selection of appropriate 

methods for specific applications is critical for practitioners. 
6. Performance evaluation: Comparison of the classification techniques AdaBoost, XGBoost, and CatBoost on the 

basis of performance criteria and computational efficiency. 

This study combines innovative approaches to spoofing attack detection, enhancing capabilities by integrating feature 

selection and classification techniques. It contributes new knowledge on multiclass classification and advanced feature 

selection methods in cybersecurity. 

The remainder of this paper is organized as follows: Section 2 provides a short survey on other approaches to existing 

spoofing attack detection in IoT networks. Section 3 presents the background of the techniques used in the current work. 

Section 4 describes the materials and methods employed in the paper. Section 5 presents the evaluation of the proposed 

framework via benchmark IoT datasets. The evaluation of the framework's performance in terms of accuracy, precision, 

recall, F1 score, and support. Section 6 presents the conclusion and suggestions for future work. 

2. RELATED WORKS 

Some of the studies related to the current work are discussed below. 

F. Khan et al. [9] presented a technique for detecting and preventing spoofing attacks in IoT networks via the number of 
connected neighbors (NCN) and received signal strength (RSS) metrics. First, the system uses RSS measurements to identify, 
detect, and remove spoofing attacks on the intercluster network. However, the RSS is inefficient against intracluster spoofing 
attacks, necessitating the use of an NCN to successfully detect, identify, and mitigate these threats. The suggested work is 
carried out in Network Simulator 2 (NS-2) to evaluate its performance in both spoofing-free and spoofing-infested 
environments. 

A. B. Altamimi et al. [10] developed a client-side mechanism for defense based on ML techniques to identify spoofed web 
pages and protect users from phishing attacks. They created a Google Chrome extension named PhishCatcher. This extension 
incorporates their ML algorithm, which classifies URLs as either suspicious or trustworthy. The algorithm analyses four 
distinct types of web features and employs a random forest (RF) classifier to determine whether a login webpage is genuine 
or spoofed. They conducted extensive testing on actual web applications and yielded an accuracy of 98.5% and a precision 
of 98.5%, as determined by trials involving 400 classified phishing URLs and 400 legitimate URLs. Additionally, to assess 
the latency of their tool, they performed experiments on forty phished URLs. 

X. Cheng et al. [11] introduced a facial recognition system with an antispoofing method that effectively distinguishes 
between real and fake faces via optical flow and texture features. The system involves three stages: optical flow field map 
generation, feature extraction and fusion via a two-channel convolutional neural network (CNN), and liveness classification, 
which is based on a decision-making process that incorporates texture and motion information. To enhance performance, 
motion amplification and a lightweight network architecture are employed. An evaluation of the Replay Attack dataset 
yielded a half-total error rate of 0.66%, demonstrating the method's efficacy in spoofing detection. 

X. Wei et al. [12] proposed a novel and lightweight global positioning system (GPS) method to detect spoofing that uses a 
dynamic threshold and an acquired signal envelope. Validation experiments with real GPS signals and hardware demonstrate 
its effectiveness. The method hinges on the inherent relationship between signal envelope features and the distance between 
the receiver and transmitter. Inspired by this relationship, a dynamic threshold approach is developed, replacing the 
traditional fixed threshold, and it is determined by the signal envelope variance, which enhances the detection performance 

across various attack scenarios. 

M. Shabbir et al. [13] introduced a novel approach to safeguard connected and autonomous vehicles (CAVs) from GPS 
location spoofing attacks. The proposed work employs a combination of deep learning (DL) algorithms, such as CNNs, and 
ML algorithms, such as support vector machines (SVMs). The effectiveness of the proposed work is evaluated through real-
time simulations in the CARLA simulator. Various learning algorithms have been used to determine the most effective 
technique among three distinct paths. The training and testing data encompass spoofed coordinates, GPS coordinates, and 
values of the localization algorithm. The proposed ML algorithm achieved 99% accuracy in the best-case scenario and 96% 
accuracy in the worst-case scenario. For DL, the accuracy ranged from 99% in the best-case scenario to 82% in the worst-
case scenario. A comparison between previous related works and the current work is shown in TABLE I. 

. 
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TABLE  I. COMPARISON BETWEEN THE CURRENT WORK AND PREVIOUS STUDIES 

Aspect F. Khan 

et al. 

A. B. 

Altamimi et al. 

X. Cheng et 

al. 

X. Wei et al. M. Shabbir et 

al. 

Current 

Research 

Focus Area Detection and 

prevention of 

spoofing 

attacks in IoT 

networks 

using RSS 

and NCN 

metrics. 

Client-side 

mechanism to 

identify spoofed 

web pages using 

ML techniques 

(PhishCatcher). 

Anti-spoofing 

method for facial 

recognition 

systems using 

optical flow and 

texture features. 

GPS-based method 

to detect spoofing 

using dynamic 

thresholds and 

signal envelope 

features. 

Safeguarding 

Connected and 

Autonomous 

Vehicles (CAVs) 

from GPS location 

spoofing attacks 

using DL/ML 

algorithms. 

Multiclass 

classification 

techniques for 

detecting various 

types of spoofing 

attacks. 

Methodology Utilizes RSS 

measurements 

for 

intercluster 

detection and 

NCN for 

intracluster 

spoofing 

detection. 

Developed a 

Google Chrome 

extension that uses 

RF classifier to 

analyse web 

features. 

Uses a two-

channel CNN for 

feature extraction 

and liveness 

classification 

based on texture 

and motion 

information. 

Developed a 

dynamic threshold 

approach based on 

signal envelope 

variance to 

enhance detection 

performance. 

Combines CNNs 

with SVMs in real-

time simulations to 

evaluate 

effectiveness against 

GPS spoofing 

attacks. 

Employs DT and  

MI for feature 

selection, combined 

with CatBoost, 

AdaBoost and 

XGBoost 

classifiers. 

Performance 

Metrics 

Evaluated 

using NS-2 in 

both 

spoofing-free 

and spoofing-

infested 

environments. 

Achieved 98.5% 

accuracy and 

precision through 

testing on 

classified URLs. 

Achieved a half-

total error rate of 

0.66% on the 

Replay Attack 

dataset. 

Demonstrated 

effectiveness 

through validation 

experiments with 

real GPS signals 

and hardware. 

Achieved up to 99% 

accuracy in the best-

case scenario using 

ML algorithms; DL 

accuracy ranged 

from 99% to 82%. 

Focuses on 

enhancing detection 

accuracy, 

computational 

efficiency, and 

optimal feature 

selection across 

diverse scenarios. 

 

3. PRELIMINARY CONCEPTS 

The following subsections provide background related to the feature selection techniques and classification algorithms used 

in the current work. 

3.1 Feature selection techniques 

The diverse nature of attributes poses a challenge in achieving higher prediction accuracy. To address this, before applying 
an ML model for prediction, the process of selecting features should be implemented to identify and extract key features. It 
aids in reducing irrelevant variables, computational costs, and the problem of overfitting, thereby enhancing the performance 
of the ML model. When the number of attributes used as inputs for an ML model is reduced, the information may not be 
sufficient for making accurate predictions. Conversely, incorporating many features increases the runtime and diminishes 
the generalization performance because of the curse of dimensionality. Consequently, selecting only the features that have a 
significant effect on the results is crucial for achieving successful predictions [14][28]. Two techniques were used in this 
work: DT and MI. 

3.1.1 Decision Tree (DT) Method 

Decision trees (DTs) are commonly used for feature selection since they may rank features on the basis of their impact on 
classification accuracy. The C4.5 technique, an extension of ID3, is frequently used to choose the most crucial features [15]. 
It is a "wrapper method" for feature selection, and it evaluates the entire model's performance with different feature subsets, 
selecting the combination that leads to the highest accuracy. This ensures that the selected features not only individually 
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contribute but also collectively work well for classification [16]. A feature is considered important if splitting on that feature 
significantly reduces entropy in the dataset [17]. The entropy equation is as follows: 

   H(X)  = − ∑ 𝑝(𝑥)𝑙𝑜𝑔2𝑝(𝑥)                                                                                   (1) 

where 𝑝(𝑥) is the probability of an outcome in the dataset. 

3.1.2 Mutual Information (MI) Method 

Feature selection aims to reduce the classification computation time by removing irrelevant characteristics. MI is an ML 
selection method that shows how significant a feature is in creating an accurate prediction [18]. We use MI, which plays a 
crucial role in feature selection by quantifying the relationship between features and the response variable. Various methods 
leverage MI to prioritize features for accurate predictions and reduce costs. It is an information-theoretic metric that measures 
how much knowledge of one feature decreases uncertainty about another (the target variable). 

MI does not presume a linear connection between characteristics and labels, making it adaptable to different types of data. 
It calculates the statistical dependence between a feature and a class label. Features with higher MI values have a stronger 
link with the target variable and are deemed more informative for classification [19]. 
The MI formula is as follows: 

𝐼(𝑥; 𝑦) = 𝐻(𝑥) + 𝐻(𝑦) − 𝐻(𝑥, 𝑦)                                                                        (2) 

where: 

H(x) and H(y) are the entropy of feature x and target variable y, respectively. 

H(x,y) is the joint entropy, which is the uncertainty measure when considering both variables together. 

3.2 Classification and Performance Evaluation 
Three classification algorithms were used in this work, as discussed below: 

3.2.1 CatBoost Classifier 

The CatBoost classifier is a powerful gradient boosting library based on open-source principles. It is nonlinear, tree-based, 

and effective with complex datasets. CatBoost outperforms other boosting techniques, showing significant improvements 

in accuracy and performance. It delivers optimal results quickly, which is valuable for time-sensitive applications such as 

fraud detection. CatBoost simplifies data preparation by supporting categorical features without preprocessing. Its 

advanced capabilities, ease of use, and exceptional performance make it a top choice for machine learning tasks [20]. 

3.2.2 XGBoost Classifier 

It is a powerful ML algorithm presented in various research papers for diverse applications. It has been utilized for detecting 

malware executables with high precision and recall rates. XGBoost stands out for its ability to handle complex problems, 

achieve high prediction accuracy, and offer efficiency in various domains ranging from optical networks and cybersecurity 

to waste material identification [21]. 

3.2.3 AdaBoost Classifier 

AdaBoost starts with a collection of 'weak learners' and iteratively improves them. This is accomplished by assigning 

weights to training examples. The samples misclassified by previous weak learners have higher weights, whereas correctly 

classified samples have lower weights. In this way, the algorithm focuses on examples that are harder to learn from, 

eventually building a strong classifier by combining these improved weak learners [22, 23]. 

4. PROPOSED MODEL 

This model contains three stages: preprocessing, feature selection, and classification, as shown below. The feature selection 
was applied via two techniques for selecting the most important features, which are effective in the prediction of spoofing 
attacks. While the classification stage was applied via three techniques, Figure 1 shows the architecture of the proposed 

model. 
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4.1. Data collection 

Feature’s Importance process 

Input Feature Vector (46 Attributes) 

Feature Construction Stage 

Preprocessing Stage 

Dataset 
Normalize the values Process the null value 

Mutual Inforamtion 

Weight of each feature 

Sorting of feature’s 

importance 

DT 

Score of each feature 

Sorting of feature’s 

importance 

XGBoost AdaBoost 

Performance Measures 

Classification Stage 

CatBoost 

Time 

10 

Features 

20 

Features 
30 

Features 

XGBoost AdaBoost 

Performance Measures 

Classification Stage 

CatBoost 

Time 

10 

Features 

20 

Features 
30 

Features 

XGBoost AdaBoost 

Performance Measures 

Classification Stage 

CatBoost 

Time 

Fig. 1. The architecture of the proposed model. 
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The CIC-IoT2023 dataset was collected from the website https://www.unb.ca/cic/datasets/iotdataset-2023.html; this dataset 
contains (33) different attack types. These attacks are classified into seven categories. Two samples (spoofing attack and 
benign) were selected for this research, where the number of instances of this portion of the dataset was (1584699) and the 
number of features was (47), as shown in Table 1. The selected dataset contains (3) class labels, which are (307593 for 
MITM-ArpSpoofing, 178911 for DNS_Spoofing, and 1098195 for Benign_Traffic). Figure 2 shows the histogram of class 

labels for the spoofing attack [24]. 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 
 
 
 

 

 

4.2 Preprocessing Stage 

Preprocessing is vital in the prediction process, as it repairs the data to ensure that it can be used in feature selection and the 

subsequent classification stage [25, 26]. More than one step has been applied. 

a- NaN and infinity values are processed by filling them with the mean value. 

b- The timestamp feature is deleted because it does not provide any predictive value for the target variable, the 

dataset is simplified, and overfitting is avoided by removing nonessential features such as timestamps. 

c- The value of each instance is normalized via min–max normalization via equation (1): 

                  𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑖𝑛𝑚𝑎𝑥
                                                                                       (3)                                     

4.3  Feature Selection Stage 

As mentioned previously, the dataset has forty-six features that were directly selected via feature selection methods. More 

than one model was applied for selecting the features by using the DT method, MI with different levels (all features, 10 

features, 20 features, and 30 features). Each attribute has a role in detecting the spoofing attack. Figure 3 presents the 

attributes and their descriptions. 

Fig. 2.  The histogram of class labels. 

https://www.unb.ca/cic/datasets/iotdataset-2023.html
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4.4 Classification Stage 

After constructing the feature vector, two techniques are used for classifying the feature vectors: AdaBoost and XGBoost 
and CatBoost. The dataset was split into 70% for training and 30% for testing. 

4.5 Importance of features 

Two methods were applied for selecting the important features: DT and MI, as shown below: 

4.5.1 Decision Tree (DT) Method 

The DT was used to determine the importance of each feature. Therefore, each feature has a score and weight. Figure 4 

shows the histogram of important features via DT, and Table II shows the values of importance for each feature via DT. 

Fig. 3 The attribute and its description 
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TABLE  Ⅱ. THE SCORE OF EACH ATTRIBUTE VIA THE DT 

Feature No. Feature score Feature No. Feature score 

F0 0.055778 F23 0.000000 

F1 0.052010 F24 0.000000 

F2 0.014264 F25 0.000000 

F3 0.015649 F26 0.000647 

F4 0.028520 F27 0.000697 

F5 0.071427 F28 0.000000 

F6 0.000000 F29 0.000089 

F7 0.000003 F30 0.000000 

F8 0.000008 F31 0.000070 

F9 0.000003 F32 0.000076 

F10 0.001514 F33 0.006989 

F11 0.001138 F34 0.012348 

F12 0.000006 F35 0.009508 

F13 0.000000 F36 0.005768 

F14 0.005903 F37 0.005026 

F15 0.012432 F38 0.013554 

F16 0.001222 F39 0.500488 

F17 0.081632 F40 0.000020 

F18 0.034911 F41 0.005843 

F19 0.011620 F42 0.005315 

F20 0.034596 F43 0.007898 

F21 0.000090 F44 0.002899 

F22 0.000000 F45 0.000039 

 

As shown in Table II and Figure 4, each feature had different values depending on the importance of those features. 

Additionally, the feature “Tot size” had more importance than the other features did, whereas eight features had no 

importance, as their values were zero, as shown in Table II. 

4.5.2 The mutual information (MI) method 

The MI was used to locate the importance of features. Therefore, each feature had a score. Figure 5 shows the histogram 

of important features via MI, and Table III shows the values of importance for each feature via MI. 

Fig 4. The histogram of important features using DT. 
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The proposed work was carried out via Python (V.9.5) as a programming language and Jet Brains PyCharm (V.2018.2) as 

a framework. As mentioned, the proposed work contains three main stages. First, the data preprocessing involved 

processing the null values and infinite values and normalizing the data. Second, feature vectors are constructed by selecting 

important features via two methods of feature selection: DT and MI. Finally, the classification stage was carried out via 

three techniques (AdaBoost, XGBoost, and CatBoost) for classifying the feature vectors. Therefore, the spoofing attack 

was classified into four levels (for all features, the thirty most important features, the twenty most important features, and 

the ten most important features), which were selected via the DT and MI techniques shown below: 

5. RESULTS 

5.1 Results of Classifying all Features 
The accuracies of the model when classifying all the features via the AdaBoost, XGBoost and CatBoost techniques were 

86.66%, 94.32%, and 94.63%, respectively, whereas the execution times were 1517.80, 35.1052, and 2321.2705 seconds, 

respectively. Table Ⅳ shows the time and classification results for each technique. Figure 6 shows the accuracy and time 

for the three techniques (AdaBoost, XGBoost, and CatBoost) for all the features. 

Feature 

No. 

Feature score Feature No. Feature score Feature No. Feature score Feature No. Feature 

score 

F0 0.108598 F12 0.000000 F24 0.000000 F36 0.080814 

F1 0.046902 F13 0.000082 F25 0.000272 F37 0.065374 

F2 0.146682 F14 0.008392 F26 0.203900 F38 0.116935 

F3 0.146838 F15 0.068966 F27 0.047309 F39 0.417959 

F4 0.149632 F16 0.000606 F28 0.000000 F40 0.097364 

F5 0.149649 F17 0.160025 F29 0.000098 F41 0.084085 

F6 0.000000 F18 0.115367 F30 0.000000 F42 0.067149 

F7 0.000000 F19 0.023081 F31 0.168586 F43 0.072808 

F8 0.000244 F20 0.195496 F32 0.168724 F44 0.063391 

F9 0.000000 F21 0.000000 F33 0.079652 F45 0.107048 

F10 0.015161 F22 0.000201 F34 0.094788   

F11 0.202207 F23 0.000000 F35 0.186135   

TABLE  Ⅲ.  THE SCORE OF EACH ATTRIBUTE USING MI 

Fig. 5. The histogram of importance using MI 
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As shown in Table Ⅳ and Figure 6, the results using XGBoost and CatBoost had good accuracy and less time than the 

AdaBoost technique when classifying all the features. 

5.2 Results of Classifying Selected Features via DT 

In this section, the accuracy and time of classification using two techniques for selected important features (10, 20, and 30) 

selected via DT are shown. Table Ⅴ shows the accuracy and time of the model when DT is used as the feature selection 

technique, whereas Table Ⅵ shows the classification results for each technique when DT is used as the feature selection 

technique. Figure 7 shows the accuracy and time for three techniques (AdaBoost, XGBoost, and CatBoost) for the important 

selected features via DT. 
 

 

 

 

 

 

 

Technique of 

classification 

Time in seconds Precision Recall F1-score Class label 

 

AdaBoost 

1517.8078 0.92 0.98 0.95 BenignTraffic (0) 

0.60 0.49 0.54 DNS_Spoofing (1) 

0.78 0.68 0.73 MITM-ArpSpoofing (2) 

  0.87 Accuracy 

 

XGBoost 

35.1052 0.95 0.99 0.97 BenignTraffic (0) 

0.89 0.78 0.83 DNS_Spoofing (1) 

0.95 0.87 0.91 MITM-ArpSpoofing (2) 

  94.00 Accuracy 

 

CatBoost 

2321.2705 95.20 99.05 97.09 BenignTraffic (0) 

 89.62 79.76 84.40 DNS_Spoofing (1) 

 95.10 87.47 91.12 MITM-ArpSpoofing (2) 

   94.63 Accuracy 

Technique of 

Classification 

 

The No. of Selected 

Features 

Accuracy 

(%) 

Time in Seconds 

 

 

AdaBoost 

10 85.75 641.9710 

20 86.48 1148.5588 

30 86.69 1468.4216 

  

XGBoosting 

10 94.00 23.5969 

20 94.31 27.7528 

30 94.33 30.2052 

CatBoost 10 94.44 812.3928 

20 94.57 1493.9287 

30 94.65 2103.3345 

TABLE Ⅳ.   THE TIME AND CLASSIFICATION REPORT OF EACH TECHNIQUE FOR ALL FEATURES 

Fig. 6 The accuracy and the time for the three techniques 

TABLE Ⅴ. THE ACCURACY AND TIME OF EACH TECHNIQUE FOR SELECTED FEATURES USING DT 
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TABLE Ⅵ.  CLASSIFICATION REPORT OF EACH TECHNIQUE FOR SELECTED FEATURES VIA DT 

Technique of 
Classification 

 

The No. of 
Selected Features 

Precision Recall F1-score Class label 

 
 

AdaBoost 

 
10 

0.91 0.98 0.95 BenignTraffic (0) 

0.57 0.45 0.50 DNS_Spoofing (1) 
0.77 0.64 0.70 MITM-ArpSpoofing (2) 

  0.86 Accuracy 
20 0.92 0.98 0.95 BenignTraffic (0) 

0.60 0.49 0.54 DNS_Spoofing (1) 

0.78 0.67 0.72 MITM-ArpSpoofing (2) 
  0.86 Accuracy 

 
30 

0.92 0.98 0.95 BenignTraffic (0) 
0.60 0.49 0.54 DNS_Spoofing (1) 
0.78 0.68 0.73 MITM-ArpSpoofing (2) 

  0.87 Accuracy 
 

XGBoost 
 
10 

0.95 0.99 0.97 BenignTraffic (0) 
0.88 0.77 0.82 DNS_Spoofing (1) 

0.95 0.86 0.90 MITM-ArpSpoofing (2) 
  0.94 Accuracy 

20 0.95 0.99 0.97 BenignTraffic (0) 
0.89 0.78 0.83 DNS_Spoofing (1) 
0.95 0.87 0.91 MITM-ArpSpoofing (2) 

  0.94 Accuracy 
30 0.95 0.99 0.97 BenignTraffic (0) 

0.89 0.78 0.83 DNS_Spoofing (1) 
0.95 0.87 0.91 MITM-ArpSpoofing (2) 
  0.94 Accuracy 

 
 
 
 
 
 
 

CatBoost 

10 95.05 99.03 97.00 BenignTraffic (0) 
89.23 79.08 83.85 DNS_Spoofing (1) 
94.89 86.97 90.75 MITM-ArpSpoofing (2) 

  94.44 Accuracy 
20 95.16 99.04 97.06 BenignTraffic (0) 

89.53 79.59 84.27 DNS_Spoofing (1) 
95.01 87.30 09.99 MITM-ArpSpoofing (2) 
  94.57 Accuracy 

30 95.21 99.06 97.09 BenignTraffic (0) 
89.65 79.92 84.51 DNS_Spoofing (1) 

95.21 87.47 91.18 MITM-ArpSpoofing (2) 
  94.65 Accuracy 

 

Fig. 7 (a,b). The Accuracy and time of the three techniques for selected features using DT 

Fig. 7a The Accuracy of three techniques for selected features using DT 

Fig. 7.b The time of three techniques for selected features using DT 
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As shown in Tables Ⅴ and Ⅵ and Figure 7, the results using CatBoost and XGBoost had good accuracy and less time than 

the AdaBoost technique for classifying selected important features via DT for different numbers of important features (ten, 

twenty, and thirty). A comparison of XGBoost and CatBoost in time revealed that XGBoost required less time than did 

CatBoost for different numbers of important features. 

5.3 Results of Classifying Selected Features via Mutual Information 

In this section, the accuracy and time of classification using two techniques for two selected important features (10, 20, and 

30) that were selected via MI are shown. Table Ⅶ shows the accuracy and time of the model using MI as the feature 

selection technique, while Table Ⅷ shows the classification report for each technique using MI as the feature selection 

technique. Figure 8 shows the accuracy and time for three techniques (AdaBoost, XGBoost, and CatBoost) for the important 

selected features via MI. 

TABLE Ⅶ. ACCURACY AND TIME OF EACH TECHNIQUE FOR SELECTED FEATURES VIA MUTUAL INFORMATION  

         

 

Technique of 
Classification 

The No. of Selected 
Features 

Precision Recall F1-score Class label 

 

 

AdaBoost 

 

10 

0.89 0.98 0.93 BenignTraffic (0) 

0.87 0.54 0.69 DNS_Spoofing (1) 

0.94 0.74 0.80 MITM-ArpSpoofing (2) 

  0.89 Accuracy 

20 0.91 0.98 0.94 BenignTraffic (0) 

0.62 0.47 0.54 DNS_Spoofing (1) 

0.75 0.66 0.70 MITM-ArpSpoofing (2) 

  0.86 Accuracy 

 

30 

0.92 0.98 0.96 BenignTraffic (0) 

0.61 0.48 0.54 DNS_Spoofing (1) 

0.78 0.68 0.73 MITM-ArpSpoofing (2) 

  0.88 Accuracy 

  

 

 

 

 

 

10 

0.93 0.99 0.96 BenignTraffic (0) 

0.87 0.70 0.78 DNS_Spoofing (1) 

0.92 0.83 0.88 MITM-ArpSpoofing (2) 

  0.92 Accuracy 

 0.95 0.99 0.97 BenignTraffic (0) 

Technique of Classification 

 

The No. of Selected 

Features 

Accuracy (%) Time in Seconds 

 

 

AdaBoost 

10 88.69 1096.9785 

20 85.71 2525.3971 

30 88.72 2639.2806 

 

XGBoosting 

10 92.41 22.2754 

20 93.91 26.0892 

30 94.31 30.3309 

CatBoost 

10 92.45 957.3016 

20 94.19 1125.9692 

30 94.6 1286.4202 

TABLE Ⅷ. THE CLASSIFICATION REPORT OF EACH TECHNIQUE FOR SELECTED FEATURES USING MUTUAL INFORMATION 
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XGBoost 

20 0.89 0.77 0.82 DNS_Spoofing (1) 

0.94 0.86 0.90 MITM-ArpSpoofing (2) 

  0.94 Accuracy 

 

30 

0.95 0.99 0.97 BenignTraffic (0) 

0.89 0.78 0.83 DNS_Spoofing (1) 

0.95 0.87 0.91 MITM-ArpSpoofing (2) 

  0.94 Accuracy 

 

 

 

 

 

Catboost 

 

10 

93.03 98.47 95.67 BenignTraffic (0) 

87.36 70.99 78.33 DNS_Spoofing (1) 

92.69 83.43 87.82 MITM-ArpSpoofing (2) 

  92.45 Accuracy 

 

20 

94.80 98.88 96.80 BenignTraffic (0) 

88.97 78.45 83.38 DNS_Spoofing (1) 

94.61 86.58 90.42 MITM-ArpSpoofing (2) 

  94.19 Accuracy 

 

30 

95.11 99.04 97.03 BenignTraffic (0) 

89.65 79.52 84.28 DNS_Spoofing (1) 

95.15 87.33 91.07 MITM-ArpSpoofing (2) 

  94.57 Accuracy 

 
 

 

  

Fig. 8 (a,b).  The Accuracy and time of two techniques for selected features using MI 

Fig. 8.a The Accuracy of three techniques for selected features using MI 

Fig 8.b The Time of three techniques for selected features using MI 
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As shown in Tables VII and VIII and Figure 8, the results using XGBoost and CatBoost had good accuracy and less time 

than the AdaBoost technique for classifying selected important features via MI for different numbers of important features 

(ten, twenty, and thirty). A comparison of XGBoost and CatBoost in time revealed that XGBoost required less time than 

did CatBoost for different numbers of important features. 

5.4 Discussion of the Results 

As shown in the previous tables and figures, CatBoost outperforms XGBoost and AdaBoost in terms of accuracy because 

of its unique ordered boosting approach, efficient handling of categorical features, and strong regularization techniques that 

prevent overfitting compared with XGBoost and AdaBoost. 

The structure of CatBoost has a symmetric tree-building strategy, which ensures better generalization, but these advantages 

come at the cost of longer training times because the ordered boosting mechanism, combined with automatic feature 

transformations and additional regularization, requires significantly more computations per iteration than XGBoost does. 

However, reducing the training time if important and reducing tree depth, using GPU acceleration, and lowering the number 

of iterations can help speed up training without a significant loss in accuracy. 

By comparing the two feature selection methods (DT and MI), the selection of features via DT had good accuracy compared 

with that via MI because of the ability of the DT to address large and complex datasets and the different natures of the 

datasets. Figure 9 shows the comparison between all the features and the feature selection techniques in terms of accuracy 

when three classifier techniques are used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The number of selected features affects the resulting accuracy. The best number of features was thirty when important 

features were selected via DT and MI. As shown in the previous tables, the values of the other performance measures 

(F1_score, precision, and recall) for the three class labels were the highest for the BenignTraffic class label and the lowest 

for the DNS_Spoofing class label because the number of BenignTraffic class labels was greater than that of the other class 

labels, and the number of DNS_Spoofing class labels was less than that of the other class labels. The time required for the 

selection method, especially DT, was less than the time needed for classifying all the features. 

Fig. 9.  The Comparison between all features and feature selection techniques in accuracy using three classifier techniques.  
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By comparing the related works and the proposed models in this work, the proposed system applied boosting techniques 

(CatBoost, XGBoost, AdaBoost) with feature selection (DT, MI). The goal is to improve accuracy in classification tasks 

by selecting the most relevant features. Compared with related studies, which address various spoofing detection techniques 

across different domains (IoT networks, phishing detection, facial recognition, GPS spoofing, and autonomous vehicles), 

the proposed system is used for multiclass classification, achieving high accuracy while being computationally efficient 

for structured data. Compared with related methods, it is more general-purpose than phishing detection, facial antispoofing, 

and GPS spoofing detection. While deep learning-based models (CNNs) in related works achieve higher accuracy (99%), 

they require significantly longer training times and large datasets. The proposed system balances accuracy and efficiency 

well, making it an ideal choice for structured data classification tasks. 

5.5 Analysis of the impact of features on model accuracy 

In this subsection, we analyse how different features impact model accuracy, focusing on a decision tree (DT) and mutual 

information (MI) for feature selection. These two methods identify significant features for spoofing attack detection. Not 

all features contribute equally to accuracy; selecting relevant features improves performance while reducing complexity. 

A DT assigns importance scores on the basis of its data splitting ability. "Tot size" had the highest score, which is critical 

for spoofing detection. XGBoost achieved 94.32% accuracy with 46 features. The top 10 features maintained 94.00% 

accuracy. Increasing the number of features to 20 or 30 slightly improved the accuracy. Selecting fewer features 

significantly reduces the execution time. MI measures the dependency between features and the target variable. "Tot size" 

and "Flow duration" had high MI scores. Using all 46 features, XGBoost had 94.32% accuracy. The top 10 features with 

the MI resulted in 92.41% accuracy. The DT generally outperforms the MI in terms of accuracy. Both methods showed 

that selecting important features maintains accuracy while reducing cost. "Tot size" was consistently important in spoofing 

detection. Features with zero importance were irrelevant. Using a fraction of features is sufficient for near-optimal accuracy. 

DT provides slightly better accuracy than MI with comparable efficiency. Selecting relevant features reduces the execution 

time while maintaining performance. 

5.6 Practical Applications of the Proposed Model 

Understanding findings in the real world is crucial for research relevance. Discussing practical applications and 

considerations for deploying models in advanced IoT systems. 

1. Application in IoT Security: Enhances security in vulnerable IoT environments. Integrating the model into security 

frameworks enables real-time monitoring and automated threat detection. 

2. Integration with Existing Security Solutions: Enhances security posture by improving detection rates and reducing 

false positives. 

3. Scalability across diverse environments: The model is flexible and adaptable for various IoT applications. 

5. CONCLUSION AND FUTURE WORK  

The revolution of the IoT addresses connecting billions of devices and generating an unprecedented volume of data, hence 

addressing significant security challenges. IoT devices generally possess limited security capabilities, making them 

vulnerable to cyberattacks. Spoofing attacks are among the cyber threats that target the IoT environment. In this work, the 

Spoofing attack was detected via two techniques of feature selection, DT and MI, and three classification techniques, 

AdaBoost, XGBoost, and CatBoost. The proposed work generally contains three main stages. The results showed that the 

feature selection technique had a positive effect on both time and accuracy without introducing bias. The optimal number 

of features played an important role in achieving accurate results without bias and in reducing the processing time. The 

CatBoost classifier outperformed the AdaBoost and XGBoost classifiers in terms of accuracy. 

For future work, deep learning could be used for better detection. Test models on diverse datasets for generalizability. 

Explore advanced feature engineering. Conduct real-world studies in IoT environments and develop user-friendly interfaces 

for deploying models. For future work, deep learning could be used for better detection. Test models on diverse datasets 

for generalizability. Explore advanced feature engineering. Conduct real-world studies in IoT environments and develop 

user-friendly interfaces for deploying models. 
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