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A B S T R A C T 

The rapid proliferation of Internet of Things (IoT) devices has significantly increased the threat 

landscape, with malwares arising as a critical concern. Advanced learning methods such as machine 

learning (ML), deep learning (DL), and federated learning (FL) are essential for handling complex IoT 

data. ML provides tools for pattern identification and detecting anomalies. DL boosts malware detection 

by automatically extracting features and identifying patterns. FL enables collaborative model training 

across decentralized devices, ensuring data privacy, which is crucial for diverse IoT systems. This 

comprehensive review specifically synthesizes ML, DL and FL for malware detection in the IoT 

environment, highlighting key trends and developments. Additionally, several significant contributions 

have been provided, including an overview of various types of malwares and their approaches and a 

comparison with existing studies. Importantly, notable trends and advancements are highlighted, and 

the current limitations of these learning techniques in malware detection are identified. It concludes by 

outlining future research directions to develop robust, scalable malware detection mechanisms tailored 

to safeguard the prosperity of the IoT environment against evolving cyber threats. 

1. INTRODUCTION 

The rapid expansion of Internet of Things (IoT) devices has resulted in an increase in risks arising from distributed denial 

of service attacks (DDoS). Additionally, the vast scope and diversity of IoT ecologies present distinctive security obstacles, 

necessitating specialized and intelligent measures to safeguard essential infrastructure [1]. Moreover, network attacks in 

the form of DDoS are implemented with the intention of interfering with server responses and functionalities, which is 

widely common due to its simplicity in establishment and the difficulty it presents in terms of identification[2]. Owing to 

the heterogonous devises of the IoT as a smart home and the significant advancements in the home appliance sector, there 

has been a notable surge in demand for these products. The users are faced with many choices when selecting electrical 

appliances, a situation that can potentially lead to confusion. Consequently, recommendation systems have experienced 

widespread adoption across various digital domains. These automated recommendation systems, which utilize diverse 

methodologies, play a crucial role in suggesting suitable devices to users [3]. Moreover, these devices have led to a 
significant rise in streaming data. Among these data, certain elements exhibit characteristics of malicious software intent 

that evade detection by conventional security measures such as firewalls and anti-maliciousness software [4]. 

Cybersecurity encompasses an array of technological solutions and procedural frameworks that are meticulously 

engineered to safeguard networks and computing systems from various forms of assault and data expropriation, while 

simultaneously inhibiting unauthorized access through the establishment of comprehensive protocols aimed at achieving 

absolute defence against cybercriminal activities[5][6]. 

The structure of the IoT is composed of hardware, software, sensors, and communication components. Communication 

among these devices occurs through networks or the internet, facilitating data sharing. These devices vary from complex 

machinery across different sectors to basic devices. By collecting data from their environment, IoT devices observe and 

examine the physical world. These data can subsequently undergo processing for additional application or task automation 

[7]. 
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The significance of malware detection is paramount, especially considering the substantial expenses associated with 

malware attacks. These attacks must be identified and denied effectively within the realm of network security, particularly 

in the context of domain name system (DNS) services [8]. 

The term malicious software poses a significant challenge within the realm of cybersecurity, which is constantly evolving 

to evade traditional detection methods based on signatures. Specifically, the realm of ML, particularly DL, displays promise 

as a means of identifying malware. DL revolves around the acquisition of multitiered data representations, with the upper 

tiers encapsulating more abstract notions. As a result, DL models can grasp highly intricate functions directly from 

unprocessed data without the need for extensive feature manipulation. This approach has proven remarkably efficient in 

discerning patterns within datasets of significant complexity and finds application across numerous fields. Nevertheless, 

conventional ML encounters difficulties when handling intricate, unprocessed data [9]. Malware denotes malicious 

software such as “viruses, Trojans, and spyware'' engineered to infiltrate or harm computer systems. Malware creators 

employ tactics such as obfuscation to elude detection by antivirus software reliant on fixed pattern recognition. Nonetheless, 

various forms of malware often exhibit shared fundamental behaviours that can potentially be pinpointed through ML 

techniques, even when the code structure differs [9],[10]. 

Automated ML (Auto-ML) is a promising methodology that has the potential to lessen the domain-specific knowledge 

needed for the creation of customized DL through the automation of critical components of ML pipelines, specifically 

hyperparameter optimization and neural architecture search (NAS). By reducing the reliance on human trial-and-error in 

the design of DL models, Auto-ML is able to discover novel model structures with minimal computational resources in its 

more recent iterations [11]. 

Furthermore, ML models have the ability to undergo training using extensive amounts of network traffic and device 

behaviour data, facilitating accurate detection of ransomware attacks. Nevertheless, the ever-changing and varied 

characteristics of IoT device operations present difficulties for ML models in terms of adjusting and generalizing efficiently 

[12]. DL models acquire the ability to distinguish authentic from malicious domains by employing a training dataset 

comprising samples from both categories. The models are provided with labelled samples of legitimate and malicious 

domains to facilitate their training and learning process. Within the realm of DL, LSTM models are deemed optimal for 

addressing text classification issues owing to their intrinsic capacity to retain correlations from previous inputs [13]. 

Thus, the implementation of a system such as intrusion detection is a pressing concern with the goal of differentiating 

between irrelevant and pertinent data to maintain the availability and integrity of data [14]. This review provides valuable 

perspectives on the diverse methods learning techniques and their approaches used for identifying malware in IoT networks. 

Consequently, the core contributions of the review paper include the following: 

1. Clarifies the foundation of malware and trend technologies for propagation malware with new approaches for 

detection. 

2. Investigate the stealthiest techniques that are used for the malware. 

3. Overview of malware detection in general and specifically detection in IoT environments, as well as their analysis 

techniques. 

4. Expounds on crucial methodologies and strategies employed in the detection of malware. 

5. Recent studies in this field have used different learning techniques. 
The structure of this comprehensive reviewer paper is as follows: Section 2 describes the fundamentals of malware, which 

consists of the most common malware with their function and the techniques that malware uses for stealth. Section 3 

presents a comprehensive review-based malware detection analysis and approaches. Furthermore, it covers aspects of 

malware detection on the IoT. Section 4 explores the prior research associated with the present subject and clarifies the 

systematic details of each study. Section 5 highlights the current approach limitations and discusses the challenges in this 

particular field. Section 6 discusses the possibilities of future research directions to improve the performance and 

effectiveness of different learning technique-based malware detection methods in the IoT environment. Section 7 concludes 

this paper by integrating the key findings and academic contributions. 

2. MALWARE FOUNDATION 

The term malware, also referred to as “Malicious software,” is used to gain unauthorized access to systems. It can slow 

down a computer and internet connection, steal or gather sensitive information, infiltrate personal computer systems, send 

spam from a device, target other computers, and send files to criminal entities. The definition of malware is continuously 

expanding due to the ongoing evolution of new exploits. Moreover, the volume, variety, and capabilities of malware threats 

are increasing due to the opportunities provided by technological advancements. IoT devices, smart devices, social media 

platforms, internet connections, smartphones, and more facilitate the development of intelligent, complex, and highly 

sophisticated forms of malware [15]. The constant variety and complexity of malware make classification difficult. 

Nevertheless, the classification of malware provides important insights to improve its understanding. Before examining the 
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working foundations of malware, let us define some common terms used to describe the different categories of malware, 

as shown in Table I [15], [16]: 

TABLE I.  MOST COMMON TERMS OF MALWARE 

Importantly, practices of cybersecurity, consistent software upgrades, and trustworthy security applications are crucial in 

safeguarding against such vulnerabilities. In the field of literature, malware is often characterized by three prevailing 

properties. (1) The propagation method refers to how malware spreads from one system to another and determines how the 

malicious code infects new hosts. It establishes how malicious code spreads to new systems. Moreover, comprehending the 

significance of propagation aids in creating efficient defence mechanisms; (2) Concealment strategy, which encompasses 

methods employed by malicious software to avoid being detected and poses a challenge for security solutions in recognizing 
and examining harmful code; and (3) Persistence, which guarantees that malware stays operational on a compromised 

system even following reboots. This is accomplished by altering system configurations, generating registry entries, or 

setting itself up as a service. Table II lists specific malware examples on the basis of these properties [16],[17]: 

TABLE II.  MALWARE CATEGORIES BASED ON PROPAGATION, CONCEALMENT AND PERSISTENCE METHODS 

As shown in Table II, malware types and distribution techniques differ. Some spread across networks, whereas others 

depend on human behaviour, such as opening email attachments or running malicious code. Obfuscation, polymorphism, 

and metamorphism are common concealment methods. System settings are often changed for persistence; therefore, they 

must be secured and monitored. Owing to its developers' distinct strategies, each form of malware is hard to recognize and 

delete. If one knows these approaches, one may construct concentrated defences to reduce these hazards. 

2.1 Stealthy Technique of Malware 

One way to categorize malware knowledge is into "classic" and "modern" malware. Malware of yesteryear was both 
pervasive and target-agnostic. Typically, it uses well-known security holes and does not try to remain undetected for very 
long. The system was not severely impacted by these strikes, and they were very transitory. Regardless, malware has 

Terms Year 
Appeared 

Elaboration Function 

Virus 1971 Malicious programs have the ability to affix themselves to authentic 
files or software applications and propagate through the execution of 
the contaminated file. 

Omit files 
Disabling system 

Worm 1988 Worms represent self-replicating programs that spread across 
networks that hand down from one system to another without the need 
for user interaction. 

Network damage 
Slowdown 

Trojan Horse 
 
 

1983 Trojans showing harmless but contain hidden malicious code. 
Moreover, they frequently disguise themselves as authentic software 
or files, deceiving users into initiating their execution. 

Steal sensitive information 

Spyware Late 1990s Same as trojans horse Rerecording the keystroke of 
keyboarded for data theft 

Adware 1995 Displays unwanted advertisements or redirects users to promotional 
websites. While not always malicious, the existence of a substantial 
volume of adware can lead to considerable irritation and negatively 
impact the system's performance. 

Fills the computer with tons of ads in 
order to monetize 

Ransomware 1989 Lead an individual’s computing system to be data encrypted.  It can 
cause significant data loss and financial harm. 

Locks all file on computer and 
demands payment (usually in 

cryptocurrency) to unlock them 

Backdoor 1998 Designed to breach system security by manipulating local security 
protocols, thereby enabling unauthorized remote access and control of 
a network. 

Attackers use them to maintain 
control even after initial compromise 

Keylogger 1980s Insidious form of spyware. 
 

Same as function of spyware 

Botnet 1999 The composition involves compromised devices, also known as (bots), 
which are overseen by a central server. 
 

Used for 1) DDoS attacks 
2) spam distribution, 

3) other malicious activities. 

Rootkit Mid 1990s Attain heightened privileges in order to oversee the system and 
circumvent security protocols. 

Hide malicious processes files, or 
network connection from detection 

Malware Propagation Method Concealment Strategy Persistence 

Virus Email attachments Polymorphism Altering system configurations 

Worm Network spread Metamorphism Exploiting memory vulnerabilities 

Trojan Horse User execution Fileless Altering system configurations 

Spyware User interaction Obfuscation Altering system configurations 

Adware Software bunding Stealth techniques Altering file system 

Ransomware Email attachments Encryption Altering file system 

Backdoor Manual installation Code obfuscation Altering system configurations 

Keylogger User interaction Memory-based Altering system configurations 

Botnet Network propagation Dynamic behaviour Altering system configurations 

Rootkit Manual installation Concealed processes Altering system configurations 
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become more sophisticated as a result of technical advancements.  Advanced malware is usually targeted and persistent, 
with specific targets in mind. It can exploit unknown vulnerabilities, known as "zero-day" vulnerabilities, and employ 
complex methods to avoid detection. Therefore, advanced malware poses a greater and more challenging threat than 
traditional malware does [18]. Stealthy malware or ‘stealthy techniques can employ a variety of techniques. 

 

 

 

 

 

 

 

 

 

Fig. 1.  

Fig. 1. The stealthy technique of malware. 

1)   Obfuscation 

Intentionally complicating code to impede reverse engineering and analysis is known as code obfuscation. This practice 

serves to obscure the genuine intent of the code. In the realm of malicious software, obfuscation frequently encompasses 
encryption, manipulation of data, and various strategies aimed at perplexing analysts and antivirus scanning tools. Further 

elaboration of this technique obfuscation involves altering plain, easily readable code, scripts, or text into a complex form 

to hinder understanding and reverse engineering by researchers and automated analysis. Legitimate software developers 

employ obfuscation to safeguard their intellectual property, increase the challenge of copying or altering their code, prevent 

software reverse engineering, and protect copyright licences. Through this technique, malware creators can cloak their 

malicious code, posing challenges for researchers in analysing, detecting, and mitigating it [18], [19], [20], [21]. 

2)    Polymorphism 

In cybersecurity, this practice can be perceived as a type of obfuscation, enabling malware to alter its fundamental 

characteristics and actions, thereby increasing the challenge of detection. Furthermore, the influence of polymorphic 

malware on software applications surpasses that of conventional malicious software, which is detectable by antivirus 

programs. The initial emergence was characterized by its ability to alter and decrypt itself, resulting in a few undetectable 
threats through traditional signature-based systems. Malware creators have continuously devised numerous malicious 

schemes daily, utilizing techniques such as obfuscation code and code insertion. These individuals leverage polymorphic 

toolkits, such as mutating engines and polymorphic packers (referred to as polymorphism engines), to transform no 

obfuscated malware into polymorphic forms. The detection of malware produced through this method occurs postinfection 

of the targeted system, increasing the likelihood of achieving its objectives before being identified [22], [23], [24]. 

3)  Oligomorphic 

Oligomorphic malware represents a form of polymorphic malware that is distinct in nature from fully polymorphic 

malware, which has a wide range of manifestations. In contrast, oligomorphic malware adheres to a restricted number of 

preset configurations. The code of an oligomorphic nature alters its structure but remains constrained within a limited array 

of potential formats. This characteristic facilitates comprehensive coverage via signature-based detection methods. Despite 

their lower adaptability than fully polymorphic malware, oligomorphic approaches present considerable complexity for 

security mechanisms aiming to detect and obstruct malevolent code [25], [26], [27]. 

4) Metamorphism 

Metamorphic malware elevates obfuscation to a greater degree by not only altering its visual representation but also 

completely transforming it with each iteration. The core functionality remains unchanged; however, the internal 

arrangement of the code varies with each execution. Continuous metamorphosis poses a significant challenge in terms of 

detection. The mechanism employed by metamorphic malware involves self-rewriting of its code, modification of 

instructions, and application of diverse transformations [28], [29], [30], [31]. Table III summarizes the above techniques 

with their key features; 

 

Stealthy Technique 

Obfuscation Metamorphism Oligomorphic Polymorphism 
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TABLE III.  SUMMARY OF STEALTHY TECHNIQUES 

 

 

 

 

 

 

3. MALWARE DETECTION OVERVIEW 

In the modern interconnected digital environment, malware risk presents a substantial obstacle to cybersecurity. Malicious 
software, encompassing viruses, worms, ransomware, and trojans, has advanced intricacy and developed. Conventional 
identification approaches reliant on signatures frequently prove inadequate in confronting these progressing risks. A 
potential solution for this problem has arisen in the form of implementing ML and DL approaches for the assessment and 
identification of malware[32], [33]. ML algorithms utilize historical data for the purpose of recognizing patterns and 
anomalies linked to malware. Various methods employed in this process include decision trees, random forests, support 
vector machines, and neural networks. The extraction of features, encompassing behavioural attributes or statistical 
characteristics from malware samples, is essential in the realm of ML-driven detection. Scholars have delved into the realm 
of ML models for conducting both static and dynamic evaluations of malware samples[34]. Advanced learning models 
(DL), particularly deep neural networks (DNNs), have shown potential in identifying intricate and diverse forms 
(polymorphism) of malicious software. In the form of detecting maliciousness, convolutional neural networks (CNNs) and 
recurrent neural networks (RNNs), which evaluate “raw binary information” or “sequences of system calls”, which involve 
the adjustment of preexisting DL models for the purpose of malware detection, have garnered significant interest [32] [35], 
[36]. 

3.1 Analysis techniques of malware detection 

The analysis technique of malware detection involves the systematic inspection of executable files to extract valuable 
information. The primary objective is to delineate the scope of a cyberattack and identify the various features and actions 
of malicious software. The ultimate aim is to mitigate the risk of comparable cyber threats that target information systems. 
Malware detection analysis can be classified into three distinct types: static, dynamic, and hybrid, as shown in Fig. 1[37]. 
The static analysis involves scrutinizing an executable file without its execution, whereas the dynamic analysis necessitates 
the execution of the file to scrutinize its behaviours within a controlled setting. Hybrid methodologies combine insights 
gathered from both static and dynamic analyses to gather information about malware. All three analyses are illustrated in 
detail below [38], [39], [40]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Malware detection analysis [37]. 

Technique Description Key Features 
Obfuscation Engages in the modification of the code 

architecture to obscure its genuine intent. 
• Uses encryption and compression. 
• Makes reverse-engineering difficult. 

Polymorphism 
 

Modifies the code of the malware with every 
instance of infection while preserving its 
operational capabilities. 

• Generates unique variants. 

• Evades signature-based detection. 

Oligomorphic Similar to polymorphism but with a limited set of 
variations. 

• Fewer unique variants than polymorphic 
malware 

• Easier to detect than polymorphic malware. 

Metamorphism Completely rewrites its own code with each 
iteration, creating new variants. 

• More complex than polymorphism. 
• Difficult to analyse due to constant change. 
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•   Static Analysis Technique 

In the static analysis technique, the feature extraction method, also known as static feature extraction, can be utilized to 

derive characteristics from the contents of executable files without their execution. Through analysis of file formats such as 

portable executable files (PEs) and common object file formats (COFFs), these static features are extracted [41]. A PE file 

must submit unpacking and decompression prior to analysis. Tools such as ‘IDA Pro’ and ‘OllyDbg’, which offer a display 

of assembly instructions, provide insights into the malware, and facilitate the extraction of patterns for attacker identification, 

can be quite beneficial [42]. Notably, the portable executable (PE) file format, which is commonly used for Windows 

executable files, has garnered interest in the field of static malware analysis. ML  has shown strong effectiveness in detecting 

malicious PE files, with certain studies utilizing deep neural networks [43]. 

• Dynamic Analysis Technique 

A pivotal stage of the scholars of cybersecurity, as they commence comprehending the actions of a harmful specimen (for 

example, ransomware) during its operation within a secure setting. This process facilitates the examination of the traces left 

by the sample under review, encompassing window API calls, registries, file system processes, network communications, 

etc. Scrutinizing such records of events empowers scholars to formulate defensive tactics aimed at identifying a malevolent 

operation as it unfolds on a compromised system, causing harm (such as encrypting data in the scenario of ransomware) 

[44], [45]. In light of the forthcoming implementation of a maliciousness artifact in this analysis, it is imperative to establish 

a secure setting to ensure that adverse outcomes, such as the transmission of infections to adjacent networks or the 

compromise of the host computer by malicious software, are averted [46]. 

• Hybrid Analysis Technique 

The term “hybrid'” combines both of the above techniques. This combination of static and dynamic analysis improves the 

accuracy of identifying malicious software by utilizing their individual strengths. Analysts and security researchers utilize 

API calls to increase their comprehension of malware operations, detect their presence, and devise efficient strategies to 

mitigate their impact, since both static and dynamic techniques use API calls. The examination of API calls the “application 

programming interface”, which is conducted by malicious software (malware) during operation, enables the evaluation of 

their behaviours in a real-time setting, providing crucial insights into their capabilities, such as unauthorized data exfiltration 

and intrusion into computer systems [47]. Table IV shows a comparative summary of these techniques and reveals their 

operational mechanisms, effectiveness, and application contexts, which are crucial for understanding their roles in 

cybersecurity. 
TABLE IV.  SUMMARY OF ANALYSIS TECHNIQUES 

While static and dynamic analyses provide foundational detection capabilities, hybrid analysis emerges as a robust solution, 

integrating the strengths of both approaches. However, the evolving nature of malware continues to challenge all detection 

methods, necessitating ongoing research and adaptation in detection strategies. 

3.2 Approaches of the malware detection 

Scientifically understanding the term of malware detection, which is the process of detecting malware, involves the 
mechanization that is necessary to be deployed to uncover and recognize the malicious behaviors exhibited by the files 
being examined [48]. In addition, the individual technologies used to detect malware include certain advantages and 

Technique Definition Strengths limitations 

Static 

Analysis 

Involve examining the code 

without executing it. 
• Fast and efficient for identifying 

the signatures of   known 

malware. 

• Can detect vulnerabilities in the 

code structure. 

 

• Cannot stop obfuscated or polymorphic 

malware. 

• Many pieces of benign code mistakenly 

detected as malware. (high false positive 

rate (FPR)) 

Dynamic 

Analysis 

Includes code execution to 

monitor behaviour in a controlled 

environment. 

• Effective in identifying run-time 

behaviours and interactions with 
the system. 

• Can detect previously unknown 
malware through behavioural 
patterns. 

• Resource-intensive and time-consuming. 

• May miss malware that does not exhibit 

malicious behaviour during analysis 

 

Hybrid 

Analysis 

Involve comprehensive detection 

by Combines both static and 

dynamic techniques. 

• Capitalizes on the advantages 

presented by both methodologies, 

thereby enhancing detection 

efficacy. 

• Minimizes the occurrence of false 

positives (FP) and improves the 

detection of intricate malware. 

• It requires more resources and complex to 

implementation. 

• May still struggle with advanced evasion 

techniques that used by sophisticated 

malware. 
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disadvantages; however, the incorporation of recent malware detection methods aims to increase the security of computer 
systems by identifying and preventing potential data loss and vulnerabilities stemming from malicious intrusions facilitated 
by harmful software. The system is further strengthened through the efforts of the malware detector in identifying malicious 
activities. While various detection methods, including signature-based, behaviour-based, model-based, and heuristic-based 
detection approaches, along with emerging techniques such as DL, cloud, mobile device, and IoT-based methods, are 
efficient in promptly and accurately spotting known viruses, signature-based systems fall short in detecting unknown 
malware due to the lack of files for assessment and subsequent virus total submission, posing a challenge for security 
software in identifying fileless malware [49], [50]. 

• Signature-Based Model For Malware Detection 

The use of signature-based techniques for identifying malware plays a pivotal role within the framework of our 

cybersecurity approach. The current approach has been formulated with the aim of identifying and averting the emergence 

of recognized malware patterns and signatures. By recognizing these extensively known threats, we are able to promptly 

respond to and reduce their impact, thereby providing a robust initial defence for SMEs and smart homes [51]. Furthermore, 

the Antivirus software frequently employs this method of malware identification to isolate the signature of the analysed file 

and collocate it against the signatures catalogued in a repository of recognized security risks [52]. 

Signature-based models have shown inefficacy in the detection of zero-day malware. The constraints of signature-based 

and pattern-matching approaches include their inability to identify zero-day attacks and their restricted ability to recognize 

a specific category of malware [53]. While the conventional methods of signature-based detection present a straightforward 

and efficient means of recognizing established threats, they involve a number of constraints when encountering dynamic 

and diverse threats. The advantages of employing signature-based strategies lie in their rapid and effective identification of 

familiar threats, along with their straightforward implementation and administration. Nevertheless, these techniques prove 

inadequate when encountering unprecedented or previously unseen attacks, as they depend on predetermined signatures 

that may overlook emerging threats or variations of recognized malicious software. Furthermore, the susceptibility of 

signature-based detection to circumvention techniques, such as polymorphism and obfuscation, poses a challenge because 

it enables the bypass of signature matching and evasion of detection[54]. 

• Behavior- or Anomaly-Based Model For Malware Detection 

Behaviour patterns in malware detection involve analysing incoming images on the basis of the tasks and actions they were 

preprogrammed to execute before determining the feasibility of proceeding with an operation. The scrutiny includes an 

examination of the functions of a file and potentially its threat level. The use of behaviour-based techniques in technology 

enables the swift identification of new and unexpected threats, acknowledging the inherent limitations of computers in 

achieving absolute accuracy. Unlike the signature model, which detects only known malware. acknowledging the inherent 

limitations of computers in achieving absolute accuracy [55]. 

• Heuristic Based Model For Malware Detection 

It represents a methodology to detect and differentiate the customary and anomalous operations of a system with the aim 

of recognizing identified and unidentified malicious software intrusions and devising an appropriate resolution [56]. During 

the period from 2000--2010, the integration of heuristic-based detection methods with signature-based detection was a key 

approach in addressing malware threats. The heuristic method emerged as a particularly promising approach for identifying 

novel or unfamiliar forms of malware. Moreover, within this methodology, domain specialists rely on their expertise in 

malware analysis to establish regulations capable of distinguishing malicious software from harmless programs. These 

regulations must be adaptable for effectively detecting malware and its different versions with precision and a minimal rate 

of false positives. Nonetheless, the establishment of such rules is manually conducted by field experts, leading to a slow 

and arduous procedure [57]. 

The use of both signature- and heuristic-based malware detection has its own set of advantages and disadvantages. Although 

static and dynamic analyses represent robust mechanisms capable of functioning independently for malware analysis, an 

additional category that can yield advantages is the hybrid approach, which integrates both static features and dynamic 

features for analysis. The optimal level of security will be achieved through the utilization of both technologies. This 

methodology is particularly advantageous when attempting to reverse engineer intricate malwares. The true motives and 

capabilities of malware can be more effectively scrutinized through the application of a hybrid approach [58]. 
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Fig. 3. Recent approaches to malware detection [59]. 

3.3 Malware Detection in IOT  

Throughout recent decades, the vast majority of harmful software has been designed to exploit weaknesses in personal 
computers running on the Microsoft Windows system, which has maintained the top position in the worldwide market, 
with an 83% share. Nevertheless, the variety of computing devices has undergone rapid transformation in recent years, 
largely driven by advancements in IoT technology. IoT devices are constructed on a range of central processing unit (CPU) 
architectures, even extending to low-powered hardware such as Unix-based operating systems. This shift has made IoT 
devices increasingly attractive targets for malicious actors, primarily due to inadequate security protocols and mechanisms. 
In general, IoT malware shows particular features such as its utilization in orchestrating DDoS attacks; scanning open ports 
of IoT services such as the File Transfer Protocol (FTP), Secure Shell (SSH), or Telnet; and launching brute-force attacks 
to compromise IoT devices [60]. Ensuring the protection of the IoT system from malware is crucial for the safety of workers 
and fundamental for maintaining the effective operation of the Industrial Internet of Things (IIoT). These IoT devices can 
manifest as tangible entities or as intangible entities that engage in interactions [61]. 

To actualize the IoT, advancements in computing are imperative, transcending the realm of traditional mobile and 
smartphone applications to encompass the interconnection of mundane physical objects with an infusion of intelligence 
within their surroundings. Consequently, novel computer functionalities and challenges will emerge. As a result, there is a 
heightened ability to promptly cease unsafe activities due to the proliferation of IoT networks. Malicious software incidents 
frequently target the cybersecurity of personal computers, smartphones, and IoT devices. The concept of the IoT pertains 
to the interlinking of intelligent objects, spanning from minor appliances such as coffee makers to substantial vehicles, 
enabling autonomous communication devoid of human intervention, commonly referred to as device communications. The 
contemporary landscape has undergone a progressive evolution towards smarter technologies that possess the ability to 
engage with diverse devices. Owing to the diverse and complex nature of the IoT, ensuring universal privacy is increasingly 
challenging, as its rapid proliferation extends across multiple sectors, such as smart residences, healthcare facilities, and 
beyond. Various forms of vulnerabilities are discernible in this context [62], [63]. 
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In the interim, conventional computers pose a significant threat to the IoT ecosystem by leveraging them to compromise 
other interconnected devices within the same environment. Observing these patterns, it is evident that IoT applications 
represent a burgeoning domain for exploration in the realm of security [64]. High-tech innovations and rapid developments, 
such as big data, 5G, computational intelligence, and the IoT , are combined to overhaul different industries during the 
Fourth Industrial Revolution [65]. Among these rapid techniques, the interplay among IoT, AI, and 5G drives the 
incorporation of intelligent technologies into various sectors, such as intelligent vehicles, manufacturing facilities, and 
urban areas [66]. 

The ongoing revolution of industries brought about by this transformation is accompanied by the significant impact of the 
expanding IoT market, not only altering industrial environments but also exerting a lasting influence on our everyday 
activities. Nevertheless, the interconnected nature of IoT  devices renders them vulnerable to a wide range of cybersecurity 
risks, such as (botnet activities, cryptocurrency mining, and distributed denial-of-service (DDoS)) assaults that these attacks 
expose open port access in IoT devices [67]. 

4. RECENT RESEARCHS ON MALWARE DETECITION APPROACHES 

This section presents the most recent studies from 2000--2024 on malware detection, either in the IoT environment or 
another environment, which are clarified in Table V. The table shows basic information for each study and its own 
contribution, with the technique used in feature selection being determined and how it represents these features with the 
learning technique and their evaluation with the dataset and operating system used. These studies were conducted with 

concentrated-based malware detection within the IoT as well as in other contexts. 

TABLE V.  RECENT STUDIES ON MALWARE DETECTION BASED ON DIFFERENT LEARNING METHODS 

Ref Year Contribution Features IoT 
 

Techniques Evaluation Dataset OS 

[68] 
  

2020 
 

Cloud-based nested virtual 
environment 
(convert behaviour of 
extracted data to image). this 
study aims to adopt a novel 
approach known as dynamic 
analysis for IoT (DAIMD) 
malware detection. This 
method utilizes dynamic 
analysis on IoT malware 
within a nested cloud-based 
Virtual Machine (VM) 
environment. moreover, it 
utilizes a Convolutional 
Neural Network (CNN) model 
to learn behaviour images that 
are condensed with a 
substantial volume of 
behavioural data. 

Behaviour of Memory, 
Network, System call, 
Virtual file system 
(VFS), 
& 
 Process 
(Dynamic Analysis) 

yes 
 

ML 
CNN 

Accuracy= 
99.28% 
FPR=0.63% 
FNR=0.74% 

ZF-Net model 
(840 images) 
Dataset 

Linux 
 

[69] 
 
 
 
 
 
 
 

2020 
 

Reduces the number of API 
calls that represent sample 
(malware or good-ware). this 
study aims to detect malware 
and analyse it based on API 
calls-dynamic sequences. 

Clustering API functions 
(Dynamic Analysis) 

No ML 
Clustering 
 

Accuracy= 
0.997% 
Precision= 
0.990% 
FPR= 
0.010% 
FNR= 
0.007% 

Malware & 
Good-ware 
(API call 
sequences) 
Dataset 

Win 

[70] 
 
 

 

2020 Present multiple processes to 
study and generalize the 
heterogeneous sequences of 
API. this study aims to 
developing two feature 
extraction and generation 
approaches, namely, Method 1 
and Method 2, which do not 
rely on expert domain 
knowledge of the arguments. 
in first method, all arguments 
of each API call are treated as 
a single feature, where the 
total number of features 
corresponds to the number of 
API calls. On the other hand, 
adopt generalizing each 
argument of every API call 
individually. moreover, the 

Bit-vectors 
(Dynamic Analysis) 

No 
 

ML Method1 
Accuracy= 
99.87% 
 

Mal-share 
website 

Win7 

Method 2 
Accuracy= 
97.95% 
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resulting that related to the 
number of features being 
equivalent to the number of 
API arguments. 
 

[71]  2020 Present the first ML-based 
malware visualization 
detection method. this study 
aims to visualizing the global 
malware file format and 
provide the accuracy of 
detection to avoids potential 
intrusions arising from 
malware (AEs) adversarial 
examples and their 
corresponding modifications. 
 

Greyscale Image 
 

No 
 
 
 

ML 
CNN 
 & 
SVM 
 

Accuracy= 
97.73% 
Average 
(Tested)= 
96.25% 
 
 
 

MS BIG 
malware 

Linux 
 

The Ember 
database 
 

[72]  2021 Present Densely Connected 
Convolutional Networks 
(Dense-Net). this study aims 
to accomplish expedited 
preprocessing and training of 
binary samples and tackle the 
issues of the imbalanced data 
in classifying malware by 
implementing reweighting 
techniques of the class-
balanced categorical cross-
entropy loss function within 
the soft-max layer. 
 

2D greyscale image 
(Behaviour Analysis) 

No DL 
CNNs 

Dataset 1 
Accuracy= 
98.23% 

Malimg, 
 

Linux 
 
 
 
 
 
 
 

Dataset 2 
Accuracy= 
98.46% 

 BIG 2015 , 
 

Dataset 3 
Accuracy= 
98.21% 

Male-Vis 

Dataset 4 
Accuracy= 
89.48% 

Unseen-Malicia 

[73] 
 
 

2021 Present a new hybrid 
visualization algorithm. This 
study aims to 
converting the dynamic 
analysis results into a 
visualization colour image as 
RGB-image.it uses the both 
static and dynamic analysis for 
robust result. 
 

Colour image 
(Hybrid Analysis) 

No DL Model 1 
Accuracy= 
91.41% 

VIRUSSIGN 
(Open Malware 
Database) 

Win7 

Model 2 
Accuracy= 
94.70% 

[74] 2021 Present Hybrid Ensemble 
Learning (EL) framework 
consisting of fully connected 
& 
convolutional neural networks 
(CNNs) with the Extra-Trees 
classifier as a meta-learner for 
malware detection 

Principal component 
analysis (PCA) used for 
reduced the feature 
dimensionality 
 

No ML 
EL 

Recall= 
100.0% 
Precision= 
100.0% 
Accuracy= 
100.0% 
 F score= 
100.0% 

Windows 
Portable 
Executable (PE) 
malware 

Win10 

benign files 
(Kaggle 

[75]  
 
 
 
 
 

2021 Present an intelligent 
behaviour-based detection 
system in the cloud 
environment. this study aims 
to adopt two phases, in the 
first phase adopt feature 
extraction whereas the second 
one is the detection phase. 

Dynamic tools 
Feature Vectors 
using 
(Dynamic Analysis) 

No 
 

RULE 
& 
Learning-
Based 
Detection 
 

Detection 
Rate= 
99.85% 
FPR=0.4% 
Accuracy= 
99.7% 

Das Mal-werk, 
Malware 
Bazaar 

Win 
7 
 8 
10 
 

Malware DB 

Malware 
Benchmark 

 VMs 
 7 
 8 
 10 

Mals-hare, Tek-
defence 
Viru-Sign, 
 
Virus-Share, 

 Kernel-Mode 
[76]  

 
 

2022 Present Security farmwork 
detection that uses FL adopt 
both (supervised & 
unsupervised) which means 
anomaly detection and 
classification approaches that 
using multilayer perceptron 
and autoencoder neural 
network architectures. 
Moreover, 
Using Use case (B5G) Beyond 
5G which uses to 
detecting cyberattacks that 
affecting IoT devices, 
managing sensitive data, 

Coordinate Yes 
 

FL Supervised 
rustle for 95% 
benign 
Accuracy= 
99.42% 
TPR= 99.81% 
TNR= 99.40% 

N-BaIoT 
Dataset 
 

PC 

Unsupervised 
results 
TPR= 99.98% 
TNR= 92.76% 
 
 

https://www.virussign.com/
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having Non-IID (Independent 
and Identically Distributed) 
data, and with nontrusted 
stakeholders or clients 

[77]  2023 (Hybrid DL and ML-based 
malware detector). this 
proposed combining deep 
transfer learning & ML utilize 
first, deep transfer learning is 
used to extract all the deep 
features from the last fully 
connected layer of the DL 
model, and then ML models 
are used as the final detector, 
which fully utilizes the 
inherent connections between 
input and output. 

Colour Image No 
 

ML 
DL 

Accuracy= 
99.06% 

Microsoft 
malware 

Win 

Malimg 
 

Virus-Share 
Dataset 
 

[78] 
 
 

2023 Present (DEMD-IoT) the 
system comprises a stack of 
three one-dimensional 
(Convolutional Neural 
Networks) with distinct 
architectures for capturing 
diverse patterns of IoT 
network traffic. Additionally, 
a Random Forest classifier 
functions as a meta-learner 
atop the three 1D-CNN base-
learners, merge the results of 
the CNNs and accurately 
labelling each network flow.  
The methods successfully 
addressed the challenge of 
transforming malware into 
images on (2D-CNNs). 
ultimately decreasing the 
preprocessing duration and 
computational burden. This 
was achieved by employing 
1D -CNNs and automatically 
extracting features without the 
need for manual intervention.  

Image Yes 
 

DL 
EL 

Accuracy= 
99.90% 
Precision= 
99.83% 
Recall= 
99.97% 
 F1-score= 
99.90% 

IoT-23 Dataset Win10 

[79] 2023 Developed (SB-BR-STM 
CNN and Ensemble 
classifiers) 
A novel DSBEL framework is 
suggested to identify packets 
infected with malware in an 
environment of the IoT. This 
framework consists of the 
integration of recently created 
SB-BR-STM CNN and 
ensemble classifiers. 
Whereas the SB is referred to 
Squeezed-Boosted, BR- 
Boundary-Region and the 
STM- Split Transform-Merge 

Image 
 

Yes 
 
 

DSB 
EL 

Accuracy= 
98.50% 

Precision= 
98.42% 
MCC= 
91.91% 
F – Score= 
97.12% 
Recall= 
95.97% 
 

IoT_ 
Malware 
Dataset 

PC 

[80]  2023 Integrating Bioinspired and 
ML Techniques 
This study adopts the ant 
colony optimizer algorithm 
for feature selection by 
choosing a reduced set of 
features in order to enhance 
the classification performance 
of a malware detection system 
based on images, specifically 
through the application of the 
SVM classifier. moreover, the 
Particle Swarm Optimization 
algorithm also adopted to 
optimize the Support Vector 
Machine parameters for the 
most suitable kernel function. 
 
 
 
 

2D RGB image yes 
 
 

ML 
SVM 

Accuracy= 
95.56% 
Recall= 
96.43% 
Precision= 
94.12% 
F1-score= 
95.26% 

Public Dataset 
(network traffic 
sources) 

PC 
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[81] 2023 compares the performance of 
RF and NB algorithms in the 
detection of IoT malware 
attacks. Starting by data 
cleansing is conducted with 
the purpose of eliminating 
extraneous data. utilizing two 
ML for training the sampling 
data, namely, Random Forest 
and Naïve Bayes. 
Subsequently, an evaluation is 
carried out to compare the 
efficacy of these two 
algorithms to determine the 
more effective one for the 
detection malware network 
traffic. 
 

correlation matrix yes 
 
 

ML Naïve Bayes IoT-23 Dataset PC 
Accuracy= 
99.42% 
Weighted 
Precision= 
83.47% 
Micro 
Precision= 
81.46% 

Weighted 
Recall= 
84.32% 
Micro 
Recall= 
84.24% 
Weighted 
 F1-score= 
83.89% 
Micro 
F1-score= 
82.83% 

Random 
Forest 

Accuracy= 
99.92% 
Weighted 
Precision= 
98.27% 
Micro 
Precision= 
98.26% 

Weighted 
Recall= 
98.85% 
Micro 
Recall= 
98.85% 
Weighted 
 F1-score= 
98.56% 
Micro 
F1-score= 
98.55% 

[82] 2023 this study aims to a 
sophisticated malware 
detection system that 
leverages DL and feature 
selection techniques. Utilizing 
two distinct malware datasets, 
the system aims to identify 
malware instances and 
distinguish them from benign 
activities. moreover, adopt 
correlation-based feature 
selection, the dens and LSTM. 
 
 
 
 
 
 
 

Correlation degree 
between that feature 
selected 

No 
 

DL (no feature 
selection) 
Accuracy = 
99.99% 
 F1-score = 
100% 

Daratset1 PC 

(63.63% 
selected 
features) 
Accuracy = 
99.75% 
 F1-score = 
99.8% 
 
(no feature 
selection) 
Accuracy = 
98.38%, F1-
score = 98.9% 

Daratset2 

(18.22% 
selected 
features) 
Accuracy = 
94.59% 
F1-score = 
94.9% 

[83] 2023 A new DL-based automated 
framework called API-Mal-
Detect for detecting malware 
attacks in windows. 
 
 

Dynamic 
Analysis for identify 
sequences of API calls 
present in both benign 
and malicious 
executable files. 
 

No 
 

DL Accuracy= 
99.07% 
 

Benchmark 
Datasets 

Win10 



 

 

285 Ali et al, Mesopotamian Journal of Cybersecurity Vol.5,No.1, 273–300 

[84] 2023 A hybrid CNN model for 
detecting malware in the IoT 
environment by adopting 
image-based detection this 
study aims to generate the 
image from binary of malware 
 
 

RGB images yes 
 
 

DL Accuracy= 
98.65% 
precision= 
98.7% 
Recall= 
98.3% 
F1-score= 
98.5 % 
MCC=97.5% 
Kappa= 
97.65% 

Dataset1 
IoT malware 
(Kaggle site) 
 

Win10 

Accuracy= 
97.3% 
precision= 
96.4% 
Recall= 
96.85% 
F1-score= 
96.63 % 
MCC= 
95.25% 
Kappa= 
94.85% 

Dataset2 
Virus-share 
 

[85] 2023 Enhanced malware detection 
accuracy and mitigation of 
vanishing and exploding 
gradients in the neural 
network. this study aims to 
present a novel hybrid 
approach, which utilizes 
evolving sequences of API 
calls for the purpose of 
detecting malicious software. 
This presented study 
integrates logistic regression 
from ML as the primary input 
weight for the neural network.  

Behaviour 
Analysis 

No 
 

ML 
DL 

Accuracy= 
83% 
loss= 0.44 
 

Dataset1 
Balanced 
 
 

PC 

Accuracy= 
98% 
loss= 0.10 
 

Dataset2 
Imbalanced 
(API call 
sequence) 

[86] 2023 A stacked double-layer 
convolution network to extract 
binary file features. this study 
aims to merge binary file with 
assembly code based on 
hybrid detection model for 
malware. 
 
 
 
 
 
 

Binary files 
Feature Vector 
Generation Module 
& 
Multi-Feature Fusion 
Module 

No 
 

DL Accuracy= 
99.54 % 
Recall= 
99.41% 
precision= 
99.40% 
F1-score= 
99.40% 

Dataset1 
Kaggle 
Malware 
 

---- 

Accuracy= 
95.44 % 
Recall= 
93.62% 
precision= 
92.06% 
F1-score= 
92.81% 

Dataset2 
Mal-share 
 
 

[87] 2023 An ensemble DL method with 
parallel processing. this study 
aims to adopt a hybrid Particle 
Swarm Optimization for 
optimized the parameters of 
the DL. 

Numerical feature 
vectors 

No DL Accuracy= 
99.2% 
Precision= 
99.23% 
Recall= 
99.4% 
F1-
score=99.3% 

Dataset1 
Drebin, 
 
 
 

Ubuntu 

Accuracy= 
99.3% 
Precision= 
99.2% 
Recall= 
99.3% 
F1-score= 
99.5% 

Dataset2 
NTAM 

Accuracy= 
99.5% 
Precision= 
99.3% 
Recall= 
99.7% 
F1-score= 
99.6% 
 

Dataset3 
Dike 
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[88] 2023 An (AWS) artificial immune 
system enabled validation 
framework for the evaluation 
malware detection solutions of 
AIS. this study utilizes the 
transfer learning with IoT to 
overcome the memory 
constraint 
 

NPS 
 
 
 

yes AI (30 detectors 
results) 
Accuracy= 
92% 
Precision= 
95% 
Recall= 
97% 
 

NSL-KDD 
Dataset 

----- 

(30 detectors 
results) 
Accuracy= 
99% 
Precision= 
100% 
Recall= 
99% 
 

[89] 2023 Enhancing the IoT device 
security by performed an 
improved cryptography 
algorithm and malware 
detection. this study aims to 
adopt a deep LSTM to prevent 
attack and using (MA-BW) 
Mayfly Optimization -Black 
Widow method for choosing 
best key during the generation 
of key. 
 
 
 
 

Anomaly 
contextual features 

yes DL Accuracy= 
95% 
 
Error= 5% 
 
Precision= 
92% 
 
Specificity= 
96% 
 
FNR= 10% 
 
FPR= 3% 
 
NPV= 96% 
 
Encryption, 
time= 6.02 s 
 
Decryption 
time = 0.0152 
s 
 
Execution 
Time= 6.02 s 

---- PC 

[90] 
 
 

2023 Designed a hybrid CNN-(Bi-
LSTM) bidirectional long 
short-term memory 
framework for the detection. 
moreover, classification of 
OMM types (multiclass 
detection) this study adopts 
two layer of block CNN. 

Bi-LSTM 
(Layers) 

yes DL Binary- 
detection 
attack 

CIC-Malmem-
(2022) 
Dataset 

Win10 

Accuracy=0.9
9% 
Precision= 
1.00% 
Recall= 
1.00% 
F1-score= 
1.00% 

Attack-family 
detection 
Accuracy= 
0.84% 
Precision= 
0.85% 
Recall= 
0.85% 
F1-score= 
0.84% 

[91] 2023 Presented a hybrid method for 
detect malware on IoT this 
study aims to Dis-assembling 
the obfuscation malware 
features and then assemble the 
extracted feature to graph 
conversion this level done 
during obfuscated detection. 
whereas the no obfuscated 
detection, this level processed 
using clustering. 

Image based-
classification 
(Statistical Features) 

yes 
 
 

ML ----- Mirai ----- 
Darlloz 
Dataset 

[92] 
 

2024 (PPFL-SC) an efficient 
privacy-preserving FL with a 

Protocol yes 
 

FL Computation 
Cost & 

Real-world 
Dataset 

Mac 
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secure collaborative 
supporting verification is 
proposed for improving the 
malware detection models. the 
PPFL attempt to allow devices 
to share their trained model 
under the assurance of security 
and privacy protection. 
 

communicatio
n efficiency, 
provide 
less 
computation 
cost & 
minimum 
communicatio
n cost 
compared 
with other 
works 

[93] 2024 Build a clustering model based 
on the Control-Flow-Graph 
features to compare the 
labelled result with the most 
famous antiviruses. This study 
aims to adopt three issues 
linked to low-quality labels in 
the IoT malware field have 
been recognized, and these 
have been exemplified 
through case studies, along 
with the respective 
justifications. 
 

ELF Features 
(Executable and linkable 
format) 
 

yes ML Using 4 ML 
method and 4 
label to 
evolute 
performance 
AV Class, 
5-Engines-
Vote, 
Kaspersky& 
Microsoft 
security. 
during 
compared the 
result of 4 
label at the 
family level 
across 4 
methods of 
ML, and the 
AV- Class tool 
performed the 
best in both 
detection rate 
and accuracy, 
followed by 5-
Engines-Vote, 
Anti-Virus 
engine 
Kaspersky and 
Microsoft. 
 

Virus-Share 
website 

Win 

[94] 2024 A novel approach of 
combining DL & 
ML. this study aims first, 
adopt to extract deep features-
based DL, moreover the ML is 
used to classify the selected 
features for final detection. the 
novel approaches alter to 
convert the PEs into colour 
image 
 

Colour image 
 

No 
 
 

DL 
ML 

Accuracy= 
99.30% 
Precision= 
100% 
Recall= 
98.60% 
F1 Score= 
99.30% 
 

Malimg 
Dataset 

Win 
 

[95] 2024 This study aims to develop 
novel techniques such as 
features detection, Top 10, op 
20, and (Random features 
(RF)). moreover, adopt ML 
different method to reduce 
effectiveness of the data that 
have been unbalanced and   
achieve low-latency detection. 
 

SK-learn Features No ML Accuracy= 
99.98% 
 

UNSW-NB15 
Dataset 

Laptop 

[96] 2024 This study present SFTA-
KNN (segmentation-based 
fractal texture analysis) and 
Gabor-KNN malware 
detection method. this study 
aims to   diminishes the 
likelihood of erroneous 
categorization, extracting 
significant characteristics, and 
improving the accuracy of 
detecting malicious software. 
 

2D grayscale 
Image 

No 
 
 

ML Accuracy= 
96.29% 
 

Malimg 
 

PC 

Accuracy= 
98.02% 
 
 

MaleVis 
Dataset 

[97] 
 

2024 
 

This study aims to utilizing the 
(FABEMD) fast and adaptive 

RGB image No 
 

DL Resnet-18 Malimg 
 

Win 
Accuracy= 
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bidirectional empirical mode 
decomposition methodology 
for augmenting the training 
dataset dimensions through 
the extraction of various IMF 
images from the original 

image. moreover, using the 

extracted IMF images as input 
videos for the purpose of 
supplying 3D VGG16 and 3D 
Resnet-18. 

96.64% 
Precision= 
99.9% 
Recall= 
99.9% 
F1-score= 
99.9% 
 

VGG-16 
Accuracy= 
96.14% 
Precision= 
97.0% 
Recall= 
96.0% 
F1-score= 
96.0% 

Resnet-18 MaleVis 
Dataset Accuracy= 

99.46% 
Precision= 
99.9% 
Recall= 
99.0% 
F1-score= 
99.0% 
VGG-16 

Accuracy= 
98.60% 
Precision= 
99.0% 
Recall= 
99.0% 
F1-score= 
99.0% 

[11] 2024 Present automated ML for 
static malware detection. this 
study aims to Offering insights 
and analysis into the 
automation parameters 
utilized in the Auto-ML 
process for static malware 
data, while also demonstrating 
the impact of these parameters 
on the performance of the 
ultimately discovered optimal 
model 

Static 
Analys 

No 
 

DL 
CNN 

Accuracy= 
0.918% 
F1-score= 
0.921% 
(TPR: 0.1% 
FPR= 0.188% 
(TPR: 1% 
FPR) = 
0.969% 

EMBER-2018 
 

VM 

Accuracy=0.9
90% 
F1-
score=0.984% 
(TPR: 0.1% 
FPR= 0.963% 
(TPR: 1% 
FPR) = 
0.995% 

SOREL-20 M 
Dataset 

[98] 2024 Present a malware detection 
for static security service 
(Mal3S) to provide a secure 
Smart IoT environment to 
detect various type of 
malware. this study aims to the 
detection approach captures a 
range of malicious 
behavioural characteristics 
through the creation of five 
distinct types of static feature 
images derived from byte data 
and assembly code, each 
depicting the activities of 
malware in diverse manners. 

Static Feature Image yes 
 
 

Spatial 
Pyramid 
Pooling 
Network 
(SPP-net) 

Accuracy= 
98.35% 
precision= 
0.9867% 
Recall= 
0.9900 
F1-score=0 
.9884 

KISA-challenge 
2019-Malware 

PC 

Virus-Share 

BIG2015 
Dataset 

[99] 2024 Present novel model called 
SIM-FED that combine 
DL&FL to detect IoT 
malware. this study aims to 
employment of a lightweight 
one-dimensional 
Convolutional Neural 
Network (CNN) to diminish 
preprocessing duration and 

1D-Layers yes DL 
FL 

Accuracy= 
99.52% 
Precision= 
99.47% 
Recall= 
100.0% 
F1-score= 
99.73% 

IoT-23 Dataset Windo
ws 
10 
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As shown in Table V, various studies have effectively employed hybrid DL techniques, combining different methods to 

enhance malware detection in the IoT environment. M. Nobakht et al. [78] presented a significant advancement model in 

IoT malware detection by integrating DL and ensemble learning techniques known as the DEMD-IoT model. It uses a stack 

of three one-dimensional convolutional neural networks (1D-CNNs) to effectively learn different patterns from IoT 

network traffic, which are then combined using a random forest meta-learner0 for final predictions. The presented model 

not only simplifies the preprocessing phase by avoiding the complexities associated with 2D-CNNs but also enhances the 

model's performance through hyperparameter optimization (Grid-Search-CV). An evaluation of the performance of the 

IoT-23 dataset shows that DEMD-IoT achieves an outstanding accuracy of 99.9%, superior to existing state-of-the-art 

models in the field. The results provide the model's robustness and potential for scalability, setting the way for future 
enhancements, including the application of generative adversarial networks (GANs), for further improvements in malware 

detection capabilities. In general, DEMD-IoT remains a predictable solution to the growing challenges of IoT security. 

S. Alsubai et al. [84] proposed an innovative malware detection framework tailored for the IoT environment that uses 

image-based techniques to convert malware binaries into RGB images. Key features are extracted via the YOLOv7 

algorithm, whereas the DenseNet161 model is optimized via the Harris Hawks optimization algorithm for increased 

classification accuracy. The framework protects IoT resources with accuracies of 98.65 and 98.5 for the IoT malware 

dataset and 97.3 and 96.63 for the Virus-share dataset. 

In addition, R. A. Devi and A. R. Arunachalam [89] introduced LSTM-based DL for malware detection. They demonstrated 

optimal elliptic curve cryptography (IECC) IoT security research. The proposed technique categorizes normal and attack 

nodes on the basis of contextual trust values and detects anomalies, DOSs, probes, and R2L attacks with 95% accuracy. 

Compared with contemporary methods, secure data transfer with IECC integration reduces the encryption and decryption 

times to 6.02 seconds and 0.0152 seconds, respectively. This research extends the existing knowledge by offering a 

framework for malware detection and safe data management in IoT networks and addressing important security issues. 

S. S. Shafin et al. [90] introduced a novel method for identifying obfuscated memory malware (OMM) in smart city apps 

for low-resource IoT devices. Compact-CBL and robust-CBL, which use a CNN and bidirectional long short-term memory, 

achieve 99.92% and 99.98% binary detection accuracy, respectively. They also identify attack families effectively; 

RobustCBL has 84.56% accuracy. The models outperform state-of-the-art techniques on the CIC-Malmem-2022 dataset 
without losing a minimal footprint for IoT implementations. CompactCBL, the smallest, is ideal for real-time applications 

because of its 0.255 ms/sample detection speed. This study provides realistic and effective solutions for malware detection 

in smart city infrastructures and has made significant progress. 

M. Nobakhtet al.'s SIM-FED model [99] integrates DL with FL to protect data and identify dangerous actions. This is IoT 

malware detection. It reduces computation and preprocessing costs via a lightweight one-dimensional CNN and 

hyperparameter tuning. The model outperforms other DL and FL models with 99.52% accuracy on the IoT-23 dataset. 

Federated aggregation solutions were also evaluated, with (Fed-Avg) chosen for the best local model integration. SIM-

FED showed low performance reduction from white-box and black-box cyberattacks. These results demonstrate the model's 

efficacy and security, filling a major gap in the IoT security literature. 

ML and FL have been extensively studied for their ability to identify malware in IoT environments, beyond hybrid DL 

approaches. J. Jeon et al. . [68] developed DAIMD, a dynamic analytic approach for IoT malware detection, to identify 

existing and developing threats. In layered cloud environments, the DAIMD model dynamically assesses malware activity 

via a CNN. It emphasizes memory, network, and system calls. Using extracted behaviour data as images improves 

classification and training. The results suggest that DAIMD may identify new and variant malware that static analysis 

methods miss, decreasing IoT device infection damage. Researchers conclude that dynamic analysis is essential for 

managing IoT security concerns in a changing environment. 

V. Rey et al. [76] proposed FL for IoT malware detection. This approach addresses important privacy and security issues. 

The authors utilize the N-BaIoT dataset to simulate corrupted IoT device communications to evaluate their strategy. The 

computational, facilitating the 
process of automatic feature 
extraction. moreover, as 
hyperparameters play a crucial 
role in the performance of the 
model, the enhancement of the 
specified CNN method is 
executed through the 
modification of 
hyperparameters utilizing a 
remarkable optimization 
technique. 
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study shows that federated models may protect data privacy while performing similarly to centralized methods. Hostile 

attacks on the federated paradigm reveal vulnerabilities in standard aggregating methods. Additional aggregating functions 

enhanced resistance to malicious actors, offering a solution to these dangers. Even though FL offers robust IoT security 

solutions, the findings show that elasticity against adversarial attacks needs more development. The present study enhances 

our understanding of FL's IoT cybersecurity and privacy solutions. 

Additionally, A. El-Ghamry et al. [80] introduced an innovative image-based IoT malware detection system that uses 

classical ML techniques, specifically support vector machines (SVMs). For feature selection, this study optimized a method 

that uses particle swarm optimization (PSO) and ant colony optimization (ACO). Moreover, this study effectively addresses 

the challenges of low computational resources typical in IoT environments while achieving a stunning accuracy of 95.56%. 

This study demonstrates a significant improvement in malware detection performance compared with existing methods by 

transforming network traffic data into images and employing advanced feature extraction methods. The findings highlight 

the potential for deploying this efficient detection model in real-time IoT applications, ensuring enhanced security against 

evolving malware threats. 

Y. Z. Wei et al. [81] examined the efficiency of the RF and NB algorithms in identifying malware in IoT network traffic. 

This work uses the IoT-23 dataset, which comprises benign and malicious traffic samples, for model training and stratified 

sampling to solve class imbalance. The findings show that the random forest model outperforms the naïve Bayes model, 

with a 98.55% micro average F1 score. Cybersecurity professionals may use this study to determine that random forest is 

the best way to detect fraudulent network traffic in IoT scenarios. 

A. Khan et al.'s extensive study of IoT malware detection approaches highlighted the rising threat of Mirai and its variants 

[91]. This research highlights the complexity and fragility of IoT devices, emphasizing the necessity for effective detection. 

According to the review of ML, graph-based analysis, and image-based identification, traditional methods function well 

with simple malware but fail with complicated versions. This paper proposes a hybrid model that uses both methodologies 

to increase the detection accuracy. It fixes malware obfuscation and obtains a 99% F-measure for no obfuscated malware. 

Future development aims to improve detection efficiency and expand design support. 

Alamer [92] A unique protocol called (PPFL-SC) secure collaboration, which uses group-oblivious sign-crypton (GOSC), 

is described in this paper. It aims to improve IoT malware detection. The suggested approach balances privacy with IoT 

device model sharing by shielding users' data from hostile cloud sites. The findings reveal that PPFL-SC is as accurate as 

classic FL while protecting privacy. Device dropout rates during model training are significantly reduced by the protocol's 

incentive mechanism. The findings reveal that PPFL-SC increases the efficiency, security, and accuracy of collaborative 

malware detection systems in IoT networks. 

T. Lei et al. [93] investigated the challenges and evaluation of IoT malware classification label sources through the 

application of clustering methodologies, underscoring the critical significance of high-fidelity labels for precise research 

results. It delineates three principal concerns pertaining to label integrity: detection methodologies, nomenclature standards, 

and label obsolescence. The investigation evaluates 63 malware publications across a spectrum of platforms, including IoT, 

Windows, and Android, to gauge the efficacy of various label sources. The authors advocate for the utilization of the AV 

class for familial classification and propose specific (Anti-Virus engines—Ad-Aware, Bit-Defender, and Emsisoft) for 

minor families, as well as (Jiangmin, NANO-Antivirus, and Avira) for more extensive families—to improve precision in 

variant-level classification. The results suggest that the endorsed engines yield dependable labels, which are essential for 

enhancing the accuracy of forthcoming IoT malware research. 

In summary, various learning methodologies exhibit potential efficacy in augmenting the performance of detection 

mechanisms within the IoT environment. Through the strategic integration and synthesis of diverse data sources, feature 

collections, or analytical frameworks, these methodologies produce a more holistic and resilient depiction of the data, 
thereby facilitating enhanced accuracy and dependability in the identification of malware assaults within the IoT 

environment. Table VI illustrates the pros and cons of recent research in the IoT environment. 

TABLE VI.  PROS AND CONS OF IOT RESEARCH 

Ref. Pros Cons. Summary 

[68] 

 
• Effective Detection: identifying both 

established and novel variants of (IoT) malware 

via dynamic analysis, thereby responding to the 

continuously evolving characteristics of 

malware threats. 

• Utilization of CNN: The application of the 

CNNs significantly augments the 

• Evasion Tactics: complicating detection 

efforts, which Some malware may alter their 

behaviour when executed in controlled 

environments, 

• Implementation Complexity: The integration 

of various analysis techniques and ML models 

This scholarly investigation 

substantially advances the domain of 

(IoT) security by proffering a 

comprehensive framework for the 

identification of novel and variant 

malware, employing sophisticated 

analytical methodologies, and 
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understanding and categorization of malware 

behaviours, thereby elevating the precision of 

detection methodologies. 

• Behaviour Visualization: By converting 

behaviour data into images, the DAIMD allows 

for intuitive understanding and classification of 

malware behaviours. 

• Minimizes Damage: aims to reduce the 

potential damage from malware infections on 

IoT devices, which is critical as IoT technology 

expands. 

can make the implementation of this paper 

complex. 

• Data Quality Dependence:  The effectiveness 

of this paper relies on the quality of behaviour 

data collected; incomplete data can lead to 

inaccurate detection. 

• Resource Intensive: Dynamic analysis and 

processing large datasets for CNN training can 

be resource-heavy, requiring significant 

computational power.  

tackling the distinct challenges 

presented by IoT devices. 

[76] • Data Privacy: he main featured of FL basically 

is safeguarding user privacy, which mean allows 

for training of models as decentralize without 

sharing sensitive data. 

• Robustness Against Attacks: This paper 

augmenting the comprehensive security of the 

system, thereby integrates resilient model 

aggregation methodologies that can alleviate the 

repercussions of adversarial incursions. 

• Performance: federated models are able to 

achieve performance metrics on par with those 

of centralized models while maintaining data 

privacy, a key requirement in sensitive contexts 

such as IoT. 

• Scalability and Collaborative Learning.: The 

architecture of FL inherently decentralized 

possesses the potential to scale effectively to 

support a substantial array of IoT devices, 

rendering it appropriate for forthcoming 

networks such as Beyond 5G (B5G). 

Furthermore, can collaboratively enhance the 

model by transmitting only update pertaining to 

the model rather than the raw data, which can 

subsequently foster improved generalization 

across heterogeneous data distributions. 

• Complexity: led to inherent complexity, 

primarily due to the requisite synchronization 

and communication between the participating 

clients and the central server, which may lead 

to additional computational overhead.  

• Vulnerability: clients have the potential to 

introduce corrupted updates that adversely 

influence the performance of the global 

model. Therefore, led to a significant threat to 

the integrity of the mode. 

• Communication Costs: affect the operational 

efficiency of (IoT) devices, especially when 

updates the model are extensive or when a 

substantial number of clients are engaged. 

• Asynchronous challenges: Customer failures 

or delayed responses can significantly disrupt 

the training process, 

This scholarly adopt FL enhances 

data privacy and model robustness 

while achieving performance 

comparable to that of centralized 

methods. However, it faces 

challenges such as exposure to 

malicious clients and implementation 

complexity, which can disrupt 

training. In addition, high 

communication costs and the need for 

precise synchronization can 

complicate deployment. 

[79] • Accuracy: shows 99.9% of accuracy in detect 

IoT malware, thus outperforming many state-

of-the-art models in the field. 

• Ensemble learning approach: By utilizing a 

clustering technique that integrates three one-

dimensional CNNs, it brilliantly captures the 

diverse patterns inherent in IoT network traffic, 

resulting in enhanced predictive reliability. 

• Optimization: Applying the (Grid-Search-CV) 

algorithm for hyperparameter optimization 

significantly improves the effectiveness of the 

model, enabling it to more skill fully navigate 

the complexities of IoT traffic.  

• processing time: this paper led to make model 

more efficient in terms of time and 

computational resources. by choosing one-

dimensional CNNs over two-dimensional 

CNNs which simplifies the preprocessing 

phase. 

• Addressing IoT privacy: The model is 

specifically designed for IoT environments, 

recognizing that IoT traffic has unique 

characteristics compared to traditional internet 

traffic, which is critical for effective malware 

detection. 

• Extended Execution Durations: A notable 

disadvantage of this model is that an increase 

in the quantity of hyperparameters can 

significantly prolong the execution time. This 

phenomenon may pose a considerable obstacle 

for individuals intending to implement the 

model in time-sensitive applications. 

• Dataset: the limitation of this paper is 

effectiveness of the model depend on the IoT-

23 dataset, suggesting that its performance 

may not be as strong when applied to 

alternative datasets. 

• Complexity: this model architecture is quite 

complex due to its ensemble nature. 

 

 

 

The paper suggests that further 

improvements, such as parallel 

processing and the use of Generative 

Adversarial Networks (GANs), are 

necessary to enhance the model's 

capabilities, indicating that the 

current model may not be fully 

optimized. 

[80] • Novel Approach: lead to unique contribution to 

the field through introduces a novel optimized 

ML method for IoT malware detection using 

visual representation of network traffic,  

• Effective Feature Selection: provided the SVM 

performance through reducing the number of 

selected features which is done using ant colony 

optimizer. 

• Computational Cost: Despite the optimization 

of the method, all IoT environments 

characterized by resource constraints, 

therefore still the implementation of ML 

techniques incurs significant computational 

demands, 

this scholarly presents an optimized 

(IoT) malware detection system with 

high accuracy and suitability for 

resource-constrained environments, 

thanks to ACO-based feature 

selection. However, it may still face 

computational overhead and 

limitation of dataset, potentially 
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• Parameter Tuning: this paper enhancing the 

classifier's performance across different kernel 

functions through employs the PSO algorithm 

to tune SVM parameters, 

• Lightweight Solution: the novelty is the 

bioinspired techniques (ACO and PSO) 

contribute to building an effective and 

lightweight malware detection system suitable 

for IoT environment.  

 

 

• Dataset Limitations: the generalizability of the 

results is affected through the use of the size 

and diversity of the dataset. 

• Transfer Learning Issues: avoids transfer 

learning due to issues like negative transfer 

and overfitting, which are common challenges 

in image classification tasks. 

• Lack of Standardization: There is no 

standardization in determining connected 

activities or algorithm decisions, making it 

difficult to address negative transfer 

effectively. 

• Overfitting Concerns: which is a common 

issue in prediction methods and can limit the 

model's applicability to new data. 

affecting real-world applicability. 

Additionally, the complexity of 

integrating multiple algorithms could 

pose implementation challenges. 

[81] • Comprehensive Evaluation: evaluates two ML 

algorithms, (Random Forest and Naïve 

Bayes), providing a detailed comparison of 

their performance in detecting malware in IoT 

network traffic. 

• Real-World Dataset: The research utilizes the 

IoT-23 dataset, which is a labelled dataset 

containing IoT malware infection traffic and 

benign traffic, ensuring that the study is 

grounded in real-world data. 

• Practical Implications: recognize the effective 

of ML algorithms for detecting malware 

network flows, which is being references for 

help personalized cybersecurity Furthermore, 

the superlative performance of Random Forest 

over Naïve Bayes. 

• Focus on IoT Security: the focusing on IoT 

devices thus addresses a critical area of 

cybersecurity, which are often vulnerable due 

to their lack of security features and the 

increasing number of cyberattacks targeting 

them. 

• dataset limitation: the restricted accuracy and 

their robustness of developed ML system. 

which lead to limited size of the used dataset 

and hardware. 

• Computational Constraints: The substantial 

dimensions of the IoT-23 dataset present 

significant computational difficulties 

attributable to constrained hardware resources, 

necessitating the implementation of 

subsampling techniques and a reduction in the 

number of malicious categories incorporated 

into the analytical process. 

• Limited Scope of Algorithms: the only 

considers that the supervised learning method, 

specifically (Random Forest and Naïve 

Bayes), without exploring the potential of 

unsupervised learning, which could provide 

additional insights into malware detection. 

• Hardware Limitations: affected the ability to 

process the full dataset thereby the device used 

has limited RAM and storage, 

This scholarly effectively compares 

Random Forest and Naïve Bayes for 

IoT malware detection using a real-

world dataset, providing practical 

insights for cybersecurity 

applications Nevertheless, it is 

constrained by computational 

limitations and exclusively 

investigates supervised learning 

methodologies, which may confine 

the breadth of its conclusions. 

[88] • Innovative Approach: the novelty of adopted 

AIS for detected malware in IoT environment, 

these approaches given the constraints of IoT 

devices in terms of computational power and 

memory. Furthermore, providing more 

applicable visionary of real-world 

environment through validate the AIS method 

in an IoT practical framework.  

• High Detection Accuracy: This paper reports a 

91% detection accuracy in the most restricted 

IoT system, which is significant given the 

challenging conditions of IoT environments. 

• Transfer Learning: highlights the ability of 

AIS solutions to transfer learning between IoT 

devices, which is crucial for networks with 

highly constrained devices. 

• Comprehensive Evaluation: Through using 

multiple datasets with different types of 

malware attacks, this paper ensuring a 

thorough evaluation of the AIS solutions' 

performance. 

• Simulation vs. Real-World Discrepancy: noted 

that a discrepancy between simulation results 

and real-world performance, with a projection 

from 99% to 91% as accuracy detection, thus 

indicating possibilities overestimation in 

simulated environments. 

• Limited Real-Time Testing: the NPS method 

has not tested on real time platform, this 

results in a constriction of the comprehension 

of its efficacy in real-world contexts. 

• High Memory Requirement: Some AIS 

methods reviewed, such as the MNSA, require 

significant memory to generate detectors, 

making them less suitable for IoT systems 

with limited resources. 

• Unclear Classification Details: highlight high 

detection rates but lacks clarity on the number 

of classes used for classification, which could 

affect the interpretation of results. 

• Dependency on AWS: relies on Amazon Web 

Services for simulating IoT environment, 

which may not fully replicate all aspects of 

real-world IoT environment. 

This scholarly adopted AIS solutions 

effectively to detect unknown 

malware in IoT systems with a 91% 

accuracy, supporting transfer learning 

between devices, which is crucial for 

resource-limited networks. However, 

real-world accuracy is lower than the 

99% reported in simulations, 

indicating challenges in practical 

applications and limitations of 

simulation data reliance. 

[89] • Enhanced Security for IoT Devices: 

introduces an advanced Elliptic Curve 

Cryptography (IECC) method that provides 

superior security for (IoT) devices throughout 

the process of data transmission in comparison 

to currently utilized techniques. 

• Efficient Malware Detection: The adopted of a 

Deep (LSTM) for the purpose of malware 

detection is underscored as a proficient 

• Lack of Publication Details: in this paper may 

affect its traceability and credibility, which is 

not provide specific publication details like the 

publication date and publisher. 

• Limited Contextual Information: Some figures 

and tables referenced in the text are not 

provided, which may hinder a full 

understanding of the results and discussions. 

This scholarly presents an improved 

Elliptic Curve Cryptography (IECC) 

algorithm that enhances IoT security 

and achieves high accuracy in 

malware detection, but lacks specific 

publication details and 

comprehensive contextual 

information, which may limit its 

applicability and understanding.  
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methodology for the discernment of various 

categories of attacks within (IoT) networks, 

including but not limited to anomaly detection, 

the (DOS) attacks, probing activities, and 

Remote-to-Local intrusions. 

• Performance Metrics: The methodology put 

forth demonstrates a considerable degree of 

accuracy (95%), precision (92%), and 

specificity (96%), thereby underscoring its 

efficacy in the domains of malware 

identification and mitigation.  

• Optimized Cryptographic Process: The IECC 

algorithm demonstrates reduced processing 

and memory usage compared to other 

cryptographic techniques such as ECC, AES, 

DES, and Blowfish, making it more efficient 

for IoT applications.  

• No Competing Interests: ensuring the integrity 

of the research, that the authors affirm the 

absence of any conflicting financial interests, 

• Focus on Specific Algorithms: While the 

paper discusses the IECC and Deep LSTM 

models, it may not cover other potential 

approaches or algorithms that could be 

relevant for IoT security, limiting the scope of 

the research. 

• Generalization of Results: does not discuss the 

potential limitations or challenges in 

generalizing the proposed approach to 

different IoT environments or scenarios, 

which could be important for practical 

applications 

 

 

 

 

  

 

[90] 

 
• Enhanced Security: proposes an improved 

ECC algorithm and a deep LSTM model for 

malware detection, which enhances IoT device 

security during data transmission. 

• High Accuracy: achieves 95% accuracy, 

indicating its effectiveness in detecting and 

preventing malware attacks. 

• Efficient Performance: The improved ECC 

algorithm shows efficient encryption and 

decryption times, contributing to better 

security performance.  

• Complexity: the implement of DL and 

cryptographic algorithms may require 

significant computational resources, which 

could be challenging for some IoT devices. 

• Limited Context: primarily focuses on IoT 

security, which may not address other 

potential vulnerabilities in different contexts 

or environments.  

• Post-Quantum Vulnerability: mentions that 

postquantum attacks can still succeed against 

the proposed methods, indicating a potential 

area for improvement. 

the manuscript enhances IoT security 

with an improved (ECC) method and 

deep (LSTM) model, achieving 95% 

accuracy in malware detection. 

However, the complexity of 

implementing these models may pose 

challenges for resource-constrained 

IoT devices, and the approach may 

not address vulnerabilities in other 

contexts. Nevertheless, the 

acknowledges potential 

vulnerabilities to postquantum 

attacks. 

[91] • High Accuracy: The models achieve high 

accuracy in detecting malware, outperforming 

existing models. 

• Lightweight and Fast: CompactCBL (CNN-

BiLSTM) is small and fast, suitable for real-

time IoT applications. 

• Broad Applicability: Suitable for various IoT 

devices in smart cities, requiring real-time 

responses. 

• Innovative Architecture: Combines CNNs and 

BiLSTMs for effective malware detection.  

• Limited Multiclass Detection: Improvement 

needed in detecting individual attack types. 

• Dataset Specific: Validated only on the CIC-

Malmem-2022 dataset, requiring further real-

world testing. 

• Resource Constraints: RobustCBL may still be 

challenging for extremely limited 

environments. 

This scholarly presents a lightweight, 

efficient malware detection model 

suitable for IoT devices, 

demonstrating high performance on 

the CIC-Malmem-2022 dataset; 

however, it struggles with detailed 

multiclass attack detection and 

requires further enhancements for 

zero-day threats, with future plans to 

explore semi-supervised learning and 

real-world testing 

[92] 

 
• Enhanced Detection: The hybrid model 

improves accuracy by combining static and 

graph-based analysis, effectively handling 

complex and obfuscated malware. 

• Comprehensive Approach: this includes uses 

(both static and dynamic) methods for analysing 

various malware types, including novel 

variants. 

• Efficient Classification: Signature generation 

through clustering aids in accurate malware 

classification. 

• Obfuscation Handling: The model addresses the 

challenge of malware obfuscation, a common 

issue in IoT malware detection. 

• Obfuscation Limitations: Static analysis may 

struggle with obfuscated or encrypted 

malware, reducing effectiveness. 

• Sample Scarcity: A lack of IoT malware 

samples can impede robust model 

development and testing. 

• Complexity and Resources: Graph-based 

analysis, while effective, can be complex and 

resource-intensive, limiting real-time 

detection capabilities. 

• Complexity and Resources: Graph-based 

analysis, while effective, can be complex and 

resource-intensive, limiting real-time 

detection capabilities. 

this scholarly provided the hybrid IoT 

malware detection model that 

enhances accuracy by combining 

static and graph-based analysis, 

effectively handling complex 

malware, but struggles with 

obfuscated samples and requires 

significant resources for graph-based 

methods. 

[93] • Privacy and Security: Utilizes group-oblivious 

sign-crypton to ensure data privacy and meets 

all security requirements for FL. 

• Incentive Mechanism: The Stackelberg 

incentive model is designed to encourage IoT 

device participation, which helps in reducing 

dropout rates during model updates. 

• Security Assurance: The security analysis 

confirms that PPFL-SC meets all necessary 

security requirements for privacy-preserving 

FL, making it robust against potential attacks 

• Computational Overhead: The encryption 

operations, while preserving performance, still 

contribute to computational costs, particularly 

as model parameters increase. 

• Communication Overhead: the increasing 

number of devices in proposed method can 

lead to higher communication costs for the 

CC-server, which might affect scalability. 

• Device Dropout Risks: Although the paper 

addresses dropout issues, the related work 

this scholarly present the PPFL-SC 

model offers significant advantages, 

such as enhanced privacy through 

group-oblivious sign-crypton, which 

ensures data security during FL, and 

the Stackelberg incentive model, 

which boosts IoT device participation 

by encouraging collaboration with 

diverse datasets, thereby improving 

the robustness of malware detection 

models. However, the model may 
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• Efficiency and Practicality: Empirical 

assessments carried out on authentic datasets 

corroborate the operational efficacy and 

practicality of the proposed model, thus 

illustrating its significance in real-world 

applications. 

• Lower Communication Cost: Compared to the 

plaintext Fed-AVG protocol, the proposed 

scheme is more efficient with lower 

communication costs, even as the number of 

gradients increases. 

section highlights that dropout can still pose 

risks to confidentiality and system efficacy. 

• Complexity of Implementation: The 

integration of advanced cryptographic 

techniques and incentive mechanisms may 

increase the complexity of implementation 

and require significant resources. 

• Limited Dataset Sources: The paper notes that 

current malware detection systems often rely 

on limited and static datasets, which can 

quickly become outdated. 

 

encounter challenges like 

computational overhead during the 

verification phase and potential 

issues from device dropouts, which 

could impact the efficiency and 

continuity of the FL process 

[98] • Enhanced Detection Accuracy: this paper 

Mal3S achieves an average detection accuracy 

of 98.02% coupled with a classification 

accuracy of 98.43%, thus exceeding current 

malware detection techniques. 

• Static Feature Utilization: The approach 

effectively uses five types of static features 

(byte, opcode, API calls, DLL, and string) to 

detect malware without executing the files, 

which allows for quick and accurate detection. 

• Image Generation for Analysis: By converting 

static features into images of various sizes, 

Mal3S maintains spatial information, which 

aids in the detailed analysis and classification of 

malware, including obfuscated variants. 

• Capability: exhibited a significant capacity for 

generalization across a wide range of malware 

classifications, thus validated through the 

utilization of three separate datasets. 

• Static Analysis Limitations: The approach 

relies on static analysis, which can struggle 

with detecting complex malware patterns and 

variants due to its dependence on fixed code 

signatures. 

• Obfuscation Challenges: Malware that uses 

obfuscation techniques may hide key 

behavioural information, leading to the 

generation of less meaningful static features. 

• Lack of Dynamic Analysis: The method does 

not incorporate dynamic analysis, which could 

enhance the detection of real-time behaviours 

in obfuscated malware. 

• Complex Feature Representation: Managing 

and analysing the extensive behavioural 

information from static features requires a 

complex, multidimensional approach.  

this scholarly adopted Mal3S which 

is a malware detection system 

designed for Smart IoT 

environments, utilizing a multi SPP-

net model to analyse static features 

like bytes, opcodes, and API calls. It 

effectively detects various malware 

types, including obfuscated ones, by 

compensating for missing static 

feature information with other 

features. demonstrating strong 

generalization across different 

malware datasets 

[99] • Privacy-Preserving: The SIM-FED model 

enhances security by detecting malware without 

sharing data, thus preserving privacy in 

distributed environments. 

• High Accuracy: this approach achieves a 

remarkable 99.52% accuracy, outperforming 

other models in all evaluation metrics. 

• Robustness: shows resilience against both 

white-box and black-box cyber-attacks, with 

minimal performance degradation 

• Scalability: this paper maintains stable 

performance even when the number of clients 

increases, thus indicating good scalability. 

• Complexity: the Implementing FL models like 

SIM-FED can be complex due to the need for 

coordination among multiple clients. 

• Resource Intensive: Although optimized, the 

model may still require significant 

computational resources for training and 

maintaining the global model.  

• Dependency on Client Participation: The 

performance models can be affected by the 

variability in client participation and data 

quality 

the scholarly present the SIM-FED 

model offers privacy-preserving 

malware detection with high 

accuracy and robustness against 

cyber-attacks, while maintaining 

scalability with varying client 

numbers. However, it may be 

complex to implement, resource-

intensive, and dependent on client 

participation quality. 

 
 

5. CHALLENGES AND LIMITATIONS 

Although the research discussed in this review introduces novel methodologies for identifying malware within IoT 

environments, several prevalent challenges and limitations are simultaneously encountered. 

Malware detection in IoT systems is difficult because of device variety and resource restrictions. The enormous diversity 

of IoT devices and platforms, many of which lack security standards, is a major hurdle. Variability hinders the creation of 

a universal malware detection system. For IoT devices, computing performance, storage, and energy resources might hinder 

resource-intensive detection algorithms such as ML, DL, and FL. 

IoT devices create large amounts and diverse data, making malware detection program datasets difficult to train. To ensure 

data quality and usefulness, substantial preprocessing is frequently needed. Owing to expert knowledge and human tagging, 

supervised learning data labelling may be complex and expensive. 

Integrating FL, DL, and ML has constraints. Solution prospects are also plentiful. Malware is complicated and ever-

changing, making feature extraction and selection difficult for ML systems. DL can handle complex tasks, but it requires 

large labelled datasets and considerable computing power, which may be challenging in IoT environments. The opaqueness 

of DL algorithms raises concerns about their interpretability and transparency, which are essential for understanding and 

decreasing malware threats. 

FL can help preserve the privacy of data by training models on the edge, but it also faces challenges in the IoT environment. 

Data privacy is a problem, as the model to be updated can be infused and the data can be compromised by the user. Since 

attackers might disrupt FL, data transmitted between devices must be secure and reliable and therefore need secure 
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aggregation and the use of encryption techniques. Moreover, as mentioned above, the IoT devices and their data are 

heterogeneous, which creates challenges for model generalization requiring an adaptive algorithm. Furthermore, 

communication is another issue that can be improved through model compression and communication-efficient solutions, 

particularly for resource-constrained devices. Finally, the ‘limited computation’ and ‘energy resources’ of IoT devices 

require lightweight and efficient FL implementations. Tackling these issues is very important for realizing the potential of 

FL in IoT applications. Owing to the variety of IoT devices, not all devices will share equally during training, which might 

lead to skewed models. 

In addition, establishing and sustaining these learning methods in the IoT is difficult. Upgrades and patches to new detection 

methods for IoT devices with no connectivity are logistically difficult. Owing to the constant change of malware, detection 

models must be updated; however, this may be resource intensive and may not be practical for many IoT installations. It 

will be a while before all detection systems and devices are compatible and interoperable. 

In conclusion, ML, DL, and FL confront unique challenges when identifying IoT malware. These complexities require a 

comprehensive approach that includes data preparation, model enhancements, and IoT device security and interoperability. 

The IoT ecosystem's rising malware threat can only be addressed with a comprehensive plan such as this one. For more 

clarity, the following points summarize the limitations and challenges according to the specific environment within the 

IoT: 

• Dataset Limitations: The dataset used may not represent all malware variations or new attack vectors. 

• Resource Constraints: Deploying DL models is complex because of the limited processing power of IoT devices. 

• Real-Time Constraints: Detection systems must operate with minimal latency in real-world IoT systems. 

• Device Diversity: The heterogeneity of IoT devices complicates model generalization. 

• Evolving Threats: IoT malware evolves rapidly, requiring continuous model updates. 

 

6. FUTURE WORK AND RESEARCH DIRECTIONS 

Even if the academic literature has improved, many promising areas for IoT malware detection research still exist. Future 

research should concentrate on strengthening FL, ML, and DL frameworks against sophisticated malware attacks. These 

models increase IoT security by using adaptive learning and advanced anomaly detection to respond to new threats. 

Monitoring and updating models to keep ahead of new attack vectors makes IoT systems more resilient. 

Real-time malware detection technologies are essential. Researchers can rapidly and successfully construct systems that 
identify and eradicate new threats via DL architectures. Processing power and algorithm efficiency must increase for the 

IoT to perform real-time analysis without losing speed or resources. 

Data privacy and integrity are crucial when IoT security uses FL frameworks. Researchers should improve cryptography 

and secure multiparty computing for safe and reliable FL. Protocols must be created to keep the data secure and secret 

when they are spread over several devices, some of which may be unreliable. 

Owing to the exponential proliferation of IoT devices, future research must address scalability issues. DL and ML 

techniques that can manage massive volumes of data from various IoT networks are essential. implement that does not 

overload computers. Making models that are not too heavy for low-resource devices ensures wide usage without straining 

computers. 

To win over consumers and fulfil legal standards, IoT-based learning systems must be clear and easy to explain. Future 

research should focus on creating interpretable models that explain decision-making processes. If we can make malware 

detection methods more visible, users can understand and hold security measures responsible. 

IoT-based collaborative detection networks may dramatically increase malware detection. Researchers may create more 

accurate detection frameworks by simplifying data exchange and inter-device connections. Further work should address 

synchronization and coordination issues to ensure that these collaborative frameworks operate well. 

Adversarial training in IoT learning frameworks is a key topic of research. Researchers can train models to withstand 

complex malware attacks via hostile instances. This method makes it simpler to develop safer IoT systems that can survive 

more complicated assaults, ensuring long-term stability and security. 

Future research should combine IoT-based learning methods with blockchain and edge computing. Blockchain technology 

may make data transfers more secure and transparent, whereas edge computing can speed up data processing. Combining 

these technologies with ML, DL, and FL may improve and secure IoT ecosystems. 

As the IoT grows, so will the need for advanced and effective virus detection systems. Researchers can develop more 

resilient IoT security frameworks by improving model robustness, implementing real-time detection systems, secure FL, 
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finding scalable solutions, explaining their work, forming collaborative detection networks, training adversaries, and 

integrating other technologies. To sustain future IoT ecosystems, these efforts are crucial. 

In the future, exploring a case study that uses the IoT-23 dataset can be beneficial. This highlights the real-world usability 

of malware detection techniques in IoT systems. The IoT-23 dataset includes labelled IoT network traffic data for normal 

and malicious activities and provides an excellent opportunity to evaluate malware detection methods. After the anomaly 

detection model's training through DL methods using the dataset, an assessment of its performance takes place in different 

scenarios, which encompasses, although not exclusively, smart home networks and industrial IoT systems. The model 

possesses the ability to identify and mitigate (Mirai botnet) activities through the analysis of traffic patterns associated with 

smart devices, subsequently issuing alerts to the user in the event of a potential security breach. By deploying the trained 

model on edge devices, such as IoT gateways, the system can effectively provide real-time detection of threats while 

tackling IoT-specific challenges such as low computational resources. This method shows how to use the techniques, 

building a bridge from analysis to actual use for IoT security. By demonstrating the successful execution of the suggested 

methods, such case studies lend strength to their effectiveness as well. 

7. CONCLUSION 

This all-encompassing assessment concludes that FL, ML, and DL have great promise for identifying malware in a wide 
range of systems, including IoT settings. Although these approaches have considerable potential, many studies have 
focused on making them more generalizable, creating algorithms that use fewer resources, and making detection systems 
better suited to address new threats. By integrating complementary information from many data sources, learning 
approaches have shown great promise in improving malware detection accuracy and robustness. To effectively handle the 
complexity and variety of IoT data while maintaining high computational efficiency, further research is needed to determine 
the best feature techniques. The formation of progressive and resilient security frameworks—assuring the integrity and 
dependability of linked systems via intricate approaches such as ML, DL, and FL—requires addressing the previously 
highlighted research limits. Academic research must advance at the intersection of these fields if we are to build a resilient 
infrastructure to withstand the inevitable challenges posed by the IoT in the future, where we can maximize the benefits of 
extensive connectivity while mitigating the risks posed by bad actors. 
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