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A B S T R A C T 
 

The rapid development of technology using Android-based smartphones has led to various threats of 
malware targeting these devices. Over time, android malware has become increasingly complex and 
challenging to mitigate. Detection relies on identifying specific sets of features that characterize 
malicious behavior, and these features have become increasingly complex and diverse as the complexity 
of malware has increased. Traditional approaches often suffer from high-dimensional feature spaces that 
increase the computational complexity and reduce the detection accuracy. Therefore, in this paper, a 
feature optimization approach is proposed that strategically selects the most informative malware 
features and discards redundant and noisy features to ensure computational efficiency. The ensemble 
design model using a voting approach is utilized with three base classifiers (LMT, KStar, and Decision 
Table) that are fed from a feature selection using the Relief algorithm. The proposed models were 
evaluated through several experiments using three datasets (Derbin, Malgenome, and Prerna) comprising 
35,135 samples (10,820 malware samples and 24315 benign samples) across feature settings of 50, 100, 
150, and all features. The experimental results highlighted that the detection/classification accuracy can 
be enhanced via an optimal feature vector. Overall, the model using 150 features was able to achieve the 
highest performance of 99.61%. 

 

1. INTRODUCTION 

The widespread use of Android applications in daily life has become a target for cybercriminals seeking to steal sensitive 

information and perform malicious attacks. The Kaspersky Mobile Threats Report (2023) revealed an increase in the 
sophistication and complexity of mobile malware, resulting in more than 33 million cyberattacks worldwide and the 

discovery of malicious package installations that exceeded 3.5 million. The Android malware can be clustered according 

to the behavior and characteristics of various families. These families are not equal in size and perform different tasks, 

thereby reducing the detection efficiency of the developed approaches [1]. In addition, malicious software developers often 

make minor modifications to evade detection, making the identification of new variants increasingly challenging. On the 

other hand, traditional approaches to malware detection, including signature-based methods, have increasingly become 

inadequate for effectively identifying and mitigating these evolving threats. Consequently, researchers have turned their 

attention to machine learning techniques, particularly those based on feature analysis, as promising avenues for more robust 

malware detection systems. 

Android malware detection methods can be categorized into two methods depending on the feature extraction approach 

used: static analysis and dynamic analysis. Static analysis involves reverse engineering the Android application package 

(APK) to extract features from the code and other files without installing or running the application. Dynamic analysis 

involves running the application to collect information about its behavior and extracting features from it. Although dynamic 

analysis can accurately detect malicious activities, it requires a significant amount of time and resources to monitor the 

application in real time. Conversely, static analysis is a more commonly used approach because of its low resource 

consumption and extensive code coverage [1, 2]. The dynamic method tries to identify and select relevant features from 

android apps that can effectively discriminate between benign and malicious behavior in these applications. These features 
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serve as building blocks for machine learning techniques to train and classify malware apps accurately. Feature 

optimization is a process that involves refining the selected features to enhance the performance of the detection model. 

This process aims to improve the detection performance through discerning subtle differences between benign and 

malicious behavior. 

As a result, machine learning techniques such as decision trees, random forests and artificial neural networks are used to 

analyse and classify Android malware as static, dynamic, or mixed [3]. These techniques help in detecting and categorizing 

malware on the basis of its behavior, code structure, and other features, leading to more accurate and effective malware 

detection and classification. Therefore, machine learning-based approaches can accomplish better detection for variant 

unknown and zero-day attacks depending on the collected features (static and dynamic). As a result, investigating and 

evaluating new approaches is necessary to obtain a model with higher performance. Furthermore, defending against 

unknown malware requires the discovery of a new solution to overcome the existing limitations of malware detection [3, 
4]. Consequently, feature detection and optimization are intertwined processes in the development of effective Android 

malware detection systems. Researchers can improve the accuracy of developed models by carefully selecting, 

engineering, and fine-tuning these features. The constructed model is then utilized to detect incoming unknown malware. 

Usually, the constructed model will undergo retraining after new data are collected, which can help improve its accuracy. 

This paper investigates feature selection algorithms to evaluate their impact on machine learning classification performance 

with a focus on ensemble design. The Relief, Information Gain, and Chi-Square algorithms have been explored along with 

four classification algorithms: Bagging, Voting, KStar, and ENN. Furthermore, to validate the models, several experiments 

were conducted using three datasets (Derbin, Malgenome, Prerna) with a total of 35,135 APK samples, each of which has 

215 features. The main contributions of this paper are to improve Android malware detection by improving the efficiency 

and accuracy of the classification model. 

• Ensemble Model for Malware Classification – This study employs an ensemble learning approach with a voting 

strategy that combines the benefits of three base classifiers (the logistic model tree, KStar, and decision table) to 

improve classification performance. 

• Feature Selection Optimization - This study investigates the impact of various feature selection algorithms (relief, 

information gain, and chi-square) on Android malware detection. Using an effective selection approach helps reduce 

computational complexity while improving accuracy 

• Impact of feature selection on accuracy – Determining the number of relative features has an impact on accuracy. 

Therefore, the experiments were conducted on four different feature sets (50, 100, 150 and all features), which led 

to the finding that the feature subset (150 features) has the highest classification accuracy, which demonstrates the 

importance of feature selection. 

• Dataset Diversity and Generalization – To ensure the robustness and generalizability of the proposed model across 

different malware families, the evaluation is carried out via three publicly available datasets (Drebin, Malgenome, 

Prerna), which have a total of 35,135 APK samples. 

The remainder of the paper is structured as follows. Section 2 discusses the previous work that has been conducted on 

malware detection and machine learning techniques. Section 3 describes the proposed framework of this paper. In section 4, 

the experimental methodology is presented, and the results are presented in section 5. Finally, section 6 presents an analysis 

of the contributions and final conclusions. 

 

2. RELATED WORK 

In this section, related work on Android malware detection based on machine learning is reviewed. These malware 

detection systems can be classified according to the method of analysis: static, dynamic, and hybrid analysis. The static 

analysis method analyses the Android application without executing it. Some researchers have developed state-of-the-art 

malware detection systems using permissions features [3, 4]. In [4], the authors proposed a system that enables users to 
safeguard their security and privacy by analysing and removing harmful apps. The analysis of the app is performed by 

evaluating the permissions requested during application installation via a combination of clustering and classification 

techniques. However, the drawback of cluster-based approaches is that they cannot detect new families of malware until a 

new cluster is created. The problem can be mitigated if a larger number of clusters are created to support a wide range of 

new and unknown malware. Another approach, significant permission identification for Android malware detection 

(SIGPID), was introduced in [3]. The system prunes the permission data to identify the most significant permissions for 

distinguishing between benign and malicious apps. Using machine learning-based classification methods, an evaluation 

reveals that only 22 permissions are significant, and when a support vector machine classifier is used, SIGPID achieves 

over 90% precision, recall, accuracy, and F-measure while being 4--32 times faster than when all permissions are analysed. 

These studies consider only permissions that are requested by the application as features. However, they are other features 

that could help identify an app, such as API calls, strings, components, and intents. 
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Another Android malware detection approach is based upon API call features [2, 5, 6]. The work in [2] presented a 

combinational approach. It involves constructing a control flow graph (CFG) of the Android application to obtain API 

information and using that information to create Boolean, frequency, and time series datasets. Three detection models are 

then built on the basis of API calls, API frequency, and API sequence aspects, and an ensemble model is created for final 

determination. The results demonstrate high accuracy and stability, with 98.98% detection precision. However, their 

experiments were constrained by specific model restrictions, including API calls, API frequency, and API sequences within 

the source code, which do not encompass all types of malware applications. In [5], the authors utilized information flow 

analysis to detect mobile malware. Their method evaluates the structure of information flows to recognize patterns of 
behavior and determine interrelated flows through partial computational path analysis. These flows are referred to by the 

authors as complex flows. The technique employs N-gram analysis on sequences of API calls along control flow paths. In 

dynamic analysis, features are acquired from the Android application while it is running in a real or emulated environment. 

Using API calls alone limits the identification of applications. API calls might be similar for some apps and very different 

for others; therefore, adding another layer of features to empower the model to identify a pattern is preferable. 

The most well-known dynamic features are network traffic, API calls, system calls, and CPU data [7]. Other forms of 

dynamic analysis can also be performed with other techniques, other than machine learning, such as taint analysis [7] and 

Dalvik opcode [8]. The effectiveness of machine learning techniques for malware detection has been explored in many 

papers. Using a multilevel architecture and classifier fusion was proposed in [9]. The author proposed a framework 

(referred to as DroidFusion). The framework trains several base classifiers, each of which undergoes cross-validation 

training and testing to measure performance accuracy. A set of ranking-based algorithms are then utilized to generate the 

final classification model by applying these ranking algorithms to predict accuracy. Their work was evaluated on the 

DREBIN and Malgenome APK datasets. Similarly, the author in [1] proposed a detection model based on the bagging 

algorithm and Relief as feature selection, called FB2Droid. Their work involves designing sampling strategies to improve 

the performance of the bagging algorithm by alleviating imbalance in the dataset. The malware samples gathered from the 

AMD dataset consisted of 24,553 samples, and the benign samples were gathered from the Google Play Store and 

APKPure. FB2Droid achieved an accuracy of 97.8%. Like other machine learning methods, deep learning has been 
investigated in malware detection. 

In [10–12], the authors proposed the use of various deep learning models for the purpose of improving detection accuracy. 

The DLDroid [12] approach is a deep learning model that uses dynamic analysis and stateful input generation to detect 

malware, which is evaluated on a dataset from the McAfee laboratory with 31,125 samples. They reported that combining 

dynamics with static features can achieve a higher detection rate than can only dynamic features. The MalDozer [10] 

framework, which depends on sequence classification via deep learning, can detect malicious apps from using just the API 

method call. Their evaluation was on 33K samples from three datasets: Malgenome, Derbin, and self-collected samples. 

Their results revealed an F score between 69% and 99% depending on the number of folds. The DIDriod [11] framework 

addresses this issue from a different angle. It uses deep learning that is based on images. In DiDroid, the static features are 

converted into 2D gray images, which are then fed into the deep learning model. For evaluation, they used the Canadian 

Center for Cyber Security dataset, and they achieved an accuracy of 93.3%. The use of neural networks is particularly 

advantageous for image processing because of the rich feature sets inherent in images, which are not as prevalent in other 

applications. This necessitates large training datasets. However, deep neural networks are computationally intensive, 

leading to slower convergence than other machine learning algorithms do. 

The literature review discussed various proposed machine learning-based android malware detection approaches. 

However, there is still a need to investigate the effectiveness and impact of different feature selection algorithms and 

feature settings (number of features) on classification performance. Evaluating feature selection and optimization could 
significantly improve overall performance. In contrast to the existing work on Android malware detection, this paper 

focuses on investigating the impact and effectiveness of different feature selection algorithms with various numbers of 

features on the classification performance. A number of studies have claimed to detect both known and unknown types of 

malware, but their performance on previously unseen malware samples has not been evaluated. An assessment of the ability 

of any model to generalize novel malware variants is essential for establishing its robustness and practical viability in real-

world deployment scenarios. 

3. EFFECTIVE FEATURE OPTIMIZATION MODEL (EFOM) 

The proposed approach, referred to as the effective feature optimization model (EFOM), aims to increase the accuracy, 

efficiency, and robustness of detection mechanisms. The EFOM involves a comprehensive approach for feature extraction 

by using both static and dynamic analysis techniques. The static analysis extracts features and metadata from the 

application’s code, including permissions, API calls, manifest features, and opcode sequences, without executing the 

application itself. These features provide insight into the structure of the application and intent. Dynamic analysis involves 
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monitoring the behavior of the application within a controlled environment to capture runtime features such as system 

calls, network traffic, file system changes, and patterns of memory usage. This dual approach ensures a holistic overview 

of the application that observes both inherent characteristics and behavioral patterns. Figure 1 presents the general process 

of the proposed approach. 

 
Fig. 1. Overview of the proposed effective feature optimization model. 

Generally, the process starts by obtaining Android APKs (benign and malicious), which are then decompiled in a safe 

environment (sandbox) to avoid spreading the infection of the malware into the machine. Inside the sandbox, the APK is 

decompiled to obtain AndoidManifest.xml and Class.dex, which contain the permission data, the API calls, and other 

intents or components. For example, intents are messages that components can use to request functionality from other 

components, whereas components include activities, services, broadcast receivers, and content providers. 

By obtaining various features, the EFOM uses advanced feature selection techniques, such as the Relief algorithm, to 

identify the most significant features contributing to malware detection. The Relief algorithm assesses the importance of 

each feature by evaluating how well it distinguishes between instances that are close to each other. This helps in pinpointing 

the features that have the greatest impact on classification accuracy. Once the most significant features are identified, the 

optimized feature set is then used to train the detection model. This process ensures that the model is built on the most 

relevant data, enhancing its ability to classify malware accurately. By focusing on feature optimization, the EFOM not 

only improves detection performance but also reduces computational complexity by eliminating redundant and irrelevant 

features. Afterward, this proposed framework utilizes an ensemble scheme for classification that uses multiple classifiers 

to optimize classification performance. The approach uses the voting algorithm with three base learning models: the logistic 

model tree (LMT), KStar, and decision table (DT). Since correct classification is highly dependent upon the features of a 

given instance, the anatomy analysis of APK malware needs to consider the relationships among features. As a result, each 
of these base models will provide its decision, which then a voting process is conducted using average probability to form 

the final decision if the APK is malware or benign. 

The proposed detection model can be integrated into a cloud-based security system. In such a system, applications are 

analysed and classified before they are published on an official Android store or distribution platform. Using a detection 

system ensures the safety of the downloaded application for the end users by detecting any malicious applications early, 
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which enhances the overall security. Furthermore, utilizing the cloud can empower continuous updates for the detection 

model, which ensures that the latest threats or malicious applications are included in the model training. The enabled update 

can mitigate the need for manual updates on user devices. 

4. EXPERIMENTAL METHODOLOGY 

To explore feature selection and optimization, three methods, chi-square, relief, and information gain, were used to assess 

performance. The Drebin, Malgenome, and Prerna datasets were utilized to evaluate the proposed approach. The focus of 

the study was on the impact of reducing the feature vector via different selection algorithms and the impact of an ensemble 

algorithm on improving the performance. In the experiment, we utilized Python for edited nearest neighbor (ENN) and the 

Waikato Environment for Knowledge Analysis (WEKA), which is an open-source toolkit that is widely used in machine 

learning experiments. Several experiments were conducted during the evaluation process utilizing four classification 

approaches, two of which are ensemble approaches and two are nearest neighbor approaches. Figure 2 shows the 

experimental methodology of the feature selection process. 

 
Fig. 2. Overview of the experimental methodology. 

4.1. Description of Datasets 

To evaluate the proposed models, experiments were performed on three datasets, the details of which are presented in 

Table I. The first dataset is Drebin-215, which consists of 15036 samples (5560 malware samples and 9476 benign 

samples). This dataset is part of the Drebin project in 2014 [13]. The second one is Malgenome-215, which consists of 

3799 samples (1260 malware samples and 25389 benign samples). This dataset was part of the genome project of 2012 

[14]. The third dataset is Prerna, which consists of 16300 samples (400 malware and 12300 benign samples) [15]. In total, 

there are 35135 samples, among which 10820 are benign samples and 24315 are malware samples. All the above datasets 

have feature vectors of 215 that belong to four main categories: an API call signature, which is represented by 73 features; 

a command signature, which is represented by 6 features; an intent, which is represented by 23 features; and a manifest 

permission, which is represented by 113 features. The utilization of three datasets also helps ensure a good representation 

of the data to help generalize the results. There are four factors for key differences among the utilized datasets: • Sample 

size: the Derbin and Prerna datasets have significantly larger sample sizes than the Malgenome dataset does. In addition, 

Derbin has the highest number of malware samples, making it ideal for training models that need to recognize a wide 

variety of malware. 

• Malware-to-benign ratio: Pre-RAN has a higher ratio of benign samples than malware does, which could influence 

the training process to be more biased towards benign detection unless properly balanced. Moreover, the Malgenome 

dataset has a more balanced ratio than the other datasets do, but it still leans more towards benign samples. 

• Period of collection: The Malgenome represents older malware samples, providing a historical context. In contrast, 

Derbin and Prerna included more recent samples, which is crucial for detecting modern malware threats. 

• Feature Consistency: All datasets share the same number of features (215), ensuring that the feature space remains 

consistent across different datasets, which simplifies the process of feature extraction and comparison. 

TABLE I. NUMBER OF SAMPLES IN EACH DATASET  

Dataset Ref Samples Malware Benign Feature 

Malgenome [14] 3799 1260 2539 215 

Derbin [13] 15036 5560 9476 215 

Prerna [15] 16300 4000 12300 215 

Total 35135 10820 24135 215 
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4.2. Feature Extraction Model 

The features represent the properties and resources that the APK is provided or needs to operate correctly. The Android 

malware detection dataset was originally a dataset of APK files that were analysed to extract features. The APK is an 

Android application installation package. To avoid any malware infection, the APK is implemented in a sandbox 

environment. The process of extraction requires decompiling the APK to access the main files and the program code, which 

are later used to obtain the features. Many tools have been used effectively for decomplication, such as Androguard [16], 
AndroParse [17], and DynaLog [18]. These tools are used to decompile and analyse APK files to obtain 

AndroidManifest.xml and class files. The tools are capable of extracting common features such as permissions, APIs, 

strings and intents. The AndroidManifest file provides the required permissions required by the APK for communication 

and program execution. Five different feature categories were considered during the experiments: 

• Permission: the permissions that the app needs to execute an operation or access some resources. 

• App components: The building block that is essential for an application. This can include receivers, services, 

providers, and activities. 

• Intent filters: These filters handle the communication among the app components. 

• API calls: API calls that are allowed to access data or resources on smartphones. 

• Command: the app could need running commands that can perform dangerous operations or access higher privileges 

than it should have. 

4.3. Feature Selection and Optimization Model 

Feature selection and ranking are preprocessing steps that aim to reduce the dimensionality of the input data to gain a 

deeper understanding of the data and to lower the computational cost of the applied model while maintaining or improving 

model performance. In this step, a subset of relevant and informative features is selected from a large set of features while 

eliminating features that are redundant, noisy, or have little to no impact on the target variable. This is done by evaluating 

each feature in predicting the target variable and selecting only the most relevant feature. In addition to cost reduction, 

overfitting can be reduced by generalizing the learning model. In general, there are two categories of feature selection: 

feature search and feature subset evaluation. Feature search is used for attribute space search, which can include forward 

selection, backwards elimination, or both. Feature subset evaluation is used to identify the irrelevant and redundant 

features. Consequently, this paper uses three different feature selection algorithms that are effectively used in this domain: 
Relief, Information Gain, and Chi-Square, as shown in Figure 3. The Relief algorithm estimates the quality of attributes. 

It works by: 

1. Select an instance Randomly choose an instance I from the dataset. This is achieved by 

2. Find Nearest Neighbors: Identify the two nearest neighbors: 

3. Nearest Hit (H): The closest instance to I that belongs to the same class. 

4. Nearest Miss (M): The closest instance to I that belongs to a different class. 

5. Update Attribute Quality: For each attribute A, update its quality score W[A] on the basis of the values of A in I, H, 

and M. 

 
Fig. 3. Selecting the best set of features. 

The reason for choosing the Relief algorithm is three points: it is relatively fast (less real-time running), easy to implement 

(less likely to be misimplemented), and capable of detecting feature dependencies, which is accomplished by using the 

concept of the nearest neighbor to calculate feature statistics by searching through feature combinations [19]. The 

information gain (InfoGain) is an entropy-based feature evaluation method. InfoGain calculates the reduction in entropy 

from the transformation of a dataset. In the context of feature selection, it is used to evaluate the information gain of each 

variable in the context of the target class. In other words, InfoGain defines the amount of information provided by the 

feature items for the target class, which can be used for classification [20]. Chi-square feature selection depends on chi-

square statistics to help select groups of features by testing the relationships among the given features. The chi-square 

method evaluates the correlation strength of individual features by computing the statistical value. This involves calculating 
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the chi-square value between each feature and the target class and observing the relationship between the feature and the 

target class. The feature can be discarded if the target class is independent of the feature; otherwise, they are dependent, 

and the feature is important. Subsequently, the desired number of features that exhibit the highest chi-square scores is 

selected [21, 22]. 

The main purpose of using different feature selection algorithms is to explore the impact that these algorithms have on the 

final classification performance. The assumption is that these algorithms behave and process features in different ways. 

The experiment will encompass each of these algorithms with different configurations using four sizes of features (50, 100, 

150, and 215 (all features)) to analyse the impact of reducing the feature dimension. Along with these algorithms, a ranking 
algorithm was used to rank the features on the basis of their value from the selection evaluation algorithms to eliminate 

low or nonrelevant features. The top-ranked 50, 100, or 150 terms are then taken and fed into classification algorithms. 

4.4. Classification Model 

The study used different types of classification algorithms because different machine learning techniques have different 

strengths and weaknesses, and combining the strengths of multiple approaches can overcome some of their weaknesses. 

To do that, we can utilize ensemble learning, which is a machine learning technique that works by combining different 

models into a stronger and more accurate model. It can leverage the diverse properties of combined models, which also 

help in error mitigation, performance enhancement, and overall robustness. There are different types of ensemble 

algorithms (see Figure 4). This study considered two algorithms: the bagging and voting algorithms. The Bagging 
Algorithm is a bootstrap aggregation approach that aims to improve unstable classification or estimation. There are two 

main steps: bootstrapping, which involves resampling a subdataset with replacement from the initial dataset. This means 

that a data point in the dataset can be resampled multiple times. These samples are used to train a "weak learner". The next 

step starts, which is aggregation, during which the "weak learner" is trained via subdatasets. Then, "weak learners" make 

predictions independently, which are later aggregated to provide an overall prediction [23]. In the voting algorithm, 

multiple models are used, and they work individually. The final outcome is a result of the voting combination rule. This 

study uses the average probability, which is calculated for each class, and then the highest probability value is considered 

the output result. In this paper, we use soft voting, which has a rule of average probability [24]. The hyperparameters for 

the base models are as follows: 

• For LMT, two hyperparameters are used. MinNumInstances” is set to 15, which refers to the minimum number 

of instances at which a tree node is considered for splitting. NumBoostingIterations is set to -1, which identifies 

the number of times the process will be performed. Using -1 automatically determines the number of boosting 

iterations to avoid increasing the computational cost. 

• For KStar, two hyperparameters were set. MissingMode determines how the algorithm handles the missing 

values. In this paper, MissingMode is based on the average entropy of the corresponding feature. To control 

randomness, GlobalBlend is used with a value of 20 to mix the deterministic and probabilistic approaches. 

• For the decision table, three hyperparameters were set. The evaluation measure, which is set to accuracy, defines 
the metric used to evaluate the predictive power of different subsets of attributes when constructing the decision 

table. The search method, set to BestFirst, is used to find the best subset of attributes. BestFirst is set with a 

forward direction and 5 consecutive nonimproving nodes before terminating the search. To evaluate a subset of 

attributes, corssVal is set to leave-one-out for cross-validation. 

 
Fig. 4. Classification model based on selected features. 

In addition to the ensemble design classification algorithms, the paper uses two nearest neighbor algorithms for the purpose 

of evaluation. The nearest neighbor algorithms look into finding approximate nearest neighbors on the basis of distance 

matrices to measure similarity between observations. This paper considers two algorithms, KStar and ENN, for the 
experiments. K-Star is an instance-based classifier that depends on the K nearest neighbor. It aims to find the shortest path 

between two vertices. In classification, K-star uses an entropy distance measure depending on the probability of 

transforming one instance into another to calculate the distance between training data samples. It can provide high 
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performance and strong generalizability, especially with balanced data [25]. The extended nearest neighbor (ENN) is an 

advanced version of state-of-the-art KNN classification that considers only the nearest neighbor of a test sample. This 

could lead to misclassification because the k nearest neighbors of the test samples of the higher-density area could lie in 

the lower-density area, or vice versa. This is a problem, especially when the dataset is unbalanced or small. In the ENN, 

the nearest neighbor is extended to consider not only the nearest neighbor but also those samples that consider the test 

samples as one of their nearest neighbors. However, the ENN is computationally expensive for high-dimensional datasets 

[26]. 

5. EXPERIMENTAL RESULTS 

The results are divided into two sections: feature selection evaluation, which investigates the performance of each of the 

three algorithms with different settings; and classification evaluation, which presents the performance of the different 

classifiers with the use of feature selection. 

5.1. Feature selection evaluation 

This section investigates the feature selection approach to select and prioritize the features that contain the most 

discriminative information. This study examined three methods of feature selection, Chi-Square, Relief, and InfoGain, to 

assess the performance of these methods across multiple datasets and feature settings. As mentioned above, the Drebin, 

malgenome, and Prerna datasets were used with four feature settings (50, 100, 150, and all features) that were applied to 

each dataset. Several experiments were conducted using the bagging method as the backbone to measure the accuracy of 

feature selection approaches. 

During the experiment, for the Derbin dataset, the three feature selection techniques returned the same top 50 features but 

with different ranks, which represent the importance of these features among the others. The ranks of the features between 
the chi-square coefficient and the information gain are very close. The ranks of the top 14 features all match, and the 

remaining features are closely ranked. However, Relief ranks the features very differently from the other two methods do. 

For the Malgenome dataset, Relief returns a set of features that are different from those of other techniques. For the 50-

feature selection, 16 out of the 50 features belong to the selected features in the Relief list but not in the information gain 

and chi-square. With respect to Prerna, Relief returned 28 out of 50 features that are different from those from which Chi-

Square and Information Gain returned. Table II shows the top 20 ranked features based on the Relief algorithm for the 

three datasets. We chose Relief because it has different ranking features than the other algorithms do. 

TABLE II. DATASETS WITH THE TOP 20 FEATURES  

Rank Durbin Dataset Malgenome Dataset Prerna Dataset 

1 TelephonyManager.getLine1Number READ_SMS intent.action.BOOT_COMPLETE 

2 GET_ACCOUNTS TelephonyManager.getSubscriberId SEND_SMS 

3 System.loadLibrary ClassLoader RECEIVE_BOOT_COMPLETED 

4 intent.action.BOOT_COMPLETED content.Context.registerReceiver READ_SMS 

5 Ljava.lang.Class.cast content.Context.unregisterReceive READ_PHONE_STATE 

6 TelephonyManager.getSubscriberId android.os.Binder ACCESS_WIFI_STATE 

8 READ_PHONE_STATE Ljava.lang.Class.getCanonicalName android.telephony.SmsManager 

9 Ljava.lang.Class.getMethods intent.action.BOOT_COMPLETED System.loadLibrary 

10 DexClassLoader Transact WRITE_SMS 

11 WRITE_HISTORY_BOOKMARKS ServiceConnection WRITE_EXTERNAL_STORAGE 

12 android.telephony.SmsManager bindService READ_CONTACTS 

13 Ljava.lang.Class.getCanonicalName onServiceConnected WAKE_LOCK 

14 content.Context.registerReceiver TelephonyManager.getLine1Number CHANGE_WIFI_STATE 

15 Runtime.getRuntime SEND_SMS android.content.pm.PackageInfo 

16 content.Context.unregisterReceive WRITE_SMS abortBroadcast 

17 READ_SMS Chmod Mount 

18 getBinder TelephonyManager.getDeviceId ClassLoader 

19 Ljava.lang.Class.getField attachInterface VIBRATE 

20 TelephonyManager.getLine1Number Runtime.exec /system/bin 

Table III and Figure 5 illustrate the results of the feature selection model performance obtained from the experiments. The 

results showed that the accuracy of the three methods on the Drebin dataset, which are based on feature selection and the 

optimization model, is generally high, with values ranging from 96.27% to 98.64%. In addition, the best accuracy of 

89.64% was achieved when 100 and 150 features were set via the Relief method. In contrast, in this dataset, InfoGain tends 

to have slightly lower accuracy than Chi-Square and Relief. The bagging with chi-square and relief feature selection 

methods appears to be a strong combination for this dataset. Among all feature settings, the 100 and 150 settings presented 
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consistent accuracies, with accuracies higher than 96%, indicating that feature selection approaches can help improve 

model performance. As a result, bagging with chi-square and relief feature selection methods appears to be a strong 

combination for this dataset. On the other hand, the accuracy of the utilized feature selection approaches on the Malgenome 

dataset is relatively high, ranging from 96.27% to 99.34%. When the 50-feature setting was used, the accuracy of the chi-

square method reached 96.37%. This finding indicates that chi-square is effective in selecting a subset of features that 

significantly contribute to the classification task. The consistency of the results across different feature counts highlights 

its reliability. In contrast, the Relief method performs slightly worse than the chi-square method, with a value of 96.27%. 

However, the difference is marginal, and Relief demonstrates its ability to select features even in a reduced feature space. 
Its localized feature importance assessment might contribute to its effectiveness in specific contexts. Similarly, InfoGain 

achieved an accuracy of 96.27%, similar to the chi-square method. While not the highest, its consistent performance across 

various feature settings suggests its stability and reliability. The ability of InfoGain to measure the information gain makes 

it a robust choice in capturing relevant features. 

TABLE III. PERFORMANCE OF THE FEATURE SELECTION MODEL  

Feature settings Feature Selection Drebin Malgenome Prerna 

50 Features Chi-Square 96.37% 96.37% 88.58% 

Relief 96.27% 96.27% 88.32% 

InfoGain 96.27% 96.27% 88.64% 

100 Features Chi-Square 98.37% 98.95% 90.58% 

Relief 98.64% 99.34% 91.32% 

InfoGain 98.00% 98.95% 90.64% 

150 Features Chi-Square 98.40% 99.21% 91.53% 

Relief 98.64% 99.08% 91.63% 

InfoGain 98.50% 98.95% 91.60% 

All Features 97.44% 97.81% 90.50% 

 
Fig. 5. Feature Selection Performance. 

The proposed approach achieved significant accuracy when 100 features were set via the Malgenome dataset across the 

utilized feature selection methods. Furthermore, chi-square and InfoGain increase accuracy to 98.95%. This suggests that, 

with a larger feature set, they are able to capture additional relevant information, leading to improved classification 

accuracy. However, the Relief method outperforms both Chi-Square and InfoGain, achieving an impressive accuracy of 

99.34%. This suggests that the InfoGain method has the capacity to leverage additional features effectively. The 150-

feature setting improves the accuracy of the proposed approach. In other words, the chi-square method continues to 

improve, achieving an accuracy of 99.21%, in which the InfoGain method gains the exact accuracy of the chi-square 

method. This suggests that the additional features contribute positively to the model’s ability to discern patterns in the 

Malgenome dataset. However, InfoGain was robust in consistently selecting relevant features across varying feature 
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counts. However, the proposed approach offered low accuracy when all features of the Malgenome dataset were used. This 

means that several ineffective features lead to unsuccessful classification. 

The results on the Prerna dataset were less accurate than those on Drebin, and the percentage of malgenomes ranged from 

88.32% to 91.63%. The feature setting of 50 yielded the lowest accuracy among the other settings across the three methods. 

The accuracy of the classification results improves as the number of selected features increases. However, among the three 

feature selection methods, Relief consistently performs the best, followed closely by InfoGain and Chi-Square. These 

results suggest that a feature set of 150 provides the highest accuracy, with Relief being the most effective feature selection 

method for the Prerna dataset. 
The results indicate that as the number of features increases, the classification accuracy generally improves for all three 

feature selection methods. Relief consistently outperforms chi-square and InfoGain in terms of accuracy, especially in the 

100-feature setting. The chi-square test shows a remarkable improvement in accuracy as the feature count increases. The 

results suggest that the effectiveness of feature selection methods varies depending on the dataset and the number of 

features considered. 

5.2. Classification evaluation 

This section presents the results of the classification methods. On the basis of the above feature selection experiments, 100 

and 150 feature settings were used to investigate the malware classification ability. Tables IV, V, and VI present the 

classification model performance results obtained from the experiments. 
By using the Drebin dataset, the accuracy across the four classification methods was slightly sensitive to the number of 

features. However, using the 100-feature setting and chi-square with bagging, voting and KStar demonstrated a consistent 

performance ranging between 98.14% and 98.67%, whereas the ENN algorithm presented a lower accuracy of 97.93%. 

Moreover, the Relief classification algorithm, which uses the same Chi-Square setting, achieved a steady accuracy of more 

than 98.64%. In addition, InfoGain offered acceptable accuracy of more than 98%. Generally, the Voting and ENN 

algorithms yield notable improvements in accuracy when they transition from 100 to 150 feature settings, suggesting that 

a richer feature set enhances their classification capabilities. KStar showed a slight decline with 150 features. In other 

words, the slight decrease in accuracy from 98.67% to 98.50% with 150 features might indicate a potential optimal feature 

set of approximately 100 features for KStar in this context. In contrast, the substantial improvement from 97.93% to 

98.60% with 150 features indicates that the ENN benefits significantly from a larger feature set. Therefore, the experiments 

demonstrated the nuanced relationship between the number of features and the performance of classification algorithms 

for Android malware detection via the Drebin dataset. 

TABLE IV. CLASSIFICATION MODEL PERFORMANCE METRIC RESULTS FOR THE DREBIN DATASET. 

Metrics Feature Selection 100 Features 150 Features 

Bagging Voting Kstar ENN Bagging Voting Kstar ENN 

Accuracy ChiSquare 0.984 0.981 0.987 0.979 0.984 0.984 0.985 0.986 
 

Relief 0.986 0.986 0.988 0.987 0.986 0.985 0.987 0.987 
 

InfoGain 0.980 0.982 0.983 0.981 0.985 0.983 0.985 0.985 

Precision ChiSquare 0.989 0.991 0.989 0.9917 0.992 0.992 0.991 0.988 
 

Relief 0.993 0.989 0.989 0.992 0.991 0.995 0.992 0.990 
 

InfoGain 0.989 0.989 0.989 0.973 0.989 0.995 0.989 0.984 

Recall ChiSquare 0.989 0.989 0.989 0.984 0.99 0.996 0.991 0.988 
 

Relief 0.993 0.989 0.989 0.984 0.991 0.995 0.992 0.972 
 

InfoGain 0.989 0.989 0.989 0.984 0.989 0.995 0.989 0.980 

F-Measure ChiSquare 0.989 0.989 0.989 0.988 0.992 0.996 0.991 0.988 
 

Relief 0.993 0.989 0.989 0.988 0.991 0.995 0.992 0.986 
 

InfoGain 0.989 0.989 0.989 0.979 0.989 0.995 0.989 0.982 
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TABLE V. CLASSIFICATION MODEL PERFORMANCE METRICS RESULTS FOR MALGENOME DATASET.  

Metrics Feature 

Selection 

100 Features 150 Features 

Bagging Voting Kstar ENN Bagging Voting Kstar ENN 

Accuracy ChiSquare 0.989 0.991 0.989 0.992 0.992 0.996 0.991 0.992 

Relief 0.993 0.989 0.992 0.992 0.991 0.995 0.992 0.990 

InfoGain 0.989 0.995 0.989 0.986 0.989 0.995 0.989 0.988 

Precision ChiSquare 0.984 0.981 0.987 0.9781 0.984 0.984 0.985 0.979 

Relief 0.986 0.988 0.988 0.972 0.986 0.985 0.987 0.991 

InfoGain 0.98 0.982 0.983 0.972 0.983 0.985 0.985 0.986 

Recall ChiSquare 0.984 0.981 0.987 0.966 0.984 0.984 0.985 0.983 

Relief 0.986 0.988 0.988 0.974 0.986 0.985 0.987 0.975 

InfoGain 0.98 0.982 0.983 0.976 0.985 0.983 0.985 0.973 

F-Measure ChiSquare 0.984 0.981 0.987 0.972 0.984 0.984 0.985 0.981 

Relief 0.986 0.988 0.988 0.974 0.986 0.985 0.987 0.982 

InfoGain 0.98 0.982 0.983 0.974 0.983 0.985 0.985 0.981 

 

The results on the Malgenome dataset were better than those on the Drebin dataset. The methods KStar and Voting are 

proving to be strong contenders when 100-feature settings are used. The sequential increase in accuracy from 98.95% to 

99.08% shows that combining multiple classifiers results in the best performance in malware detection. Voting, although 

slightly conservative, maintains a solid accuracy of 98.95% across the three feature selection methods. ENN, with an 
accuracy of 99.21%, highlighted the power of focusing on quality over quantity. Similarly, the chi-square and relief feature 

selection methods, which use 150 settings across the four utilized classification algorithms, offered a reliable accuracy of 

more than 99%. Moreover, the Voting algorithm outperformed the other algorithms, with an accuracy of 99.61% when 

150 settings were used. It focuses on eliminating noise and enhancing the quality of the dataset for classification. While 

Bagging and KStar are performing admirably. Voting, in particular, seems to be excelling, with a slight edge over Bagging. 

These results highlight the strengths of ensemble methods (bagging and voting) in capturing diverse patterns within the 

Malgenome dataset. Although KStar is slightly more conservative, it remains effective in its instance-based learning 

approach. As a result, the ENN emerges as a standout performer, emphasizing the importance of dataset refinement in 

achieving high accuracy. 

TABLE VI. CLASSIFICATION MODEL PERFORMANCE METRIC RESULTS FOR THE PRERNA DATASET. 

Metrics Feature Selection 100 Features 
   

150 Features 
   

  
Bagging Voting Kstar ENN Bagging Voting Kstar ENN 

Accuracy ChiSquare 0.906 0.906 0.908 0.903 0.915 0.918 0.917 0.907  
Relief 91.32 0.909 0.916 0.897 0.916 0.916 0.918 0.901  
InfoGain 90.64 0.906 0.908 0.892 0.916 0.921 0.917 0.906 

Precision ChiSquare 0.906 0.907 0.908 0.957 0.918 0.918 0.918 0.955  
Relief 0.913 0.910 0.916 0.951 0.916 0.916 0.917 0.946  
InfoGain 0.906 0.907 0.908 0.958 0.916 0.921 0.917 0.949 

Recall ChiSquare 0.906 0.9132 0.915 0.918 0.918 0.917 0.918 0.918  
Relief 0.913 0.910 0.916 0.911 0.916 0.916 0.917 0.936  
InfoGain 0.906 0.908 0.908 0.897 0.916 0.921 0.917 0.936 

F-Measure ChiSquare 0.906 0.926 0.915 0.918 0.918 0.916 0.9365 0.937  
Relief 0.916 0.930 0.916 0.920 0.916 0.917 0.9365 0.937  
InfoGain 0.908 0.926 0.916 0.921 0.916 0.917 0.9365 0.937 

 

With respect to the Prerna dataset, the experiments revealed that the accuracy of all the classification algorithms using the 

three feature selection methods was lower than that of the other datasets. In other words, the results presented a moderate 

increase in accuracy by moving from 100 to 150 features across all algorithms, with an accuracy of 91%, highlighting the 

importance of feature richness in enhancing classification performance. Compared with the other algorithms, the ENN 

algorithm achieves slightly lower performance. 

In general, the results of the experiments highlighted the nuanced trade-offs between feature quantity and algorithmic 

performance, emphasizing the need for a balanced approach in malware classification. These results paint a picture of a 

well-coordinated team of classifiers with feature selection methods working together to successfully identify malware in 

the Drebin and Malgenome datasets. In addition, the sequential accuracy values show a progression in performance, 

highlighting the effectiveness of these methods in tackling the complexities of malware detection to gain deeper insights 

into the characteristics of Android malware. 
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6. COMPARATIVE ANALYSIS 

The overall best results were obtained by using the Voting algorithm with Relief feature selection, with the highest accuracy 

of 99.47% in Malgenome and 92.12% in Prerna, both with 150 features. Table VII presents a comparison of results from 

previous studies versus this study. DROIDFUSION [9] was able to obtain an F-measure of 98.4% for the Malgenome 

dataset, which was higher than those of the other nine algorithms that they investigated. Compared with this study, for the 

same dataset, Voting with Relief and the setting of 100 features (Voting_Relief_100) yield an F-measure of 99.5%. For 
the Derbin dataset, DROIDFUSION obtains an F-measure of 98.72%, which was the highest obtained value in their 

experiment. However, the combination of Voting_Relief_100 provides an F-measure of 98.8%, which is slightly higher. 

In a different comparative analysis and utilization of various machine learning algorithms, [27, 28] and [35] reported that 

using a multilayer perceptron (MLP) with a 66% split on the Malgenome and Derbin datasets obtained accuracies of 99.4% 

and 0.97%, respectively. These results for Malgenome are close to our finding with very small differences; however, there 

is noticeable performance improvement with Derbin, where the accuracy gain is approximately 0.13% greater. The random 

forest method is an alternative that can achieve good accuracy between 98.8 and 99.3 on the Malgenome. 

TABLE VII. COMPARISON OF F-MEASURE VALUES FOR DIFFERENT APPROACHES 

Approach Malgenome Derbin 

EFOM (this study) 99.5 98.9 

DROIDFUSION [9] 98.4 98.72 

Multilayer Perceptron [27] 98.9 97 

Random Forest [27, 28] 98.8 - 99.3 - 

KNN & RF [29] 95.9 - 

MalDozer [10] 99.84 99.21 

EAODroid [30] - 99.5 

LSTM [29] 99.3 98.2 

 

A neural network (deep learning and LTSM) is used by MalDozer, EAODroid [10, 30]. MalDozer was evaluated on the 

Malgenome and Derbin datasets. MalDozer was able to provide F-measures of 99.84% and 99.21 for Malgenome and 

Derbin, respectively. MalDozer has a slightly higher F-measure than does the proposed approach of this study. In the same 

context, the EAODroid tool focuses on the API-based detection technique, which considers only the invoked statements 

and leaves behind the permission, string, intent, etc. EAODroid was evaluated on sample malware collected from Derbin 
(just the malware samples) and AMD, and the benign samples were collected from Xiaomi and PlayDrone. EAODroid 

with a feature dimension of (64 × 64) obtained an accuracy of 99.5%, but when the dimension was reduced to (11 × 11), 

the accuracy was 98.6. Although EAODroid was evaluated on the same dataset (part of Derbin), comparing the results can 

provide a context for future research. In addition, there is a need to investigate the setting of features with different 

algorithms. LTSM [29] was also successful in detecting malware in Malgenome and Drebin, with an accuracy of 99. 3% 

and 98.2%, respectively 

Notably, while our proposed approach outperforms many of the current state-of-the-art methods, it is still marginally 

behind the deep learning approaches. The better performance of deep learning can be attributed to its ability to extract 

better features. However, using a deep neural network comes with a significant computational cost and typically requires 

large training data, which can lead to slower convergence than other machine learning algorithms. 

7. CONCLUSION 

This paper presented an approach to enhance Android malware detection through an effective feature optimization model 

(EFOM). It addresses the critical challenge of identifying and optimizing relevant features for robust malware detection 

by considering the dynamic and diverse nature of Android malware. Feature selection plays a crucial role in identifying 

the most relevant attributes that can contribute to the differentiation between malware and benign applications. By utilizing 

approaches such as the Relief algorithm, it effectively reduces the feature space, thereby eliminating redundant and 

irrelevant features. This not only improves the computational efficiency but also enhances the overall accuracy of the 

classification models. 

Generally, a combined approach of feature optimization and classification leads to more accurate, efficient, and reliable 

detection of malware applications. This dual optimization strategy enhances the ability to detect malicious applications 

promptly and accurately, thereby contributing to improved security in the Android ecosystem. Future research should 

prioritize the optimization of features used in malware detection. This involves exploring novel feature engineering 

techniques to increase the quality and relevance of features. Investigating advanced ensemble methods for integrating 
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multiple detection models can further refine feature selection. Additionally, leveraging deep learning approaches for 

detailed feature analysis can uncover complex patterns and relationships within the data, potentially leading to improved 

detection accuracy. By focusing on feature optimization, we can develop more robust and effective malware detection 

systems. 

The features are the cornerstone on which classification depends. Therefore, future work should investigate the impact of 

using optimization approaches such as feature selection instead of a filter-based approach. The optimization approach can 

provide a dynamic mechanism for selecting the most relevant features to increase detection accuracy. 
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