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A B S T R A C T 
 Deep learning has emerged as a powerful approach for treating complex real-world challenges. 
However, the performance of the deep learning models is heavily reliant on access to large volumes of 
high-quality training data—an aspect often constrained by privacy concerns. Ensuring data availability 
while preserving user confidentiality remains a pressing issue. In response, cryptographic techniques like 
homomorphic encryption (HE), which are grounded in strict mathematical principles, present hopeful 
solutions for securing data on digital platforms without compromising its usability for learning models. 
It performs computations on encrypted data without revealing the underlying plaintext. The main 
attractive feature of this technique is its ability to protect sensitive information in a variety of settings. 
Moreover, it guarantees the data’s trustworthiness and keeps data from being altered or tampered with. 
In this paper, sensitive data are encrypted via homomorphic algorithms and then input into deep learning 
to evaluate the feasibility of privacy-preserving deep learning. The aim is to examine the performance 
and security implications of fully homomorphic encryption (by the Learning With Errors (LWE) scheme) 
and partially homomorphic encryption (by the Rivest, Shamir, and Adleman (RSA) algorithms). Both 
methods were applied to three datasets for osteoporosis diagnosis. The experimental results show that 
LWE maintains high accuracy, reaching 88.01%, compared with unencrypted models. In contrast, RSA 
showed lower accuracy with minimum resource consumption. The findings showed that LWE is a more 
secure and reliable option for privacy-preserving deep learning in medical applications. 

1. INTRODUCTION 

Machine learning has recently received much interest in the healthcare industry for cutting-edge outcomes in numerous 

domains. Algorithms, particularly deep neural networks, have produced astonishing personalized medical solutions, 

allowing tailored treatment, prevention, and diagnosis. Deep neural networks are frequently utilized to blend medical 

professionals' expertise and knowledge into computer-aided diagnostic solutions because of their ability to learn from 

previous experiences [1]. Deep learning has yielded promising achievements in industry and academic fields. In some 

cases, deep learning systems produce accuracies comparable to, if not surpassing, those of human experts. This is due to 

the computational innovations and physical parallel technology used in the processing of neural networks [2] [3]. However, 

collecting massive amounts of data is necessary for deep learning. This highlights privacy concerns due to the storing of 

gathered data on an untrusted cloud server that is out of the owner's control [5]. As a result, medical research institutes and 

hospitals prevent the sharing of sensitive data and thus do not take advantage of the benefits of deep learning techniques 

[1] [2] [4]. Therefore, anonymizing sensitive data helps preserve its secrecy and privacy, which are critical requirements 

before transmitting it to the cloud server. However, using anonymized data limits the ability of deep learning to extract 

important knowledge and insight from the data [6].  Patients’ medical information includes health conditions, diagnoses, 

medications, and even patients’ medical history. If the data are not encrypted, they can be easily accessed by unauthorized 

parties. This poses a significant risk to patient privacy, especially if the data are related to sensitive diseases. The risk of 

tampering with patient information can lead to incorrect results in medical tests or diagnoses, which can lead to incorrect 

treatments, putting patients’ lives at risk. Unencrypted data are also vulnerable to illegal use, such as blackmail, where 

sensitive medical information can be used to pressure individuals or companies, or it may be used for marketing or 

commercial purposes without patient consent. Unencrypted data are an attractive target for hackers, who may exploit 

vulnerabilities to access medical information and exploit it for financial gain or sell it in black markets. 

Mesopotamian journal of Cybersecurity 

Vol. 5, No.2, pp. 703-720 

DOI: https://doi.org/10.58496/MJCS/2025/042; ISSN: 2958-6542 

https://mesopotamian.press/journals/index.php/cybersecurity 

https://mesopotamian.press
https://ieeexplore.ieee.org/author/37086597329
https://orcid.org/0000-0001-6058-4325
https://orcid.org/0000-0002-2374-3072
https://creativecommons.org/licenses/by/4.0/
https://mesopotamian.press/journals/index.php/cybersecurity
https://doi.org/10.58496/MJCS/2025/042
https://mesopotamian.press/journals/index.php/cybersecurity


 

 

704 Salman et al., Mesopotamian Journal of Cybersecurity Vol. 5, No.2, 703–720 

    Encryption is an essential security barrier to protect data from this type of attack. Additionally, encryption is considered 

a fundamental mechanism for preserving the confidentiality of sensitive data. However, conventional encryption algorithms 

cannot work properly without first decrypting the data. Homomorphism is proposed as a possible solution for computation 

without decrypting the data. In terms of deep learning, its algorithms could be used on data that were encrypted while they 

were still encrypted, giving almost the same results when applied to plain data. Homomorphic encryption (HE) techniques 

offer a way out of this impasse [7] [8][9]. HE allows users to upload encrypted datasets to a cloud service securely [10] [9] 

[11]. 

This study aims to bridge a lacuna by applying HE techniques. Specifically, fully homomorphic encryption (FHE), which 

is based on the Learning With Errors (LWE) scheme, and partially homomorphic encryption (PHE), which use Rivest, 

Shamir, and Adleman (RSA), are performed separately on multiple datasets related to osteoporosis diseases, and then a 

deep learning framework for osteoporosis prediction is applied, thus preserving the privacy of patients. To decide the 

effectiveness of each HE technique, the study implements and evaluates it independently. In this case, the scope of its 

efficacy will be determined by securing sensitive data through an artificial neural network (ANN) model that is used to 

predict the disease. 

The following lists the contributions of this work: 

• An integrated system predicts osteoporosis via an ANN based on three different databases (comma-separated 

values (CSVs) and images). These data are encrypted via LWE and RSA to maintain patient privacy during the 

prediction process. 

• An evaluation of the encrypted ANN models, comparing their prediction performance on encrypted versus 

unencrypted data via standard classification metrics such as accuracy, precision, recall, and F1 score, as well as 

system-level metrics such as prediction time, memory usage, and model size. 

• Metrics (computing cost, energy consumption, and storage overhead) are used to compare and analyse the 

performance of the used encryption algorithms and determine the possibility of using FHE and PHE in global 

diagnostic systems. 

On the basis of available information, this is the first study to implement and compare both LWE-based FHE and RSA-

based PHE in the context of encrypted disease prediction via an ANN. The results revealed that secure and effective medical 

prediction can be achieved on encrypted data without revealing patient information. Thus, this will lead to advancements 

in the integration of privacy-preserving techniques into artificial intelligence-driven healthcare applications. 

In this paper, osteoporosis disease prediction is adopted as a case study. It is a chronic disease that affects bones as a result 
of their low mineral density, making the bones brittle and easy to break. It is also called silent disease because patients do 

not feel it unless they are exposed to a fracture. Studies have shown that it is possible to predict this disease by measuring 

some proteins, such as osteopontin (OPN), and some biochemical factors [12]. 

The structure of this article is as follows. Some of the related works are described in Section 2. Section 3 introduces 

deep learning and ANNs. HE and its classification are shown in Section 4. The details of the proposed system are presented 

in Section 5. Section 6 presents the results and discussion of the work, and the security evaluation is introduced in Section 

7. Section 8 shows a comparison of our work with others. The final section includes the conclusion of the work and some 

suggestions for future work. 

2. RELATED WORKS 

Hassan Takabi et al. [13] proposed a model to run deep neural networks on encrypted information via PHE methods. 

Chebyshev low-degree polynomials are used to approximate continuous functions (e.g., sigmoid functions) in addition to 

enhancing the performance of neural networks. The modified Chebyshev basis is used. Moreover, the authors evaluate the 

effectiveness of the proposed algorithms. However, in this research, less communication is needed between the client and 

the server. Ping Li et al. [14] presented two approaches to reduce communication and computational expenses for data 

owners, who store their data on the cloud server after securely encrypting it with various keys. Whereas in the first basic 

case, they employed multikey FHE, they combined FHE and the double decryption mechanism; both schemes handle the 

challenge of creating shared deep learning ciphertexts by protecting privacy via several public keys. Unlike the basic 

system, the advanced method eliminates the requirements for data owners to interact among themselves during the 

decryption of the resulting data. 

On the other hand, another study used additive HE to protect data stored on the cloud before using deep learning [2]. 

The study enhances security by preventing information from leaking to the cloud server. Furthermore, Xiaoqiang’s study 

[15] improved FHE to be suitable for the private classification of machine learning. Moreover, decision-based 

classification, naïve Bayes classification, and a homomorphic comparison protocol were implemented via enhanced FHE.  

However, the work in [4] investigated the feasibility of deep learning via a convolutional neural network (CNN) by 

preserving privacy. This study focuses on bootstrap FHEs to enable the evaluation of complex functions. For a bootstrap 
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FHE implementation, the operations of the deep learning methods are encrypted for use in image classification applications. 

How logic circuits and security factors affect system performance were examined.  Relatedly, Anamaria Vizitiu et al. [1] 

proposed a method depend on FHE to process personal health information without revealing sensitive data. This method is 

named MORE (matrix operation for randomization or encryption). It enables calculations within neural network models 

directly on floating-point data with relatively low computing cost. This study adopts the National Institute of Standards and 

Technology (MNIST) digit recognition dataset to evaluate the viability of the suggested strategy, and they demonstrated 

that using deep learning to handle homomorphic data does not impair performance. Table 1 summarizes recent studies on 

the use of homomorphic algorithms with deep learning. 

TABLE 1: SURVEY ABOUT DEEP LEARNING OVER ENCRYPTED DATA 
citation Year Technique used Dataset used result 

[13] 2016 Leveled or somewhat homomorphic systems 
combined with neural networks (NNs) that 

use polynomial approximation as their 

activation function. 

15 datasets from UC 

Irvine 

Machine Learning 

Repository 

The findings demonstrate that polynomial 
approximation can obtain the best accuracy 

when the appropriate interval is selected, 

depending on the dataset. The cost increased 

when the connection between the cloud server 

and the learning participants increased. 

[14] 2017 This work presents a fundamental technique 

based on MK-FHE, and a cutting-edge 

method using a hybrid structure is suggested. 
This hybrid structure combines a twofold 

decryption mechanism with FHE. 

No mention When decrypting the learning result, the 

advanced approach does not require 

communication between data owners. It is 
possible to maintain the confidentiality of 

sensitive data, interim results, and the training 

model. However, the fundamental architecture 

calls for communication between various data 

owners. 

[2] 2017 protects privacy by combining HE (LWE and 

Paillier) with asynchronous stochastic 

gradient descent 

Street View House 

Numbers (SVHN) and 

(MNIST) datasets 

There is no data breach on the server. Allowing 

several users to implement deep learning using 

NNs on a single aggregated dataset without 

giving a central server access to their local data. 

Compared to a typical system of deep learning 
applied to the pooled dataset, accuracy is 

maintained. 

The price of greater connectivity between the 

cloud server and learners 

[15] 2018 The FHE approach proposed in this research 
is an enhancement of Helevi's FHE library. 

The multiplicative ciphertext's size is first 

reduced using the relinearization approach, 

and the modulus and decryption noise are 
subsequently reduced using the modulus 

switching technique. Concerning this 

framework, FHE uses private decision trees, 

private naïve Bayes classification 

assessments, as well as private hyperplane 

decision-based classification. 

No mention This system is more effective than Khedr's FHE 
scheme and HElib with SIMD. 

Furthermore, implementing private decision 

trees is superior to using HElib with SIMD and 

Khedr's FHE method. 

[4] 2019 Demonstrate the creation of privacy-

preserving FHE using deep learning CNNs. 

To encrypt the operations of this Deep 

Learning technique for image classification 

applications, deploy bootstrapped FHE. 

adapted dataset from the 

National Institute of 

Standards and 

Technology 

With the very minimum-security parameters, 

training takes approximately 36 hours for 

images from the MNIST dataset. 

FHE can be substituted with LFHE to control 
operations and noise. It is advisable to have a 

small CNN to reduce the number of calculations 

due to the vast size of ciphertexts introduced by 

the fully homomorphic cipher. By multiple 

orders of magnitude, the bootstrapping 

operation requires most of the time. 

[16] 2020 This essay utilized MORE. It uses regression, 

binary classification, and multiclass 

classification as three different deep learning 

applications. 

An internal database was 

used to save 3378 

coronary angiographies 

with a resolution of 512 
by 512 pixels from the 

70,000 greyscale images 

in the MNIST collection, 

which has a 28 by 28-

pixel dimension. 

The process is nondeterministic and noise-free. 

The four fundamental arithmetic operations can 

be performed over encrypted data. 

The MORE encryption method provides less 
security than conventional methods, but it does 

provide floating-point arithmetic to meet the 

privacy-preserving floating-point precision 

requirement. The technique is then open to 

well-known ciphertext attacks. 
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[17] 2023 The aim is to use a Siamese neural network 

and HE to process data securely. 

Custom Monte Carlo-

generated datasets. 
Achieving accuracy is 93.8% for 2D scene and 

93.4% for encrypted inference for single-point 

spectral. 

 

[18] 2025 The paper aims to utilize Privacy-preserving 

machine learning (PPML) HE. Solve the 

challenges of implementing Sigmoid, Tanh 

activation functions in encrypted neural 

networks. 

The MNIST dataset, which 

contains images for 

handwritten digits 

This work achieves an accuracy of 87.10% for 

Sigmoid and 85.60% for Tanh. The 

computational efficiency was ~5.69 seconds per 

inference. 

 

3. DEEP LEARNING WITH ANN 

     Nowadays, deep learning has acquired popularity due to its being one of the best machine learning and pattern 

recognition methods. It can activate the data's representation to a higher, more abstract level. Moreover, complex functions 

can be learned by combining many simple functions via these transformations[19] [20]. The learning process is defined as 

finding weights that enable the neural network (NN) to display the required action, like driving a car. Such activity may 

comprise time-consuming computational phases depending on the issue and how the neurons are connected (since a 

standard NN consists of a large number of fully connected processors) [21]. ANNs imitate brain activity to create artificial 

systems that can handle complicated prediction issues. It was initially trained via the backpropagation algorithm (BP). 

Multiple neurons (nodes) are arranged in layers of an ANN (input, hidden, and output), and synaptic weights are used to 

identify the connections between the neurons. These weights are utilized by an ANN to predict and train the corresponding 

input class. BP adjusts the weights of the ANN based on error calculations from the resulting feedback of previous layers 

[22]. An attractive feature of an ANN is its ability to accept an unlimited amount of data as input, where it can be trained 

with millions of data records. Fig. 1 shows the main structure of an ANN. 

 
Fig. 1. ANN structure [23] 

To grasp the relationships among the inputs, the necessary features for the model must be learned. Eq. 1 shows the 

method for obtaining the output of the neuron by taking vectors of real-valued inputs and applying a nonlinear activation 

function to the whole input value [24]. 

 
where Wk is the weight matrix of hidden layer k, which outlines how each input contributes to the result, and f is the 

activation function. The bias parameter (b) ensures that the sum of the inputs is greater than 0 [22]. This study evaluated 

the potential of deep neural networks as predictors of several osteoporosis disease symptoms [25]. 

4. HOMOMORPHIC ENCRYPTION (HE) 

    A kind of encryption known as homomorphic encryption (HE) maintains the characteristics of the format and function 

of the encrypted material while permitting a third party to perform some computational operations on the encrypted data 

(such as a cloud provider or service provider). A mapping in abstract algebra corresponds to this HE. Permitting addition 

and multiplication operations may be applied to evolve an encryption system that enables the homomorphic evaluation of 

any function [7]. The standard four processes of HE systems are as follows: 
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• Creation of keys: The clients generate a secret key (sk) and a public key (pk). 

• Encryption: a method of encrypting data that transforms plain text (M) into ciphertext (C) via the public key. 

C=Epk (M) 

• Evaluation: The public key is employed to apply a function f to a ciphertext C. C*=Evalpk (f, C). The Eval 

operation receives ciphertexts as input and generates a ciphertext that corresponds to a functioned plaintext, 

although it only supports HE. Without viewing the messages (m1,m2), Eval applies the function f across the 

ciphertexts (c1,c2) [9]. where f may be Addition and/or multiplication. 

• Decryption: a technique for decryption that reveals the plain text M via the secret key and the ciphertext C.  M=Dsk 

(c) [8] 

The following characteristics must be verified for an HE method [8]. 

• Additive homomorphism (AH): HE is additive if 

𝐷𝑠𝑘 (𝐸𝑝𝑘(𝑀1) + 𝐸𝑝𝑘(𝑀2)) = 𝑀1 + 𝑀2       (2)  

• Multiplicative homomorphism (MH): HE is multiplicative if 

𝐷𝑘 (𝐶𝑝(𝑀1) ∗ 𝐶𝑘(𝑀2)) = 𝑀1 ∗ 𝑀2            (3) 

A simple, compelling HE example is shown in Figure 2. 

 
Fig. 2. Simple Homomorphic Example 

 

The main requirement of the homomorphic technique is that the HE must be successfully decoded while preserving the 

format of the ciphertexts after an evaluation procedure. Also, the size of the ciphertext must be set to support eternal 

operations. If the ciphertext size is raised without utilizing more resources, the total number of operations will be 

constrained [9][26]. Three different kinds of HEs exist, as shown in Figure 3. 

 

 

 
Fig. 3. Types of Homomorphic 

 

 

       Partially homomorphic encryption (PHE) only permits addition or multiplication, both of which can be performed an 

endless number of times (no cap on the number of uses, in other words) [8]  [16]. Some applications take advantage of 
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PHE methods including electronic voting and private information retrieval (PIR). RSA, El-Gamal, Benaloh, Paillier, and 

Goldwasser-Micali are methods of PHE whease they use addition or multiplication operations [8][9] [10]. 

       Somewhat homomorphic encryption (SWHE) makes several methods for addition and multiplication possible; 

however, the total number of homomorphic operations that may be carried out is restricted since the size of the ciphertexts 

grows with each homomorphic action. These issues add a cap to the utilization of PHE and SWHE schemes in practical 

applications [10][8]. Examples of SWHE techniques include the Boneh-Goh-Nissim (BGN) and the Polly Cracker [9]. 

Fully homomorphic encryption (FHE) is the expansion of HE schemes that can handle an endless number of 

homomorphic operations with random functions and has finally accelerated because cloud-based services are becoming 

widespread, i.e., FHE schemes allow the evaluation of any function, such as searching, sorting, max, min, etc., across 

ciphertexts an endless number of times. The accurate features of the SWHE and PHE are merged in FHE, permitting for 

indefinite multiplication and addition operations. FHE, however, costs a lot to compute. The few subcategories of FHE 

schemes that are now in use include the LWE, Ring-LWE, lattice-based (LB), and Over Integers FHE methods [10] [8][9]. 

In this study, data stored in the cloud were encrypted via LEW and RSA. A straightforward comparison will be made. 

 

a) RSA Algorithm 

    In 1978, the RSA algorithm was designed to be one of the most widely used asymmetric encryption methods to secure 

data during transmission. RSA is used for many purposes, such as encrypting data, making digital signatures, and key 

exchange. The RSA is an asymmetric encryption algorithm that differs from symmetric encryption in that it uses two keys, 

one public key used for encryption and the other secret key used for decryption, whereas symmetric encryption uses one 

key for encryption and decryption, as shown in Fig. 4. 

 
Fig. 4. Asymmetric Cryptosystem 

     The strength of the key used for the encryption process makes the process of decrypting and recovering the original text 

difficult for the hacker because he/she will need to guess the key. The RSA consists of three stages: key generation, 

encryption, and decryption, as explained in Algorithm 1.  

Algorithm 1: RSA Procedure 

1: Select two prime numbers, p and q 

2: Calculate n = p * q 

3: Find∅(𝑛) = (𝑝 − 1)(𝑞 − 1) 

4: Pick an integer e,   gcd(∅(𝑛), 𝑒) = 1; 1 < 𝑒 < ∅(𝑛), Public key PU = {e, n}, 

5: Calculate d,      𝑑 ≡ 𝑒−1𝑚𝑜𝑑(∅(𝑛)),    private key   PR = {d, n} 

6: Encryption: Plaintext: M < n Ciphertext C: 

𝐶𝑖𝑝ℎ𝑒𝑟 = 𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑒 𝑚𝑜𝑑 𝑛                           (4) 

7: Decryption: Ciphertext: C, message M: 

M𝑒𝑠𝑠𝑎𝑔𝑒 = 𝐶𝑖𝑝ℎ𝑒𝑟𝑑𝑚𝑜𝑑 𝑛                            (5) 

of a multiplicative partial homomorphic encryption technique. 

Cipher1 = message1
e mod n,        Cipher2 = message2

e mod n 

Cipher1 · Cipher2 = (message1
e · message2

e) mod n 

For m1, m2, and M, the homomorphic property is 

E(m1) E(m2) = (m1
e (mod n)) (m2

e (mod n)) = E(m1 m2). (6) 

The homomorphic characteristic of RSA demonstrates that without decrypting the inputs, E(m1 m2) may be assessed 

via E(m1) and E(m2). In other words, only multiplication is homomorphic to RSA. The homomorphic addition of ciphertexts 

is therefore prohibited. (m is the message) 
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The strong point of the algorithm depends on the choice of two prime numbers, p and q. The encryption process is very 

weak when the values are small, as the hacker can guess the key easily, e.g., via probability theory. On the other hand, if 

the values are very large, this leads to time consumption during the encryption process, so it is better to choose values of p 

and q with similar lengths. In terms of security, the RSA algorithm relies on two keys, the public and the secret keys; 

breaking this algorithm requires guessing the values of p and q. There is no efficient way to factorize two prime numbers 

from n that are declared as a public key [27] [28] [29]. 

b) LWE Algorithm 

An algorithm called Learning With Errors (LWE) was introduced in 2005 and has received widespread attention in 

recent decades. For lattice-based cryptography, LWE is considered one of the most important algorithms in this field. LWE 

has many great advantages that have led to its use in many applications, such as its efficiency, versatility, and theoretical 

reduction to standard lattice problems, which allow it to be a highly versatile cryptographic construction. LWE is one of 

the basic structures of quantum cryptography. It is used in the following areas: attribute-based encryption (ABE), FHE, 

function encryption (FE), key exchange protocols, and digital signatures [30]. Algorithm 2 explains the detailed steps of 

this algorithm. 

Algorithm 2: LWE Procedure 

The inner product of vectors a and b is denoted by the widely popular notation <a,b>. 

Moreover, Z[x]/(f(x)) symbolizes the ring of all polynomials modulo f(x), and d<--D indicates that d is allocated at random 

by an element from the distribution D. Rq≡=Zq [x]/(f(x)) denotes the ring of polynomials modulo f(x) with coefficients in 

q. Denotes an error distribution over the ring Rq to finish. 

The underlying scheme is provided in its symmetric form as follows: 

Key generation: The error distribution is used to select a ring component as a secret key, i.e., 𝑠 ← 𝜒. The secret key vector 

is described as 𝑠 = (1, 𝑠, 𝑠2 , . . . , 𝑠𝐷) for an integer D. 

Encryption: The message m is encrypted by selecting the noise e ← χ  and a random vector a ← Rq
n. 

𝑐 = (𝑐0, 𝑐1) = (𝑎𝑠 + 𝑡𝑒 + 𝑚, −𝑎),         (7) 

where 𝑐 ∈ 𝑅𝑞
2. 

Decryption: It is easy to calculate that to retrieve the message from the ciphertext, 

𝑚 = 〈𝑐, 𝑠〉   (𝑚𝑜𝑑 𝑡)      (8) 

Decryption is successful if 〈𝑐, 𝑠〉, and s is less than 𝑞 2⁄ . Moreover, it is necessary to create a random set of pairings (a, as 

+ te) in order to make the scheme asymmetric. 

Homomorphism over addition 

𝐸(𝑚) + 𝐸(𝑚′) = (𝑐0+𝑐0
′ , 𝑐1 + 𝑐1

′ ) = ((𝑎 + 𝑎′)𝑠 + 𝑡(𝑒 + 𝑒′) + (𝑚 + 𝑚′), −(𝑎 + 𝑎′))                      (9) 

Homomorphism over multiplication: 

𝐸(𝑚) + 𝐸(𝑚′) = (𝑐0𝑐0
′ , 𝑐1𝑐1

′ ) = ((−𝑎′𝑠2) + (𝑐0
′ 𝑎 + 𝑐0𝑎′)𝑠 + 𝑡(2𝑒𝑒′ + 𝑒𝑚′ +  𝑒′𝑚) + (𝑚𝑚′))      (10) 

5. PROPOSED PRIVACY-PRESERVING PREDICTION SYSTEM 

   This study proposes a privacy-preserving system as a secure disease prediction system that combines homomorphic 

encryption and artificial neural networks. The inputs of the ANN are encrypted medical data used to predict disease without 

the need for decryption, making the sensitive data less vulnerable to detection. To evaluate the proposed system, the 

following algorithms were applied: 

● The FHE scheme-LWE allows for the implementation of arbitrary computations on encrypted data. 

● PHE-RSA, which allows a limited number of operations to be applied. 
As mentioned before, to evaluate the effectiveness of the above proposed method, osteoporosis was used as a case 

study. Three osteoporosis datasets, two structured (CSV) and one unstructured (image) medical dataset, are used to train 

an ANN model for disease prediction. The proposed privacy-preserving system consists of many stages. It begins by 

obtaining datasets and ends with system evaluation, passing through encryption and ANN prediction stages, as illustrated 

in Fig. 5. The details of each stage are explained as follows: 

5.1 Dataset collection stage 

To test the proposed system, three datasets were used to predict osteoporosis. The data were downloaded from Kaggle. 

The details of each dataset are explained in Table 2. Dataset 1 consists of 16 features used for prediction (ID, Age, Gender, 
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Hormonal Changes, Family History, Race/Ethnicity, Body Weight, Calcium Intake, Vitamin D Intake, Physical Activity, 

Smoking, Alcohol Consumption, Medical Conditions, Medications, Prior Fractures, and classes). 

 
Fig. 5. Proposed Privacy-Preserving System 

 

The images in dataset 2 are grouped into 372 images for the normal person and 372 images for osteoporosis. Dataset 3 

contains the following features: S.No., Patient Id., Joint Pain, Gender Age, Menopause Age, Height (meter), Weight 

(KG), Smoker, Alcoholic, Diabetic, Hypothyroidism, Number of Pregnancies, Seizer Disorder, Estrogen Use, Occupation, 

History of Fracture, Dialysis, Family History of Osteoporosis, Maximum, Walking distance (km), Daily Eating habits, 

Medical History, T score Value, Z Score Value, BMI, Site, Obesity, and class. There are three classes in this dataset: 36 

files for normal, 154 files for osteopenia, and 49 files for osteoporosis. 
TABLE 2: DATASET DETAILS 

No. Dataset Name Type of Data No. of columns No. of files No. of classes size 

1 

 

Osteoporosis Risk Prediction, 

[31] 

CSV 16 1958 Two 

Osteoporosis and Normal 

(235.69 KB) 

2 Osteoporosis [32] 

 

RGB Image 256 744 Two 

Osteoporosis and Normal 

(299.83 MB) 

3 Knee Osteoporosis Dataset 

multiclasses [33] 

CSV 28 240 Three 

Normal, Osteopenia, and 

Osteoporosis 

(48 KB) 

5.2 Preprocessing Stage 

      First, the system splits the dataset into dependent variables and independent variables. The data are pre-processed before 

the encrypting stage, including converting categorical values into numeric forms, such as (male 0 and female 1). 

Additionally, in the preprocessing stage, we convert the floating-point numbers into integers via a rounding process; these 

steps are more important for the encryption and prediction process. The red, green, and blue (RGB) color image of dataset 

2 must be converted into a grayscale image for feature extraction later. The ANN divides the data into training and testing 
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sets, 80% for training and 20% for testing, and then the normalization process is performed on the training and testing sets. 

This step is necessary due to the features of the data have different scales, which affects the ANN’s performance, so 

normalization ensures that each feature has an equal effect on the results. 

5.3 Feature Extraction and Selection 

  As mentioned earlier, the system will be applied to various databases (CSVs and images). For CSV data, a set of rows 

and columns is used. The rows represent the number of patients, and the columns represent the features of each patient. 

Some features, such as the patient's ID number, are excluded during the training process because they do not contribute to 

the prediction process. Many missing value features are also removed to avoid bias or reduce the reliability of the model. 

The rest corresponds to the features that were input into the ANN after being encoded. 
A technique is required for extracting features from the images for the database containing bone X-ray images. In this 

study, pretrained visual geometry group (VGG-16)-CNNs were used for this purpose. Each image is passed through the 

network, and 512 features are output, the features representing high-level visual patterns. 
To reduce the computational complexity, not all 512 features are used. Rather, the best and most informative features are 

selected to train the ANN while maintaining a high level of classification. Principal component analysis (PCA) was used 

to reduce the dimensionality by selecting the best 150 features to move on to the next stage. 

5.4 Encryption Stage 

     Separately, the datasets are encrypted via homomorphic techniques (RSA or LWE), as illustrated in Fig. 6 and Fig. 7, 

respectively. The challenge when using LWE is that the volume of the data is increased compared with its original size 

because each value needs to be converted into binary format and encrypted each bit separately. The result of the encryption 

of each bit is two values, and each number can be represented with a different binary bit number. Resolving this problem 

is maintained by equalizing all the numbers to one length of the result by taking the maximum output of one column and 

filling the rest of the numbers with zeros. The size of the ciphertext that is encrypted via RSA is fixed and equal to the 

plaintext size. Finally, the encrypted data as well as the decision variable are merged and then stored on the cloud server. 

 
 

Fig. 6. Encryption Process Fig. 7. Decryption Process 

Example 1: Consider the number 8. When encrypted using RSA, it becomes: 182322, for n=191483 and e =7 

While the result of number 8, if LWE encrypts it, is 

63 12 11 62 66 14 60 13 
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Because it is represented in binary format with 4 digits (1000), each digit is encrypted with 2 decimal numbers, so the result 

is 8 numbers. 

   Example 2: If m= 4, the m encrypted by RSA is 16384. The m encrypted by LWE is as follows: 

64 58 13 60 12 17 

It is represented by 3 digits only in binary format (100). 

5.5 Prediction Stage 

For the prediction process, an ANN is used to predict whether a person suffers from osteoporosis disease, depending 

on the encrypted dependent variables without prior information about the original data. The ANN consists of an input layer 

that depends on the number of input features, two second (hidden) layers with 128 and 46 neurons, and one output layer. 

Table 3 explains the details of the ANN structure. The researchers employ an output layer with sigmoid and softmax 

activation functions, whereas the hidden layers use ReLU as the activation function. 
TABLE 3. ANN STRUCTURE 

Component Details 

Model Type Sequential model used for both binary and multiclass classification. 

Input Layer Dense to process the input features 

Dropout Layer 1 Dropout(0.3) to reduce overfitting. 

Hidden Layer Dense for feature transformation and nonlinearity. 

Dropout Layer 2 Dropout(0.2) to improve generalization. 

Output Layer 'sigmoid' as activation function for binary classification and 'softmax' for 3-class output. 

Loss Function Binary_crossentropy is suitable for binary targets. In addition, sparse_categorical_crossentropy for multiclass.  

Optimizer Adam optimizer 

Evaluation Metric Accuracy is used to evaluate models during training and testing. 

 

 

6. EXPERIMENTAL RESULTS AND DISCUSSION 

     The proposed system implements two different HE techniques along with an ANN. This helps to decrease outside third-

party interference or any intruders’ involvement during communication. Two homomorphic encryption/decryption 

approaches were taken into consideration to increase the secrecy, privacy and security of the data kept on the cloud. 

Microsoft Windows 11, HP Core i7, and 16 GB RAM are the personal computer (PC) specifications that are used for 

implementing the systems. Python 3.12.7 is a programming language used for writing code. The system was evaluated on 

the two-sided prediction side and the security side as follows: 

6.1 Encryption System Results and Discussion 

To measure the performance of the security side, time, memory consumption (RAM), and storage overhead of the 

encryption and decryption process for the LWE and RSA algorithms are computed. Eq. (11) is used to calculate the storage 

overhead in bytes. 

𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 =
𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡𝑠𝑖𝑧𝑒 − 𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡𝑠𝑖𝑧𝑒

𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡𝑠𝑖𝑧𝑒

∗ 100                 (11) 

 

Table 4 shows the difference in resource consumption between the LWE and RSA encryption schemes, which are used 

to maintain the privacy of patient data in three databases used later to predict osteoporosis.  

 
TABLE 4. ENCRYPTION SYSTEM RESOURCE CONSUMPTION 

Metrics 
Dataset 1 Dataset2 Dataset3 

LWE RSA LWE RSA LWE RSA 

Time (sec) 
Encryption 2.7 2.7 43.98 11.08 0.14 0.06 

Decryption 0.224 2.81 1.85 11.33 0.01 0.05 

Memory Consumption 

(RAM) 

Encryption 2.57 MB 0.31 MB 33.15 MB 2.98 MB 0.04 MB 0.02 MB 

Decryption 0.36 MB 0.39 MB 3.32 MB 3.46 MB 0.00 MB 0.02 MB 

Storage Overhead 

Size of Original 0.22 MB 0.22 MB 2.91 MB 2.91 MB 0.04 MB 0.04 MB 

Size of Encrypted 0.34 MB 0.22 MB 8.92 MB 2.91 MB 0.18 MB 0.04 MB 

Storage Overhead 53.26% 0% 206.22% 0% 332.97% 0% 

 

Databases 1 and 3 contain categorical data. Encrypting Database 3 (image features) using FHE (via LWE) consumed 

more RAM, 33.15 MB, and had a time consumption of 43.9s, which was comparable to that of the other databases; however, 

it was very efficient at decrypting data, where it took 0.01s for Dataset 3 and 1.85 s for Dataset 2. Although the algorithm 

requires somewhat large resources, it offers high security by allowing encrypted data to be processed without the need to 
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decrypt it. This makes it efficiently applied to medical diagnostic systems to prevent sensitive patient data from being 

exposed publicly. The encryption using PHE (via RSA) offers efficient RAM and time consumption, where it takes only 

2.98 MB RAM and 11.08 seconds for Dataset 2. 

LWE causes an additional storage overhead (53.26% in Dataset 1, 206.22% in Dataset 2, and 332.97% in Dataset 3) because 

LWE increases the size of the encrypted text, as shown in Table 4. However, this storage cost is acceptable when dealing 

with medical contexts because protecting patient data is a top priority. However, RSA does not incur any storage cost. 

Notably, despite the high efficiency demonstrated by the RSA algorithm in terms of resource consumption, it lacks some 

features due to limitations, including dealing with binary features (0 and 1), as found in database 1 and database 3. Where 

it was observed that the ciphertext is the same as the plaintext, which jeopardizes data confidentiality. The solution to this 

problem is the use of padding technologies, including optimal asymmetric encryption padding (OAEP). It works by adding 

randomness to the text, improving semantic security, but increasing the size of the encrypted text causes increasing the 

computing cost. Therefore, the application of the RSA algorithm in real-time medical applications is limited. 

After the results of the encryption systems are analysed, the following conclusions are drawn: 

• It can be said that LWE is highly suitable for privacy preservation during the diagnosis of osteoporosis and can 

be integrated practically and securely with the requirements of cloud-based healthcare. 

• RSAs can be used for light or semi sensitive applications that do not involve categorical data and do not require 

high confidentiality. 

The bottom line is that HE is ready to handle clinical AI applications that require data privacy. 

6.2 Prediction System Results and Discussion 

The proposed prediction system was evaluated using performance metrics, namely, accuracy, precision, recall, and F 

score, which are computed according to equations (12), (13), (14), and (15), respectively. The training time, memory 

storage, and model size are also computed for all the datasets. 

Accuracy =
TruePositives +  TrueNegatives

(TruePositives +  FalseNegatives +  TrueNegative  FalsePositive)
 (12) 

                 Precision = 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒/(𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒                       (13) 

                 Recall = TruePositive/(TruePositives + FalseNega tives                            (14) 

                                             Fscore =
2 ∗ Precision ∗ Recall

Precision + Recall
                                                (15) 

Each dataset is split into two sections that are utilized for training and testing: 80% and 20%, respectively. After the 

system experiments, we obtain the results explained in Table 5 and Fig. 8. The evaluation of prediction system performance 

across three osteoporosis-related datasets—under three settings—without encryption, with LWE encryption, and with RSA 

encryption—demonstrates valuable insights into the balance between accuracy, security, and computational resource 

demands. 
TABLE 5. PREDICTION SYSTEM RESOURCE CONSUMPTION 

Metrics 

Dataset1 Dataset2 Dataset3 

Without 

Encryption 
LWE RSA 

Without 

Encryption LWE RSA 

Without 

Encryption LWE RSA 

Precision 0.955975 0.963855 0.527473 0.8971 0.8267 0.7312 0.9459 0.8051 0.7507 

Recall 0.756219 0.79602 0.592593 0.8243 0.8267 0.9067 0.924 0.7896 0.7842 

F1 score 0.844444 0.871935 0.55814 0.8592 0.8267 0.8095 0.934 0.7967 0.7657 

Accuracy% 85.71% 88.01% 61.22% 86.58% 82.55% 78.52% 93.75% 87.50% 81.25% 

Time of 

Predication 
10.389 sec 11.614 sec 10.595 sec 7.21 sec 10.13 sec 1.94 sec 5.39 sec 4.76 sec 4.52 sec 

Memory Usage 67.39 MB 63.55 MB 63.336 MB 66.2 MB 62.72 54.75 60.99 MB 63.203 MB 64.01MB 

Model Size  0.06 MB 0.06 MB 0.06 MB 0.35 MB 0.35 MB 0.35 MB 0.06 MB 0.27 MB 0.16 MB 

The results showed that LWE demonstrated strong performance in accurately predicting disease while maintaining 

reasonable resource consumption, enabling its use in real-world medical applications. When LWE was applied to all the 

databases, high prediction performance was achieved. For instance, in Dataset 1, the LWE-encrypted model achieves a 

precision of 0.9639, surpassing the unencrypted model (0.9560) and significantly outperforming RSA (0.5275). 

The same applies to the F score value, which was 0.8719, which was completely consistent with the value for the 

unencrypted data. The resulting accuracy was 88.01%, the highest value ever achieved for disease prediction using 

encrypted data. In contrast, RSA’s accuracy dropped sharply to 61.22%, primarily due to its poor handling of categorical-

like or low-entropy features in Datasets 1 and 3, where encrypted messages often remain unchanged. 
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The results computed for database 2, which consisted of features extracted from X-ray images via a pretrained VGG-

16 model, were as follows: the prediction accuracy without encryption was 86.58%. When the data were encrypted using 

LWE, it dropped slightly to 82.55%, but it still outperformed the accuracy achieved using RSA-encrypted data, which was 

78.52%. The prediction time with LWE was marginally longer than the prediction time with RSA. Nevertheless, this 

increase is acceptable, especially when dealing with clinical data where patient privacy is a priority. The reduced time 

consumed by RSA came at the expense of accuracy and the F score. 

The results demonstrated on databases 1 and 2 were confirmed when the systems were applied to database 3. Despite 

the memory consumption of the LWE-based model (e.g., LWE: 63.203 MB vs. no encryption: 60.99 MB), the model 

maintained a high accuracy of 87.50% and an F1 score of 0.7967. As expected, the RSA-based model achieved lower 

performance than LWE did, with an accuracy of 81.25% and an F score of 0.7657. 

 

In conclusion, the LWE algorithm was able to preserve patient privacy with minimal sacrifices in time and resource 

consumption. 

 
Fig. 8. Accuracies of the applied systems 

 Fig. 9 shows the trade-offs between time consumption for the prediction of osteoporosis between the three applied 

models for all the databases used. 

For database1, the prediction time for normal data was 10.389 sec, which is slightly less than the prediction time for using 

data that are encrypted by LWE, which was 11.614 sec and 10.595 sec for RSA-encrypted data. The slight time variance 

is normal due to the calculations involved in the encryption. RSA-based prediction model for the second database achieved 

the lowest time of just 1.94 sec compared to the remaining models, where the prediction time for the model based on the 

LWE was 10.13 sec and the prediction time without encryption was 7.21 sec. This superiority is due to the nature of the 

data for the second set. The prediction time was almost the same for database3, with RSA slightly ahead by 4.52 sec, while 

with LWE, it was 4.76 sec, and prediction without encryption was 5.39sec. 

 
Fig. 9. Average time of prediction with and without encryption 
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 Table 6 explains the trade-off between the training process across all three datasets and the models' performance. The 

validation accuracy metric is used as the main measure of generalization. According to the database, the results were as 

follows: 

• Database 1: The model with LWE outperformed the model with RSA at epoch 15, where the validation accuracy 

was 88.53%, whereas the RSA accuracy was 85.35%. The validation accuracy converged after epoch 30. The 

model with LWE keep a small variation between the validation accuracy and training accuracy. 

• Database 2: Applying prediction models to this dataset achieved a training accuracy of >97% at epoch 30, with 

stable validation accuracy. The RSA validation accuracy decreased to 69.33% at epoch 50 due to overfitting. The 

model with LWE maintains stable validation accuracy (~76.5%). 

• Database 3: Applying osteoporosis prediction models to this dataset yielded a high accuracy of 92.3% for the 

unencrypted model, whereas LWE maintained a validation accuracy of 87.1% at epoch 50. The RSA-based model 

slightly lags its validation accuracy while demonstrating competitive training accuracy. 

 These results confirm that the verification accuracy measure is a reliable measure for assessing the effectiveness of real-

world models in medical prediction applications. The results also showed that the model (via LWE) had strong 

generalizability with minimal deterioration in verification accuracy, making it practical and safe for use in healthcare. 
TABLE 6. EPOCHES VS. ACCURACY 

Dataset 1 

Without Encryption LWE RSA 

Epochs Train Accuracy Validation Accuracy Train Accuracy Validation Accuracy Train Accuracy Validation Accuracy 

5 0.851438 0.818471 0.818182 0.847134 0.818182 0.847134 

10 0.850639 0.821656 0.882102 0.866242 0.882102 0.866242 

15 0.865016 0.821656 0.890625 0.88535 0.890625 0.88535 

30 0.872204 0.812102 0.909091 0.878981 0.909091 0.878981 

40 0.888179 0.812102 0.90767 0.872611 0.90767 0.872611 

50 0.884984 0.812102 0.920455 0.853503 0.920455 0.853503 

Dataset 2 

Epochs Train Accuracy Validation Accuracy Train Accuracy Validation Accuracy Train Accuracy Validation Accuracy 

5 0.889387 0.8 0.86532 0.724832 0.826087 0.813333 

10 0.946188 0.786667 0.919192 0.812081 0.943029 0.76 

15 0.962631 0.813333 0.957912 0.812081 0.956522 0.786667 

30 0.976084 0.8 0.973064 0.812081 0.971514 0.68 

40 0.96562 0.813333 0.981481 0.778524 0.973014 0.706667 

50 0.976084 0.84 0.974747 0.765101 0.974513 0.693333 

Dataset 3 

Epochs Train Accuracy Validation Accuracy Train Accuracy Validation Accuracy Train Accuracy Validation Accuracy 

5 0.736842 0.74359 0.907895 0.794872 0.743421 0.717949 

10 0.894737 0.871795 0.986842 0.846154 0.921053 0.769231 

15 0.947368 0.923077 0.993421 0.846154 0.980263 0.794872 

30 1 0.923077 1 0.846154 0.993421 0.820513 

40 1 0.897436 1 0.871795 0.993421 0.794872 

50 1 0.897436 0.993421 0.871795 0.993421 0.820513 

 

Fig. 10 shows the results of changing the size of a dataset on validation accuracy for osteoporosis prediction using the 

datasets under three scenarios: the plaintext-based model, the LWE-based model, and the RSA-based model across 

increasing dataset sizes (10%–90%). In the no encryption scenario of dataset 1, changing the size of the trained data 

decreases the validation accuracy from 0.86% to 0.76%. The case is interpreted as follows: increasing the batch size causes 

overfitting or gradient plateaus, whereas smaller batches make the weight update frequently and thus improve the 

generalizability. When privacy preservation is not constrained, the model maintains relatively stable performance, this is 

ensuring its baseline learning capacity. The model with the RSA algorithm showed little performance; the validation 

accuracy decreased from 0.66% to 0.52% as the number of batches grow. This degradation is due to the encryption 

algorithm, which introduces much noise that affects the model’s ability to learn medical features. The noise can be 

decreased by frequent gradient updates that happen with small batches (e.g., 10%), which achieve a validation accuracy of 

0.66%. An RSA in this form is unsuitable for application in medical classification. Under LWE encryption, the model 

demonstrates comparatively stable performance, with accuracy declining from 0.88 to 0.74 as the dataset size increases. 

The validation accuracy of the prediction with LWE is better than RSA due to LWE keeping the integrity of the encrypted 

features effectively. However, at higher dataset sizes, the accuracy degradation is likely to stem from the computational 

cost associated with LWE’s homomorphic operations. 

For Dataset 2, the model without encryption realizes an accuracy ranging moderately from 0.86% to 0.74%. The model 

with LWE encryption initially outperforms the baseline (0.87 at 10%), possibly due to regularization from encryption noise, 
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but the accuracy decreases sharply to 0.70 at 90%, indicating noise interference at scale. The accuracy fell from 0.74% to 

0.66% with the RSA model, indicating feature distortion, which makes the model unable to predict correctly and unsuitable 

for application in medical prediction tasks. Lastly, for dataset 3, the figure shows that the accuracy varies from ~0.95% to 

~0.70%, indicating better generalizability with more unencrypted data. In the LWE-based model, the performance improves 

at the middle size of batches, and the accuracy is moderate (~0.90% to ~0.70%). The RSA-based model was inefficient in 

the healthcare area because it performed worse, starting at ~0.80% and decreasing to ~0.60%. 

 

 
Without Encryption LWE RSA 

   
(a) Dataset 1 

   

(b) Dataset 2 

  
 

(c) Dataset 3 
 

Fig 10. Batch size vs. validation accuracy. 

7. SECURITY EVALUATION 

In this study, it was assumed that patient data are kept on cloud servers to ensure the privacy of the data when a third 

party applies the prediction. So, homomorphic techniques are used, which allow third parties to apply the prediction to the 

encrypted data without the need to discover the patient’s data. By using the PHE, which is represented by the RSA 

algorithm, to communicate secretly with the cloud, the data are encrypted using the public key of the cloud. Since only the 

cloud would have access to the appropriate private key, only the cloud would be able to decrypt such a message.  The 

mathematical attack against RSA that makes it necessary to determine the prime components p and q of modulus n has 

drawn more interest due to of its security implications of an RSA-specific nature. The attacker will, of course, be fit to 
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determine the exponent d for decryption if they know p and q. A distinct approach would be to say that the attacker would 

try to determine the ∅n of the modulus n. As already mentioned, knowing p and q is equivalent to knowing n. Attackers 

will be able to construct the equation (𝑝 − 1) ∗ (𝑞 − 1)  =  ∅𝑛 and use it together with the equation 𝑝 ∗ 𝑞 =  𝑛 to calculate 

the values for p and q if they can somehow find n. 

Increasing the key size of RSA makes the algorithm stronger because the attacker needs to guess the prime numbers, 

which means that solving the factorization problem, which consumes more computational resources, but RSA remains 

vulnerable to quantum attacks that use quantum computers to efficiently factor numbers. Thus, RSA usage is limited to 

applications that do not require a high level of security. Therefore, FHE is applied and evaluated on the basis of the LWE 

algorithm to overcome the limitation of PHE and enhance cryptographic robustness. The LWE assumption is believed to 

be hard even for quantum adversaries, making it a promising foundation for postquantum cryptography [34] [35] [36]. This 

depends on the difficulty of solving specific noisy linear equations, which have been rigorously proven to be as hard as 

worst-case lattice problems. Unlike RSA, whose security depends on the number-theoretic assumption, LWE provides a 

wide and more adjustable security model. Furthermore, LWE allows homomorphic operations (additions and 

multiplication) on encrypted data, which is necessary for privacy-preserving deep learning. From a security perspective, 

LWE-based encryption offers significant advantages: 

 (1) Both conventional and quantum computers are unable to attack the program, which makes it a strong choice for 

postquantum cryptography. 

 (2) Its ability to change parameter-specific variables to control the level of security required for the application 

(3) LWE can also be used to provide other security services, such as key exchanges and digital signatures [37].  

In addition to the above security properties, LWE is also considered an effective and flexible homomorphic encryption 

algorithm that can execute calculations on encrypted data without the need for decryption. This is profitable in situations 

where sensitive data must be handled and examined without uncovering their contents. This makes LWE a suitable and 

proven solution for medical applications requiring rigid data confidentiality. 

In summary, the dual use of RSA and LWE in the current study handles both immediate and long-term security concerns. 

RSA provides efficient encryption with lower computational overhead for applications that do not require full 

homomorphism, whereas LWE encloses robust, quantum-resistant security with guarantees of privacy during the entire 

prediction process. 

8. COMPARISON WITH OTHER WORKS 

First, the proposed work is the first to implement both FHE and PHE schemes on real-world medical datasets related to 

osteoporosis. Previous studies have relied primarily on synthetic datasets, such as Monte Carlo-generated samples [17] or 

widely used benchmark datasets like MNIST and CIFAR-10 [18] [17] [38] [38]. These datasets include both structured 

tabular records (CSV format) and diagnostic imaging (X-ray scans), significantly enhancing the clinical relevance and 

applicability of the findings, whereas prior research generally employs a single homomorphic encryption scheme in 

isolation—for example, Brakerski/Fan-Vercauteren (BFV) [18], Cheon-Kim-Song (CKKS) [18], or TFHE [39]. This work 

uniquely applies and directly compares both LWE-based FHE and RSA-based PHE within the same predictive framework 

and across the same medical datasets. This dual evaluation provides a rare and valuable trade-off analysis between model 

performance, computational cost, and encryption strength that is not available in the literature. 

 

 The proposed framework not only evaluates model performance in terms of classification accuracy, precision, recall, 

and F1 score but also includes crucial system-level metrics such as prediction latency, memory usage, and model size. Such 

holistic evaluation metrics are typically omitted in prior works and represent a step forward in making privacy-preserving 

models feasible for deployment in real-world diagnostic systems.  Despite the computational overhead of homomorphic 

encryption, the experimental results demonstrate that the encrypted ANN model retains a high level of diagnostic accuracy, 

achieving, for instance, 88.01% accuracy using LWE on one dataset. Privacy preservation does not come at the expense of 

diagnostic performance. This is what happens in [18], where the ANN with CKKS achieves an accuracy of 87.10% and 

the CNN with BFV on CIFAR-10 achieves an accuracy of 69% in [17], which are both lower than the accuracy achieved. 

Finally, in this paper, it was implemented an encryption, training, and evaluation pipeline that supports both numerical and 

image-based input types with illustrating the epoch-level performance tracking. This end-to-end design explains the 

viability of the proposed framework not merely as a theoretical contribution but also as a practical system that can be 

appropriate for other diseases or medical datasets. Table 7 shows a comparison with other related works. 
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TABLE 7: COMPARISON WITH OTHER WORKS 

Feature/Metric Prior Works ([18], [17], [39], [38]) This Study 

Real medical data ✘ (mostly MNIST, CIFAR, synthetic)  Osteoporosis datasets (CSV + X-ray) 

Use of both FHE and PHE   LWE + RSA 

System-level metrics (time, memory) 

Comparative encryption analysis 

High accuracy on encrypted data Some (on toy datasets)  On clinical data 

Generalizability to healthcare Limited  High 

 

9. CONCLUSION AND SUGGESTION OF FUTURE WORKS 

This study presented a structure that preserves the privacy of osteoporosis prediction through deep learning by 

combining HE techniques with neural network. This study also evaluated and contrasted the FHE (via the LWE) algorithm 

with the PHE (via RSA) algorithm, which was applied across various medical datasets, including structured CSVs and 

image-based data. The results ensured that using LWE-based prediction achieved high accuracy in disease prediction, 

reaching 88%. Patients’ confidentiality was maintained during cloud storage. RSA-based prediction demonstrated 

weaknesses or limitations in generalization, robustness, and handling of categorical data, which LWE could overcome 

despite the high storage and computation costs. 

The results also revealed that RSA prediction was efficient in terms of time and resource consumption, but its security 

capabilities declined when dealing with categorical data, which limits its use in medical applications without using the 

padding method, increasing its consumption of time and computational resources. This study promotes the secure and 

encrypted use of data during AI-based diagnostics. The idea reinforces the importance of using LWE in healthcare systems, 

as it has proven effective in preserving patient privacy during diagnostics, thus opening the way for many future medical 

projects related to the application of HE with machine learning. 

FHE-based LWE lacks computational overhead, which can be solved in the future via some optimization techniques, 

such as ciphertext packing or the use of approximate homomorphic encryption schemes like CKKS. To reduce the 

processing time, hardware acceleration (e.g., using GPUs or FPGAs) can be used, thus improving scalability in medical 

applications. The scope of this study was to prove the effectiveness of applying homomorphic encryption schemes for 

privacy-preserving osteoporosis prediction using deep learning. It was not to evaluate the system's resilience against 

adversarial threats, such as side-channel attacks and chosen-ciphertext attacks. Assessment of these attacks requires 

specialized testing environments and methodologies that can be used in the future. 

Future optimization can enhance the computational efficiency of homomorphic operations to be applied in real-time 

encrypted predictions, especially in time-sensitive medical environments. For future work, Explainable AI (XAI) 

techniques such as SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME) 

will be incorporated to reinforce the interpretability of both encrypted and nonencrypted ANN models, particularly in the 

context of the medical area, where transparency is critical. 
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