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A B S T R A C T  
With the widespread deployment of 5G networks together with many Internets of Things (IoT) devices, 
the demand for secure space has grown substantially. The proposed research focuses on improving the 
existing cybersecurity solutions in 5G based IoT networks through resource-efficient implementation of 
the random forest (RF) model. This study evaluated an IDPS based on a completely simulated 5G-era 
IoT scenario. The study evaluated an IDPS using a simulated 5G-era IoT environment replicating real-
world device interactions. Synthetic datasets representing normal and malicious traffic, including 
distributed denial-of-service (DDoS) attacks, were used for model training and testing. The performance 
of the RF model was assessed via important metrics, including accuracy, recall, precision, and the F-
measure. The RF model achieved a high F-measure of 77%, reflecting a strong ability to identify and 
mitigate threats. Additionally, the model performs exceptionally well in terms of essential characteristics 
such as the identification of anomalies, the ability to respond in real time, the management of resources, 
and the protection of privacy. Within the context of a 5G network, the findings demonstrate that is 
random forest an acceptable and effective method for securing resource-constrained Internet of Things 
networks. Future work may explore hybrid AI models to enhance security capabilities 

 

 

 

1. INTRODUCTION 

The amalgamation of 5G and IoT offers a paradigm change in connectivity, which allows billions of devices to communicate 

in real time and with greater bandwidth. However, this connectivity tsunami surface also increases the vectors of our attacks 

that are open to our cyber adversaries, and traditional security is not enough. Given that they are resource limited and 

heterogeneous, existing intrusion detection/prevention systems (IDPSs) do not meet the scalability, efficiency and privacy 

requirements. Thus, we address the emergent demand for a lightweight, smart, and privacy-preserving cybersecurity model 

suitable for 5G-based IoT environments. 

The rapid proliferation of IoT technologies globally, together with the worldwide deployment of 5G networks, has resulted 

in an explosive acceleration of digital transformation in all sectors. These advancements open many possibilities but pose 

significant cybersecurity challenges [1]. IO Domains: Core domains such as healthcare, transportation, industrial robotics, 

and smart cities rely heavily on the IoT and have become attractive target areas for advanced cyberattacks. Thus, the privacy, 

reliability, and accessibility of IoT services and infrastructure need to be ensured with the effective cybersecurity of domains 

[2]. Advanced technologies such as 5G and AI come together to address security challenges. In particular, the fifth-

generation wireless technology (5G) networks on the market offer universally connected, ultralow latency, and higher 

bandwidth than previous generations do; when combined with the adaptive learning features of AI, they offer complex, real-

time attack detection and reply devices for IoT ecosystems [3]. The enhanced ability to recognize vulnerabilities, reply to 

and mitigate attacks, and ultimately reply to cyber incidents arises from this integration. 

 

Additionally, we are living in the era of Industry 4.0. where the industry is clearly no longer an isolated entity, but a critical 

part of an interconnected industrial environment [4]. The future of technologies that we commonly see in Industry 4.0 still 
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lies in the proper management of the cyber security risks inherent in such complex ecosystems. As illustrated in Figure 1, 

cyber-physical systems and secured systems involve interesting cross-domain security and privacy concerns and thus 

present a compelling need for a comprehensive security framework 

 

Fig. 1. Security and privacy analysis in cyber-physical systems. 

However, despite these technological advancements, traditional cybersecurity strategies can be lacking when faced with 

the changing threat landscape of the IoT and 5G, including DDoS attacks, harmful programs, and data intrusion [5]. 

Conventional security solutions are generally ineffective. as they do not provide timely detection, response, and mitigation 

of cyber threats, and the source-constrained nature of the Internet of Things devices limits the design of security solutions 

for the IoT. Traditional intrusion detection systems often struggle in 5G-enabled IoT environments because of their limited 

scalability, lack of real-time adaptability, and insufficient mechanisms for handling dynamic and heterogeneous traffic 

patterns. Furthermore, most conventional IDSs lack built-in privacy-preserving capabilities and are not optimized for 

detecting modern threats such as multivector DDoS or zero-day attacks that exploit the high-speed, low-latency nature of 

5G networks. 

To overcome these challenges, this work proposes an improved cyber defense mechanism and a resource-efficient random 

forest (RF) algorithm tailored for 5G-enabled IoT infrastructures. Our proposed RF model promises smart threat prediction 

and anomaly detection, online response,  algorithmic impact, and privacy-based security. By adopting this intelligent 

model, it helps to improve security capabilities, secure sensitive data, and establish secure and smooth IoT implementations 

and increases user trust in network resilience. Furthermore, lightweight cryptographic techniques have emerged as critical 

components for securing constrained IoT systems, offering minimal computational overhead while maintaining robust data 

protection. Recent studies have emphasized their effectiveness in modern IoT applications [6-9]. 

2. RELATED WORKS 

Artificial intelligence (AI) has radically transformed cybersecurity strategies, especially for IoT networks in 5G 

ecosystems. These cybersecurity techniques include ML, DL, and NLP, and they have the potential to identify, mitigate, 

and manage cybersecurity threats effectively. Recent progress holds great potential in improving the reliability and 

cybersecurity of IoT networks by mitigating the drawbacks of complex system interconnections. The rapid spread of IoT 

technology, coupled with the global rollout of 5G, means that there are now billions of connected devices producing big 

data traffic. It has even been reported that, via 2025, there may be close to 100 billion IoT devices that will explode the 

flow of data and increase the complexity of networks around the world. [10] Significantly, the overwhelming majority of 

this increase will come from machine-to-machine (M2M) interactions, highlighting the importance of IoT devices over 

traditional computing and utilizing them on their own instance. According to [11], in 2010 and 2025, the predicted growth 

of IoT-connected devices and data traffic is depicted in Figure 2. 
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Fig. 2. Non-IoT & IoT active devices (2010--2025). 

This expansion is unprecedented and offers several cybersecurity challenges, including sophisticated distributed denial of 

service (DDoS) attacks, malware infections, breaches of privacy, and more. Indeed, classic cyber-defensive measures do 

not prove as sufficient because of constrained resources and the unique vulnerabilities of IoT devices, indicating the need 

for proactive AI-based detection and response mechanisms [12,13]. 

An area that has received widespread attention is improving cybersecurity in IoT environments [14-17]. To provide an 

example, [18] proposed a new framework tailored to detect network attacks on critical IoT usage. Similarly, a detection 

model was designed in [19] that was robust against a wide range of attack methods, including U2R, R2L, and DDoS attacks, 

highlighting the threats we face in IoT scenarios. Similar efforts have been made to handle ransomware and malware 

threats [20] and describe ways to identify such threats from IoT infrastructures. In contrast, [21] focused on collaborative 

intrusion detection frameworks, emphasizing false positive reduction to enhance overall cybersecurity integrity. 

Additionally, [22] proposed a new strategy by opening the detection of ransomware on the basis of the power consumption 

patterns of mobile devices, broadening the penetration path of threat detection. 

[23] emphasized the threat of unauthorized access and zero-day vulnerabilities of IoT protocols. These studies highlighted 

important cybersecurity deficiencies traceable to unknown vulnerabilities, demonstrating how zero-day attacks could 

dramatically endanger IoT devices and associated networks. Moreover, recent work by [24] introduced the AZSL 

framework, which enhances secure generalization in Federated Learning systems, highlighting the increasing need for 

adaptive, privacy-preserving, and intelligent cybersecurity mechanisms in highly distributed IoT networks. Table 1 

summarizes the various types of cyberattack commonly encountered in IoT networks, providing a clear reference for the 

nature and network level of these threats. 

 

TABLE I. CATEGORIES AND TYPES OF CYBERATTACKS IN 5G-ENABLED IOT NETWORKS AND THEIR NETWORK-LEVEL IMPACT 

Attack Category Types of Attack Network Impact Level 

Probe Attacks Mscan, Portsweep, SATAN, Network Mapper Moderate 

U2R Httptunnel, SQL attack, Rootkit High 

R2L Worm, SNMP attack, IMAP, Warezmaster High 

DDoS Process table overflow, UDP flood, Neptune attacks Moderate to High 

 

Recently, a growing body of research has focused on applying AI and machine learning models—particularly random 

forest, CNN, and hybrid models—for detecting complex cyber threats in IoT networks operating over 5G. For example, 

[5] proposed a hybrid CNN-RF model that achieved high detection accuracy for multivector attacks in smart home 

environments. Similarly, [2] explored lightweight IDSs for edge-based IoT systems via optimized RF classifiers and 

demonstrated strong real-time detection and low latency. In another work, [17] integrated federated learning with ensemble 

classifiers to preserve user privacy while achieving scalable intrusion detection across decentralized IoT networks. These 
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studies confirm the growing interest in resource-aware and privacy-preserving AI models, highlighting the continued 

relevance of random forests and motivating our proposed approach. 

3. METHODOLOGY 

In this article, a resource-efficient and robust computer security model based on the random forest (RF) approach, which 

is designed for the IoT context in the setting of a 5G ecosystem, is proposed. The methodology consists of five main phases: 

(1) data collection and pre-processing, (2) feature selection and model training, (3) algorithm integration and real-time 

response, (4) model adaptation and implementation strategies, and (5) evaluation of the AI-based IDPS. Its main purpose 

is to dramatically improve cybersecurity, respond to threats in a timely manner, ensure proper resource allocation and 

maintain the privacy of users in the network. Although the synthetic dataset used in this study allows for controlled 

evaluation and scalability testing, we acknowledge that real-world traffic can introduce more complex behaviors. Future 

work will involve validating the model against real-world IoT traffic datasets to ensure generalizability and robustness in 

practical deployments. 

3.1. Data collection and pre-processing 

The first step is to create realistic datasets by designing an IoT network simulation environment that closely resembles 

realistic deployments of the IoT network in 5G infrastructures. This simulation establishes key components, such as the 

network topology, specifies suitable communication protocols (such as MQTT—Message Queuing Telemetry Transport) 

and accurately mimics communications between IoT devices. The data collected are used to build synthetic datasets 

containing normal and harmful patterns of network traffic with special attention to important threats such as DDoS 

(Distributed Denial of Service) attacks for training the IDS/IPS. Table 2 summarizes the key parameters characterizing the 

simulated IoT environment. 

TABLE II. INTERNET OF THINGS COMMUNICATION SIMULATION PARAMETERS 

Parameter Description 

Devices Number 100 

Network Topology Decentralized connectivity 

Trans. Range 500 m 

Mobility Pattern Static Mobility Pattern 

Protocol of Comm. MQTT 

 

Once data are collected, preliminary methods of processing are applied to improve the value, accuracy, and consistency of 

the dataset. In this step, missing values are handled with appropriate imputation methods, numerical data are normalized 

to standardize feature scales, one-hot encoding is applied to categorical variables, and noise is reduced through 

dimensionality reduction methods. These steps greatly improve the accuracy and quality of the dataset, resulting in a 

dataset that is ready for later training on models. Figure 3 shows the entire data collection pipeline used to create realistic 

datasets for the AI-based IDPS to train the model configured to the simulated 5G IoT networks. Furthermore, a detailed 

diagram explicitly highlighting the individual stages of the data collection process designed for implementing the AI-based 

IDPS within the simulated IoT scenario is presented in Figure 4. 
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Fig. 3. Collection of data workflow for RF-IDPS in 5G networks. 

 
Fig. 4. Data gathering flow diagram for AI-based IDPS in a simulated Internet of Things environment. 

3.2. Feature Selection and Model Training 

The second phase is a combined feature selection and RF model training phase. Feature selection is the process of 

identifying the set of relevant attributes for the model through correlation analysis or via RFE or PCA. These methods 

reduce redundancy, simplify the dataset and lower computational complexity. For unbiased model evaluation, the processed 

dataset is split into training (80 percent) and testing (20 percent) subsets. The RF model effectively utilizes decision trees 
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identify and categorize cyber threats in IoT settings. Its performance is extensively assessed through the conventional 

metrics outlined in Equations (1–4): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝐶𝐶) =
𝑇𝑃+𝑇𝑁

𝐹𝑃+𝐹𝑁+𝑇𝑃+𝑇𝑁
                                                                              (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅𝐸𝐶𝐴𝐿𝐿):
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                      (2) 

Precision (PRECISION) =  
𝑇𝑃

TP+FP
                                                                              (3) 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (𝐹1) =  
2∗𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑂𝑁∗𝑅𝐸𝐶𝐴𝐿𝐿

𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑂𝑁+𝑅𝐸𝐶𝐴𝐿𝐿
                                                                      (4) 

where true positives, negatives, false positives, and false negatives are represented by TP, TN, FP, and FN, respectively. 

3.3. Algorithm Integration and Real-time Response 

In this stage, the trained RF model is integrated into the IDPS framework for practical real-time detection and warning of 

threats. The model processes incoming network traffic data in real-time and labels it as normal vs. malicious. When an 

anomaly or attack is detected, the IDPS can initiate a real-time mitigation response. Specifically, the detection event 

involves a predefined response pipeline using lightweight REST APIs integrated with the network controller. These APIs 

enable immediate actions such as dropping malicious packets, isolating compromised devices, or updating firewall rules in 

edge routers. The response logic is designed to be adaptive, ensuring minimal disruption to normal traffic while containing 

threats in real time. This minimizes damage and preserves network integrity. We selected the random forest model because 

it is efficient, consumes fewer resources, and is also applicable for real-time attack detection in IoT devices with limited 

resources. 

3.4. Model Adaptations and Implementation Strategy 

In light of the constrained computational capabilities of IoT node hardware, the RF algorithm is implemented to provide 

accuracy with manageable computational complexity. Note: with future directions, such as hyperparameter tuning, small 

algorithmic changes and the possible use of the newly invented algorithms that exploit reinforcement learning to improve 

the systems' responsiveness to changes in a dynamic environment. 

The execution methodology follows a hybrid architecture, as the optimized RF model is executed in lightweight software 

agents that serve nodes of the edge layer (e.g., IoT gateways or intermediary nodes of the network), detecting threats locally, 

and therefore achieving low problem latency. In extremely resource-constrained IoT nodes, the agents (~2–5 MB each) 

are incorporated into firmware, working closely with efficient C++ or Python-based frameworks. 'The retraining and 

updates of the model occur in the cloud and are safely transmitted to the edge devices using Over the Air (OTA) firmware 

updates. These updates are orchestrated on a weekly basis or dependent on significant security policy updates to always 

keep threat models current without being overly resource intensive to devices. 

The architecture allows real-time communication, the efficient use of resources, and secure and standard 5G messaging 

protocols (e.g., MQTT) to be employed, thus allowing the system to be easily scaled up in a 5G-enabled IoT ecosystem. 

3.5. Evaluation of the AI-based IDPS 

Finally, we evaluate the effectiveness of an AI-based IDPS in terms of its ability to detect threats accurately, detect 

anomalies, respond quickly, utilize resources effectively and achieve reasonable privacy preservation. The performance 

metrics (1st accuracy, 2nd recall, 3rd precision, and 4th F-measure) are carefully evaluated through realistic test scenarios. 

Moreover, numerous additional factors, such as computational overhead, resource consumption, response delay, privacy, 

etc., need to be critically analysed to validate the practical implementation and trustworthiness of the system deployed in 

different types of 5G network-sustained IoT entities. 

4. RESULTS 

This section illustrates the experimental results and analysis of the proposed random forest-based IDPS (IDPS) for IoT 

networks in 5G scenarios. We shape our evaluation around four dominant axes: detection precision, reaction time, system 

resources, and privacy retention. To facilitate readability and understanding, we present the results in the form of 

comparative tables and figures and discuss them in terms of practical considerations within real-life IoT deployments. 

The corresponding results prove the performance of the RF model in real-time detection, reducing the false positive rate 

and genericity when deployed in a new IoT environment. Moreover, it highlights any possible shortcomings of the IDPS 

and provides feedback on enhancing its strength against evolving cyber risks. The results help to build and optimize 

strategies for the importance of effective security in IoT networks. To measure the performance of the proposed RF-based 
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IDPS, a controlled simulated IoT environment was established in a stimulated 5G network. Table 3 presents a systematic 

approach to the experimental design. 

TABLE III. CONSTRUCTING AN EXPERIMENTAL 5G IOT NETWORK WITH RF BASED IDPS. 

Constructing Experimental Description 

IoT Network Construction of a virtual IoT network model 

Data Generation Generation of synthetic IoT traffic data 

DDoS Attack Simulation Emulation of cyber threats (DDoS and other attacks) 

RF Model Training Training the Random Forest-based IDPS 

 

To guarantee optimal performance and efficiency, the random forest model was trained with high-performance computing 

resources. The hardware specifications used in the experimental setup are listed in Table 4. 

TABLE IV. DEVICES UTILIZED IN EXPERIMENTS. 

Device Specification 

Device Name ASUS ROG Strix G15 Gaming Desktop 

Motherboard ASUS ROG B550 Series 

Memory (RAM) 32 GB DDR4 (Dual Channel, 3200 MHz) 

CPU AMD Ryzen 9 5900X 

Technology 7 nm 

Cores 12 Cores 

Threads 24 Threads 

Core Speed Up to 4.8 GHz (Base: 3.7 GHz) 

GPU NVIDIA GeForce RTX 3060 

GPU Memory 8 GB GDDR6 (Micron or Samsung) 

Storage 1 TB NVMe SSD 

Cooling System Air-cooled (optional liquid cooling variant) 

Connectivity Wi-Fi 6, Bluetooth 5.1, Ethernet 

Operating System Windows 11 Home/Pro (installed) 

 

 

 

4.1. Performance evaluation of the RF model 

The random forest (RF) model was highly effective in IoT attack detection, with better performance across many 

evaluation metrics. The RF model achieves 70% accuracy, which means that 70% of the IoT network samples are classified 

correctly. It also exhibited an 80% recall rate, indicating that it correctly identified 80% of the genuine cyber threats 

contained in the dataset. A precision score of 75% means that out of all attacks detected, the model has a low false positive 

rate, meaning that the attacks detected are correctly classified as attacks. Finally, an F-measure of 77% is achieved, which 

indicates a good balance between precision and recall. The results support the reliability of the RF model used in IoT 

network cybersecurity defence. As shown in Table 5, detailed performance measures and metrics are presented in Figure 

5. 

TABLE V. PERFORMANCE METRICS OF THE PROPOSED RF MODEL IN IOT THREAT DETECTION 

Metric Value 

Acc  (70 percent) 

Recall  (80 percent) 

Precision  (75 percent) 

F-measure  (77 percent) 

 

The RF model shows a strong balance between recall and precision, resulting in a reliable F1 score of 77%. This balance 

is essential in reducing both false negatives and false positives, which is crucial for IoT systems where delayed or incorrect 

detection can lead to critical consequences. Furthermore, the higher recall (80%) indicates that the model effectively detects 

the majority of cyber threats while maintaining reasonable precision (75%), thus minimizing false alerts that might 

otherwise burden the network administrators. 
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Fig. 5. Accuracy, recall, precision, and F-measure of RF models that are based on the IoT via a 5G network. 

The RF model outperformed the CNN and RNN in terms of accuracy, recall, and precision, indicating its superior capability 

in intrusion detection. The ability of the RF to analyse multiple features simultaneously contributed to its higher 

classification efficiency in differentiating between normal and malicious IoT traffic. 

4.2. IDPS detection of IoT network attacks 

The RF-based IDPS was tested with respect to its ability to detect DoS and DDoS attacks (external threats) and malware 

injections and unauthorized access attempts (internal threats). Its primary purpose during training was to identify malicious 

cyberattacks as distinct from benign IoT traffic. The IDPS was tested to determine how well it could detect dangers in IoT 

networks via the following methods: 

a) Detecting anomalies: Identifying deviations from traffic patterns. 

b) Real-time Response: Measuring the system's response speed to threats. 

c) Resource Efficiency: Evaluating CPU usage, memory consumption, and network bandwidth. 

d) Privacy preservation: Ensuring secure data handling and compliance. 

The RF-based IDPS has demonstrated satisfactory performance at detecting anomalies in the expected course of network 

activity; it helps in the early detection of potential cyber threats before they materialize. Measurement of the anomaly 

detection performance of the RF-based IDPS on multiple IoT devices According to Figure 6, the results demonstrate the 

ability of IDPS to differentiate between normal and suspicious activities. leading to the security of the network. 

 

 

Fig. 6. IDPS anomaly detection results. 
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Figure 7 shows the functions of the IDPS when the random forest approach is used. Protecting IoT networks and minimizing 

their effects calls for a model with fast threat detection capacity. The results support the proof that the system can quickly 

identify and address security issues. 

 

 

Fig. 7. Real-time response of the IDPS. 

The performance of the RF-based IDPS for resource use, including the CPU, memory, and bandwidth is subsequently 

evaluated. This evaluation ensures that the cybersecurity architecture operates efficiently without overburdening IoT 

devices, which typically have constrained processing capabilities. The experiments confirm the equilibrium between 

security performance and computational efficiency, as illustrated in Figure 8. 

 

Fig. 8. Resource efficiency in IoT cybersecurity. 
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Figure 9 shows how effectively the RF-based IDPS is at conserving user data and sensing cyber threats. This streamlined 

detection capability helps companies protect their sensitive data while maintaining accuracy. 

 

 

Fig. 9. Privacy preservation evaluation. 

Overall, the presented RF-based IDPS performed well in terms of the evaluation metric. The proposed privacy-preserving 

intrusion detection system (PIDS) based on smart metering and analytics techniques effectively detects various types of 

attacks in real time, runs efficiently on limited resources, and provides a high level of privacy. These characteristics 

substantiate the applicability of the RF as a foundational engine for next-generation IoT security in the context of 5G 

deployments. 

5. DISCUSSION 

The performance of the proposed RF was evaluated against CNNS and RNNs under the same experimental conditions. The 

RF achieves higher accuracy and precision than the CNN and RNN do, which is attributed to the ensemble style of the RF 

and the ability to address nonlinear IoT traffic patterns. Although CNNs and RNNs can achieve better performance in some 

specific scenarios, the RF model shows better generalizability across different attack modalities, which supports its choice 

for lightweight real-time IDPSs in this study. 

The findings of the work indicate that the proposed RF-centric IDPS is efficient for combating the primary components of 

cybersecurity in the IoT over 5G networks. Overall, by applying RF, we can balance and compromise between many 

aspects, and we achieve better effectiveness with respect to precision and recall; for this reason, it represents a strong 

candidate for intrusion detection and prevention. 

The system's effectiveness was evaluated against five categories network attack detection, anomaly detection, real 

response, resource efficiency and privacy preservation. These findings confirm the viability of the RF algorithm as a 

scalable and efficient cybersecurity measure for 5G-enabled IoT landscapes. During the detection and mitigation 

processes, the RF-based IDPS ensures data privacy through secure communication protocols and local processing at the 

device or edge level, minimizing the exposure of sensitive information. As discussed in [25], integrating lightweight 

encryption and secure channel communication is crucial in IoT environments to prevent data leakage and enhance trust in 

automated detection frameworks. 

5.1. Evaluation of IDPS performance in IoT networks 

Instead, the RF-based IDPS distinguished itself by featuring key highlighted metrics of the 5G-IoT focus on network attack 

detection, anomalies, real-time response, resource efficiency, and privacy. It provides 80% recall in detecting DDoS attacks 

and unauthorized access attempts and detects all of these from benign traffic due to the superior nature of classifiers. 
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Moreover, the real-time response of the RF model facilitated the immediate mitigation of security risks, thwarting potential 

threats before they could escalate, resource efficiency: It used a very small amount of CPU, memory, and bandwidth, 

ensuring that it was usable on resource-limited IoT devices. The system also follows strong privacy guidelines, encrypting 

sensitive data while monitoring for cyber threats, so the security of the data did not reduce the detection accuracy. With 

these findings, we can confirm that the RF-based IDPS is a computationally efficient, scalable, and effective cybersecurity 

solution for 5G-powered IoT networks. Figure 10 provides an overview of the efficiency of the entire system in terms of 

anomaly detection, attack response, resource utilization, and privacy. 

 

 
Fig. 10. Evaluating IDPS performance in the IoT via a 5G network. 

 

 

5.2. Comparison of the proposed method with existing methods 

An analysis of RF-based IDPS performance is further performed to compare it with three recent relevant studies in AI-

based cybersecurity [18-20] related to the identification of several AI models in IoT network intrusion detection. 

Studies [18] (2021) analysed CNN, SVM, and RF, with the best accuracy (78%) obtained via SVM; the RF accuracy 

and recall were 75% and 77%, respectively. In [19] (2022), RNN, KNN, and decision trees (DTs) were analysed; 

RNNs achieved a higher recall (80%) than did the other models did, but a lower precision (60%) resulted in a lower 

overall F-measure (75%). Studies [20] (2023) used CNN, LSTM, and RF as classifiers; LSTM achieved the best 

overall efficiency (accuracy of 76%, recall of 78%, and precision of 80%), outperforming RF. The 2025 study adapted 

CNN, RNN, and RF for the intrusion detection task, reporting the RF model as providing 70% accuracy, 80% recall, 

75% precision, and 77% F-measure, a promising balance of accuracy, recall and precision in a potentially effective 

solution to IDS for 5G-enabled networks. A detailed comparison of these studies is presented in Table 7. 

TABLE VI. EVALUATION OF THE SUGGESTED APPROACH VS. PREVAILING RESEARCH ON RF MODELS FOR IOT CYBERSECURITY 

Ref. No. Algorithm Acc Recall Precision F-measure Year 

[18] RF 75% 77% 74% 75% 2021 

[19] RNN, 65%, 80% 60% 75% 2022 

[20] LSTM 76% 78% 80% 79% 2023 

* RF 70% 80% 75% 77% 2024 

 

6. CONCLUSION 
The evolution of 5G technology alongside the explosive growth of Internet of Things (IoT) devices has significantly 

expanded the attack surface, necessitating robust and scalable cybersecurity mechanisms. This study introduced and 

rigorously evaluated an AI-driven intrusion detection and prevention system (IDPS) based on the random forest (RF) 

algorithm tailored for 5G-enabled IoT environments. The proposed RF-based IDPS demonstrated high efficacy in detecting 



 Abbood et al, Mesopotamian Journal of Cybersecurity Vol.5, No.2, 886–898 

 

 

 

 

897 

various cyber threats—particularly distributed denial-of-service (DDoS) and unauthorized access attempts—while 

maintaining computational efficiency suitable for resource-constrained IoT devices. The model strikes a balance between 

detection capability and performance overhead, with an accuracy of 70%, recall of 80%, precision of 75%, and F-measure 

of 77%. The real-time and in situ response along with anomaly detection and the privacy-preserving property of the model 

make it an applicable solution for dynamic and large-scale IoT deployments. In contrast to the CNN and RNN models, 

which have the characteristics of isolated performers, the RF model presented a more harmonized advantage, as it was able 

to provide high detection power together with low false positive rates and less recourse. The platform also demonstrated 

adherence to critical privacy constructs, highlighting its feasibility for deployment in practice, where data protection and 

timely threat response are key. More importantly than sheer technical validation, this research provides evidence of the 

significant role that lightweight, interpretable, and adaptable models can play in future-proofing IoT security platforms. 

The understanding gained is not just to support performance numbers; rather, it is a basis for intelligent and autonomous 

defense systems on future network infrastructures. In the future, we will investigate hybrid AI architectures (i.e., CNN-RF 

or RNN-RF) that can enhance contextual knowledge and classification robustness. In addition, federated learning 

mechanisms will be studied to contribute to distributed intelligence, improve the generalizability of the model, and enhance 

privacy, such as in ultra-decentralized edge computing scenarios. 
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