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The exponential growth of healthcare Internet of Things (loT) data necessitates secure, low-latency
analytics that extend beyond centralized architectures. This paper presents BDAFL DNN, a blockchain-
integrated data analytics framework that combines Federated Learning (FL) and Deep Neural Networks
(DNNs) for real-time, privacy-preserving healthcare analytics across edge and cloud resources. Local
devices such as smartwatches and phones collect noninvasive time series sensor streams (heart rate,
temperature, and abdomen sensors), perform on device DNN training, and send only model updates to
healthcare edge nodes, where a blockchain ledger validates updates for integrity and traceability;
validated updates are then aggregated in the cloud via FL to produce a global model without sharing raw
data. In a simulation study against representative baselines, BDAFL DNN reduced execution time,

Federated Learning energy use, and resource consumption, lowered the deadline miss ratio, and improved blockchain

validation correctness. These results show that integrating blockchain with FL-driven edge and cloud
DNN analytics can deliver scalable, secure, and timely insights for future healthcare 10T systems.

Deep Neural Networks

1. INTRODUCTION

The rapid adoption of the Internet of Medical Things (IoMT) is reshaping healthcare by enabling real-time patient
monitoring, continuous data capture, and remote diagnosis. Yet most analytics pipelines still rely on centralized architectures,
which create well-known challenges around data security, privacy, and scalability [1]. Combining blockchain with edge and
cloud computing provides a practical approach. Blockchain’s decentralized and immutable ledger strengthens integrity,
auditability, and transparency in healthcare data management, while edge and cloud processing bring computation closer to
data sources to reduce latency and bandwidth usage, and leverage the cloud for elastic aggregation, model updates, and long-
term storage. Together, these technologies provide a secure, privacy-preserving, and scalable foundation for managing and
analyzing healthcare data [2, 3].

Federated learning (FL), a distributed machine-learning approach, enables collaborative model training while maintaining
data locality and thereby safeguarding patient confidentiality. However, conventional FL frameworks can suffer from
security gaps, single points of failure, and inefficient data-sharing mechanisms. To mitigate these issues, integrating
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blockchain with FL has been proposed. Blockchain-powered FL supports secure, tamper-proof, and decentralized model
updates, fostering trust among healthcare stakeholders [4-6]. Deep neural networks (DNNs) further enhance the precision
and efficiency of healthcare analytics through advanced predictive modelling and disease identification [6]. When combined
with blockchain-enabled FL and edge—cloud computing, DNNs can strengthen clinical decision-making while ensuring data
integrity, privacy, and real-time analytics. This study designs a blockchain-integrated, edge—cloud-enabled healthcare data-
analytics framework that leverages distributed FL and DNNs to address current limitations in privacy-preserving healthcare

analytics [7].

Despite its promise, several research challenges must be addressed to realize an efficient blockchain-integrated, edge—cloud-
enabled framework: (i) Scalability and security of the ledger: blockchain infrastructures face scalability constraints as
transaction volumes grow; advanced consensus protocols and data-partitioning are needed for large-scale healthcare, and
vulnerabilities such as Sybil attacks, 51% attacks, and data leakage must be countered with strong cryptography and privacy-
preserving mechanisms. (ii) Interoperability: healthcare data originates from heterogeneous Io0MT devices and electronic
health records (EHRs), creating compatibility issues; standardized data models and interoperability frameworks are essential.
(iii) Edge efficiency: deploying DNNs on resource-constrained edge devices raises computational and energy concerns;
optimized model-compression and communication-efficient FL methods are required. (iv) Secure aggregation: ensuring
transparent, tamper-proof model aggregation across distributed nodes without excessive computational overhead remains
challenging. By integrating blockchain, FL, DNNs, and edge—cloud computing, this research advances a secure, efficient,
and scalable healthcare data-analytics system. The proposed framework is expected to improve healthcare decision-making,
reinforce data security, and encourage collaborative, Al-driven innovation in the healthcare sector. This study addresses the
identified challenges through the following key contributions:

o We propose a decentralized, privacy-first federated learning framework strengthened by a blockchain ledger so that
model updates from distributed healthcare nodes are immutable, auditable, and attributable. The ledger records update
metadata and cryptographic proofs, while smart-contract rules govern client admission, update acceptance, and
dispute resolution. This design removes single points of failure and builds trust among stakeholders without exposing
raw patient data.

o We develop the Blockchain Data Analytics Federated Learning and Deep Neural Network (BDAFL DNN) schemes
that cover the full pipeline: local preprocessing and adaptive offloading on devices, on-device DNN training,
blockchain validation at healthcare edge servers, and federated aggregation in the cloud. We detail message formats,
timing of rounds, and fault handling for time-stamped streams from heart rate, temperature, and abdomen sensors,
enabling near real time analytics while keeping data local.

o We formalize BDAFL DNN as an optimization model that defines system entities, variables, and objective terms to
minimize execution time, energy use, and resource cost, and to reduce deadline misses while maintaining high
validation correctness. The formulation includes constraints for device and edge compute budgets, memory and
bandwidth limits, aggregation deadlines, and blockchain throughput and consistency. We state the security and
correctness conditions required for ledger-backed aggregation and verifiable update provenance.

o Additionally, we provide a clear threat model (covering Sybil, model poisoning, and rollback attacks) with
corresponding mitigations, a brief complexity and convergence analysis of the learning and validation loops, and an
empirical evaluation with ablation and sensitivity studies to show where each component of BDAFL DNN contributes
to the overall gains.

The remainder of this paper is organized as follows. Section 2 surveys related work. Section 3 presents the proposed system
architecture. Section 4 details the proposed methodology and algorithms. Section 5 describes the experimental setup and
reports the performance evaluation. Section 6 concludes the paper and outlines directions for future work.

2. RELATED WORKS

In recent years, blockchain and federated learning have moved from promising ideas to practical tools for healthcare data
analytics. These technologies now underpin applications in healthcare, smart grids, and privacy preserving systems. For
example, the work in [1] positions blockchain and big data analytics as a response to rising concerns about digital privacy
and the right to privacy online. Closer to clinical practice, [2] explores data analytics for real time sensor streams across
distributed nodes, while [3] proposes a blockchain validated sharing scheme that protects patient privacy during medical data
exchange. At a more forward-looking edge, [4] discusses how federated learning, blockchain, and even quantum computing
could support personalized medicine through Al driven analytics.

Several studies examine secure transactions and learning at the network edge. The contract model in [5] secures healthcare
transactions using consumer devices and mobile edge computing. Federated learning has been explored for medical imaging
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tasks such as Alzheimer’s disease detection with an evolutionary deep CNN in [6] and surveyed more broadly for its role in
healthcare’s digital transformation and data security in [7]. Deep federated learning for patients with disabilities is presented
in [8], and privacy preserving image analytics with federated learning is investigated in [9]. Generative adversarial networks
have also been adapted to federated settings to improve robustness in healthcare, as shown in [10]. Beyond the cloud, [11]
introduces FedHealthFog, which brings federated analytics to fog infrastructures, and [12] studies privacy preserving edge
federated learning for mobile health. Disease specific pipelines, such as pneumonia image detection with distributed data,
appear in [13], while [14] proposes a secure, distributed architecture for privacy preserving healthcare systems. Together
with [15-19], these lines of work reinforce the view that combining Al driven analytics with blockchain and federated
learning can reshape healthcare. Within this context, two schemes have been discussed: the federated learning blockchain
scheme for data analytics (FLBS-DA) and the federated learning scheme for data analytics (FL-S-DA), both enabling
analytics to run across multiple nodes by leveraging blockchain and federated learning.

Despite clear progress, important gaps remain. Many systems still incur notable communication and ledger overhead, which
increases execution time and energy use, and leads to deadline misses when workloads spike. Some rely on centralized
orchestration that creates single points of failure, or they assume homogeneous devices and stable links that are rare in
practice. Interoperability across heterogeneous loMT devices and electronic health records is often under specified, and the
security analysis can be limited, with partial treatment of threats such as Sybil attacks, model poisoning, and rollback. Finally,
several studies report accuracy gains but provide only limited ablation, sensitivity analysis, or explicit multi objective
optimization over time, energy, resource budget, and deadline constraints. To address these limitations, we propose a
blockchain integrated, edge cloud enabled healthcare analytics framework that uses distributed federated learning with deep
neural networks to support real time sensor analytics under realistic constraints. Our design targets lower execution time and
energy use, a reduced deadline miss ratio, and resilience to resource failures, while maintaining privacy and data integrity
through ledger backed validation.

3. PROPOSED SYSTEM

As illustrated in Figure 1, the proposed system is an integrated healthcare monitoring architecture that brings together body
worn sensor networks, a blockchain security layer, and federated learning across edge and cloud resources. Continuous
physiological streams, including heart rate, temperature, abdominal activity, and mobility, are captured by multiple sensors
and tagged with precise timestamps, enabling robust temporal analysis and reliable correlation of events. The framework
begins at the patient's side, where mobile healthcare sensors—such as those measuring heart rate and temperature—collect
time-stamped readings. A lightweight client on the phone or wearable packages these streams and applies local blockchain
security, creating tamper-evident records before anything leaves the device. Through a Wi-Fi gateway, the encrypted data is
offloaded to the network, while hashes and metadata are logged so that every sample has a verifiable provenance. This first
layer keeps raw data close to the source, protects privacy, and prevents later manipulation. At the edge-cloud layer, nearby
healthcare servers perform rapid pre-processing and train a local deep neural network (the FL-DNN) on their own patients’
data. Instead of sharing raw records, each server sends only model updates to a cloud-based aggregation service, which
federates them into a single, stronger global model and returns it to the edge. A blockchain service runs alongside to validate
contributions, record update histories, and enforce participation rules through smart contracts. Clinicians then receive
predictions and alerts derived from the global model, benefiting from low latency, reduced bandwidth use, and an auditable
trail for every model update and decision.

As shown in Figure 1, the architecture applies local blockchain security with multidimensional protection across the X, v, z,
and w axes, and uses Wi-Fi enabled secure data offloading. A decentralized edge cloud intermediary links local devices to
cloud resources while keeping control distributed. Incoming streams are handled by parallel preprocessing modules at the
edge, then written to the blockchain for integrity and audit. The learning layer uses local federated learning deep neural
networks (FL DNN), so edge nodes train on their own data and share only model updates. These updates are combined in
the FL Aggregation Cloud, and the improved global model is returned to the edge. Final health predictions and monitoring
outputs are generated near the patient and are also recorded permanently in the Blockchain Cloud. The design prioritizes
privacy preserving analytics and verifiable integrity, making it suitable for sensitive remote patient monitoring.

We also define a system model that clarifies the workflow and data flow among devices, edge nodes, and cloud. A well-
structured diagram with labelled components improves readability by showing how local validation, secure offloading,
federated learning, and result delivery interact across the layers. Figure 2 presents the end-to-end pipeline, including data
labelling, preprocessing, security validation, model aggregation, and result reporting. Figure 2 shows the end-to-end data
flow from sensors to cloud aggregation. On the left, heart rate, temperature, and abdomen sensors generate time stamped
streams. A local client collects these readings and applies security controls to protect integrity and privacy. The data then
moves to the edge layer, shown by the blue panel, where two representative edge servers operate in parallel. Each server
performs preprocessing to clean and normalize the streams and attaches supervised labels when available, producing training
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ready batches. Finally, the prepared outputs are sent to the cloud, where data from multiple edge nodes are aggregated for
analytics and model building. The data labelling, preprocessing, security validation, model aggregation, and result reporting
highlights that protection and preparation happen close to the source, while the cloud focuses on scalable aggregation.
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The data pipeline begins on local devices such as sensors, smartwatches, and mobile phones. These devices collect the raw
signals and run security checks before offloading to the edge. At the edge, incoming streams are preprocessed to clean the
data, remove null values, and reduce noise. Each edge node then trains a local convolutional neural network on a compact
feature set and sends only the learned weight updates to the cloud for aggregation. After aggregation, the improved global
model is distributed back to the devices, which load it for on device inference and data classification. For the ledger layer,
we employ a lightweight variant of Practical Byzantine Fault Tolerance rather than computationally expensive Proof of
Work. PBFT was chosen because it achieves fast agreement among participating nodes with low energy use, which is
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important for healthcare scenarios that require timely analytics. Block creation time is held to a few seconds so new model
updates can be validated and appended without delaying clinical decisions. This provides a practical balance of security,
scalability, and timeliness for signals such as heart rate and temperature. For federated learning, each edge device trains on
local patient data and produces weight updates that never reveal raw records. To preserve privacy, these updates are encrypted
with homomaorphic encryption so the cloud can combine them without reading the underlying values. The encrypted updates
are sent over secure channels, aggregated in the cloud, and only the final global model is decrypted. Each update also carries
a digital signature and a blockchain transaction hash, which allows verification of origin and immutability. An update cannot
enter the training process unless it passes validation against the ledger, which prevents tampering and model poisoning.

3.1 Mathematical Model
The system comprises the following key components:
. N = {1,2,...,n}: Set of edge nodes in the network
. S = {1,2,...,s}: Setof local sensors collecting health data

. T = {1,2,...,t}: Set of computational tasks to be processed

. R = {CPU, Memory, Bandwidth}: Computing resources
B: Parameters of the blockchain network, including block size and consensus protocol.

3.2 Time Component Models

D;
Tesxec = C_l + Pi (1)

Eq. 1: Local Sensor Execution Time

Computes the total time for all sensors to process their data locally, where:
o D; : Data volume generated by sensor i (in bits)
o C; : Computational capacity of sensor i (bits/sec)

e P, : Pre-processing time at sensor i(sec)

D;
Totfload = i1 70 2)

=1 By
Eq. 2: Data Offloading Time
Calculates the time to transmit sensor data to edge nodes, where:
® B,,;r; - Available WiFi bandwidth (bits/sec)

e Q; : Queuing delay at sensor i(sec)
Tedge = Z?:l Sj 3
Equation 3: Edge Processing Time
Determines computation time at edge nodes, where:
® Ceqc - Processing capacity of edge node j (bits/sec)

e S; : Scheduling delay at edge node j (sec)

j _ M
Ttrain - ?=1 E- F_] (4)

Equation 4: Local Model Training Time
Computes the time for federated learning at edge nodes, where:

e E; : Number of training epochs at node j
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e M; : Size of the local model at node j (parameters)
e F; : FLOPs capacity of node j (operations/sec)

T, =224 4 (5)

Bloud
Equation 5: Federated Aggregation Time

Models the cloud aggregation time for global model updates, where:
e Aw; : Model updates from edge node j (bits)
®  Boua : Cloud network bandwidth (bits/sec)

e A: Aggregation computation time (sec)

_ Dplock
Tblockchain =V B + Cconsensus (6)
block

Equation 6: Blockchain Validation Time
Calculates the time for blockchain operations, where:
e V' : Number of validations required
o Dyck - Block data size (bits)
e By : Blockchain network bandwidth (bits/sec)
®  Coonsensus - CONsensus mechanism 5 ay (sec)
We determined the energy model in the following.
Elonsor = Plomp * Thee + Plrans * Teftioad ™
Equation 7: Sensor Energy Consumption
Computes energy used by each sensor device, where:
e PL_ :Computational power consumption (Watts)

comp

e PL. . :Transmission power consumption (Watts)
Ee]dge =F, e]dge : (Te]dge + Tt{‘ain) )]
Equation 8: Edge Node Energy Consumption
Calculates energy used by edge nodes for processing and training, where:
. F;{ige : Power consumption of edge node j (Watts)
We define resource utilization in the following way.
Riotal = X7=1 a-CPU; + 6 - MEM; +y - BW; 9
Equation 9: Total Resource Consumption
Quantifies overall system resource usage, where:
e 0,y : Weighting factors for CPU, memory, and bandwidth
e CPU;, MEM;, BW; : Utilization percentages for each resource
We defined the objective optimization in the following way.
Minimize [wy - Tioral + W2 * Etotal + W3 * Riotal + Wa * Frate | (10) (10)
Equation 10: Multi-Objective Optimization

The primary optimization goal minimizes:
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o T - All time components (Total latency)
®  Ei = Eensor + Ecqge (Total energy)
® Ry : Resource consumption
o F.,. : Taskfailure rate
e w; : Weighting factors for each objective
The mathematical model has the following constraints with conditions.

Tiotal < Tinax (Maximum allowable latency) (11
Elivsor < Elx Vi €S (Sensor energy limits) (12)

CPU; < CPUJ ., MEM; < MEMJ,.., BW; < BW,),,(13)

max’

V > vblock (Minimum blockchain validations) — (14)

4. PROPOSED METHODOLOGY

We present the Blockchain Data Analytics Federated Learning and Deep Neural Network (BDAFL DNN) framework. It
offers a comprehensive approach to managing large-scale, real-time healthcare data generated by sensors. The design
overcomes the limits of centralized analytics by combining local processing, deep learning, federated learning, and
blockchain-based validation in a single structure that targets efficiency, privacy, and trust.

Algorithm 1: Local Processing and Offloading
Input: Sensor data D;, Sensor resources {C;, P;}, Blockchain params B
Output: Offloading decision and validated data blocks
Begin
For eachsensori € S do
Compute local execution time: T, = % + P
A

1
2
3
4 Compute energy consumption: Efor = Plomp * Tee
5 If ESienSOI‘ S E]’iflaX and Teixec S Tmax then

6 process data locally;

7 Generate blockchain transaction: T; = Hash(D;, timestamp )
8 if Validate(T;, B) then

. __Di )
9 offload data: T g = Boire ;
10 Else
11 L Request edge assistance;
12 | End

The framework is organized into cooperating parts that handle collection, learning, validation, and aggregation, allowing
the system to deliver secure, timely, and energy-efficient analytics. The first part is local processing and selective offloading.
Non-invasive devices, such as smartwatches, mobile phones, and other wearables, collect continuous time series data from
heart rate, temperature, abdominal sensors. Rather than sending raw streams to a central server, the device filters, cleans, and
pre-analyzes the data, attaching timestamps and integrity metadata. When local resources are limited, the client offloads
tasks to a nearby edge node that can continue the analytics and learning workload without draining the device battery. This
keeps latency low, reduces unnecessary network traffic, and maintains responsiveness in healthcare critical situations. We
define the Algorithm 1 processes sensor data by determining whether to execute computations locally or offload them to an
edge server. The process consists of the following steps:

1. Input Parameters: The algorithm takes as input the sensor data D;, sensor resources {Ci, P;}, and blockchain parameters B.
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The second scheme introduces local training using deep neural networks (DNNs). Each device leverages its local data to
train a lightweight DNN model. This approach preserves data privacy since raw patient information remains confined to the
device, and only model updates are produced. These local DNN models are specifically optimized for time-series healthcare
data, enabling them to capture patterns and anomalies in physiological signals such as irregular heartbeat or abnormal
temperature fluctuations. Localized DNN training ensures that learning is personalized and context-aware, while also
preparing the model updates for secure global aggregation.

The third scheme is centered on blockchain validation at edge nodes. Once local models are trained, their updates are
encrypted and transmitted to edge servers. Before aggregation, blockchain validation mechanisms are applied to ensure the
authenticity and integrity of the updates. By leveraging blockchain’s immutable ledger and consensus protocols, the
framework prevents tampered, malicious, or falsified updates from being injected into the system. Each model update is
stored as a transaction, digitally signed, and validated through a lightweight consensus mechanism. This ensures that all
participants in the federated network can trust the authenticity of the updates without relying on a single centralized authority.

The fourth scheme encompasses federated learning aggregation and blockchain validation for real-time analytics. At this
stage, the encrypted and validated model updates from multiple devices are aggregated at the cloud or edge-cloud servers to
form a global DNN model. This federated learning process allows the system to benefit from the collective intelligence of
distributed devices while maintaining privacy. Blockchain validation is again applied at this level to guarantee transparency,
accountability, and trust across all participants. The updated global model is then redistributed back to local devices, ensuring
that all nodes benefit from the improved predictive capabilities without compromising individual privacy.

2. lterate Over Sensors: Each sensor i in the set of available sensors S is considered for processing.
3. Compute Execution Time: The local execution time for sensor i is calculated using the formula:

Toxec = A + P (15)
4. Compute Energy Consumption: The energy consumed by sensor i during local computation is given by:
Eslensor = Pclomp ’ Telxec (16)

5. Check Execution Feasibility: The computed execution time and energy consumption are compared against predefined
thresholds:

o IfEL ., <EL. andT.L. < T....thenthe datais processed locally.
o Otherwise, an edge server is requested for data execution.
6. Local Processing and Blockchain Transaction:
If the local processing condition is met:
e A blockchain transaction is generated using:
T; = Hash(D;, timestamp ) a7
e The transaction is validated against blockchain parameters B.
7. Offloading Decision:

If the transaction is validated successfully, data offloading is initiated. The offloading time is computed as:
i _ _Di )
Toffload - Buifi + Ql (18)
8. Edge Assistance Request:
If local execution is not feasible, the sensor requests computational assistance from an edge server.
9. Output:

The final output consists of the offloading decision and the validated data blocks.

Algorithm 2: Local Training with Blockchain Validation
Input: Local dataset D;, Model architecture M;, FLOPs F;, Blockchain B
Output: Validated model updates Aw;
1 begin
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2 Initialize local model w}
3 For each epoch e = 1 to E; do
4 For each batch b € D; do
5 Compute gradients: V£(wf ™", b)
6 Update weights: wf « wf™! —nv¢
7 Compute model updates: Aw; = ijj — wj0
Generate validation proof: V; « Hash(Aw;, nodelD )
if Consensus(V;, B) = Vi, then
10 L Offload updates: BAWj +A
cloud
11 else
12 \_ retrain with new hyperparameters.
13 | End

Algorithm 2 performs local training of a deep neural network model and validates updates using blockchain consensus.
The process consists of the following steps:

1. Input Parameters:

The algorithm takes as input the local dataset D;, model architecture M;, floating point operations (FLOPs) F;, and
blockchain parameters B.

2. Initialize Local Model:
The initial model weights are set as:

wp (19)
3. Training Process:

The model is trained for E; epochs.

For each epoch e from 1 to E; :

Iterate through each batch b in the dataset D;.

Compute the gradient of the loss function:

ve(wf™,b) (20)
¢ Update the model weights using:
wf «wf™t—nve (21)

4. Compute Model Updates:
After completing all training epochs, compute the model update:

Aw; = W].Ej —w? (22)
5. Generate Validation Proof:
The model update is hashed along with the node ID to create validation proof:
Voal < Hash(AWj, nodelD ) (23)
6. Blockchain Consensus Validation:
The generated proof is validated against the blockchain consensus.

e |f the consensus threshold satisfies:
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Consensus(l/},B) = Viin (24)
then the model updates are offloaded using:
A .
Y+ A (25)
Beloud
o Otherwise, retraining is performed with new hyperparameters.

7. Output:
The final output consists of the validated model updates Aw;.

Algorithm 3: Federated Aggregation with Security Validation

Input: Edge updates {ij}:,lzl, Blockchain B, Resource constraints R
Output: Global model w,, Resource allocation schedule

1 Begin

2 Verify all Aw; against blockchain records.

3 Compute resource utilization: Ry, < Y. (a -CPU;+ 6 -MEM; +v - BWJ-)
4 while Ry, < Rpax do

5 Aggregate updates: w, < %Z};l Aw;

6 Validate global model: V, « Hash(w,)

7 if Consensus(l/;,,B) > Vi then

8 Broadcast w;, to all nodes;

9 Update scheduling parameters: S; < Optimize(Tioa1 ; Eiotal » Riotal )

10 Break;

11 Else

12 L Recompute with Byzantine-resistant aggregation;
13 | End

Algorithm 3 performs local training of a deep neural network (DNN) and validates updates using blockchain consensus.
The process consists of the following steps:
1. Input Parameters:

The algorithm takes as input the local dataset D;, model architecture M;, floating point operations (FLOPs) F;, and blockchain
parameters B.

2. Initialize Local Model:
The initial model weights are set as:
w) (26)
3. Training Process:
The model is trained for E; epochs.
e Foreach epoch e from1to E; :
o lterate through each batch b in the dataset D;.
e Compute the gradient of the loss function:
-1
ve(wf™,b) (27)

e Update the model weights using:
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wf wje_l —nVe (28)
4. Compute Model Updates:

After completing all training epochs, compute the model update:

E .
Aw; = w;” — wo (29)
5. Generate Validation Proof:

The model update is hashed along with the node ID to create validation proof:
V; < Hash(Aw;, nodelD ) (30)
6. Blockchain Consensus Validation:
The generated proof is validated against the blockchain consensus.
o [f the consensus threshold satisfies:
Consensus(V;, B) = Vipin (31)

then the model updates are offloaded using:
AWj

(32)

Bcloud

e Otherwise, retraining is performed with new hyperparameters.
7. Federated Aggregation with Security Validation:
The aggregated updates from multiple edge devices are processed as follows:

¢ Input Parameters: Edge updates {ij};_l:l, blockchain parameters B, and resource constraints R.

e Verify Updates: Each Aw; is validated against blockchain records.
e Compute Resource Utilization:
Riotas < Y (a-CPUj +6-MEM; +y - BW)) (33)
e Aggregation and Validation:
o3 Aw (34)
e Compute the hash of the global model:
Vy < Hash(wg) (35)
e Consensus Check: If
Consensus(V;, B) = Vinin (36)
then the global model is accepted; otherwise, the aggregation is repeated.
then broadcast w;, to all nodes and update scheduling parameters:
Sj « Optimize(Totar , Evotal » Reotal ) 37)
o Byzantine-Resistant Recalculation:
If the consensus fails, recompute with Byzantine-resistant aggregation.

8. Output:
The final output consists of the validated global model w,, and the resource allocation schedule.
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5. PERFORMANCE EVALUATION

In the performance evaluation, we discussed the different scenarios, such as simulation parameters, node configuration, and
dataset description, in detail. Table | shows that the computational resources of different computing nodes vary based on
their roles.

TABLE I. SIMULATION PARAMETERS
Computing Node CPU Storage (GB) Processing Speed (GHz)
Smartwatch 1-2 4-8 05-12
Edge Cloud 4-8 128-512 2.0-35
Cloud Server 16-64 1,000+ 3.0-45

Table | lists the simulation parameters. We conduct a comparative study against three strong baselines: a centralized deep
neural network (DNN) where all data are uploaded to the cloud for training and inference; a standard federated learning (FL)
setting without blockchain, in which a central server performs aggregation; and a non-federated edge analytics approach
where edge devices analyze data independently with no collaboration. These are evaluated against our blockchain-enabled
FL framework that coordinates edge and cloud resources to deliver secure, transparent, and efficient healthcare analytics.

All methods are tested on the same real-time streams of vital signs, including heart rate, temperature, abdominal movement,
and related signals. Performance is measured using classification accuracy and prediction quality for reliability, latency to
capture end-to-end response time, energy usage to reflect computational overhead and sustainability, and deadline miss ratio
to quantify tasks that exceed real-time constraints. We report mean values, variances, and 95% confidence intervals across
multiple runs, and we apply paired t-tests with reported p-values to assess statistical significance. The extended
benchmarking shows that our blockchain-assisted FL approach not only improves prediction accuracy but also reduces
latency, energy consumption, and deadline misses compared with centralized and non-federated baselines, while adding
transparency and trust that traditional FL lacks. A brief discussion of tradeoffs between accuracy, latency, energy efficiency,
and real time responsiveness is included to provide a balanced interpretation of the results. The following descriptions outline
the characteristics of each node:

The smart watch or local sensors are thin devices with limited computational resources. Typically equipped with:
e CPU:1-2cores
e Storage:4-8GB
e Processing Speed: 0.5-1.2 GHz

The edge nodes are mid-tier computational units with better resources than a smartwatch but less than a cloud server. It
features:

e CPU:4 -8 cores
e Storage: 128 - 512 GB
e Processing Speed: 2.0 - 3.5 GHz
The aggregated cloud is a high-performance computing unit with significant computational capacity, providing:
e CPU: 16 - 64 cores
e Storage: 1000+ GB
Processing Speed: 3.0 - 4.5 GHz

5.1 Healthcare Mobility Sensor Data Analytic Description

Table Il is synthesized and collected from different devices with random subjects. It includes multiple sensor types such as
temperature, mobility, heart rate, and abdomen sensor readings. The following attributes are detailed in the table:

e Subject ID: A unique identifier assigned to each subject.

e Sensor Type: Indicates the type of sensor used (e.g., Temperature, Mobility, Heart Rate, Abdomen Sensor).
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e Sensor Value: The recorded value from the respective sensors.

e Sensor Location: The body location where the sensor is placed (e.g., Forehead, Wrist, Abdomen, Pocket).

e Timestamp: The date and time when the sensor reading was recorded in YYYY-MM-DD HH:MM: SS format.
e Time Zone: The time zone in which the data was recorded (e.g., GMT+1, GMT+5).

o Mobility: The general environment where the subject was located at the time of data recording (e.g., Home, Gym,
Work, Hospital).

e Activity: The activity performed by the subject at the time of recording (e.g., Sitting, Resting, Walking, Running).

e Temperature: Temperature readings recorded by the sensor (in °C). If the subject does not use a temperature sensor,
this field remains empty.

e Heart Rate: The subject’s heart rate recorded in beats per minute (bpm). If the subject does not use a heart rate
sensor, this field remains empty.

¢ AbdomenSensor Unit: The status of the abdomen sensor readings. This column contains either:

- Normal: If the abdomen sensor reading falls within a normal range.
- Abnormal: If the abdomen sensor reading is missing or not within the normal range.

Movement: Indicates whether movement was detected (Yes) or not (No) based on sensor data.

This dataset provides a snapshot of healthcare mobility sensor readings and can be used for analyzing mobility patterns,
health conditions, and sensor-based activity monitoring.

5.2  Results Analysis

Table Il compares the execution times (in seconds) of four models processing data from 80,000 subjects with analytics
sensors. The models evaluated are BDAFL-DNN, FLBS-DA, FL-S-DA, and a generic Models entry (likely a baseline). The
y-axis represents execution time, where lower values indicate better efficiency. The dataset involves large-scale sensor data,
typical in 10T or healthcare applications. We employed statistical methods, including paired t-tests and p-values, to compare
the analysis values and evaluate the performance of the data. BDAFL-DNN is inferred to combine federated learning with
deep neural networks, potentially resulting in fewer execution times due to reduced computational complexity. FLBS-DA
may incorporate blockchain for security, introducing latency overhead, while FL-S-DA could represent a streamlined
federated learning approach with optimized security. The unnamed Models bar serves as a reference, possibly for centralized
or non-federate methods. Figure 2 suggests trade-offs between scalability, security, and speed in federated learning systems.
For precise conclusions, the actual numerical values of the bars would be required to rank performance definitively. Table Il
highlights the importance of model selection for resource-constrained large-scale data analytics. BDAFL-DNN has less
execution time compared to existing methods.

TABLE II. COMPARATIVE METRICS OF MODELS IN TABULAR FORM
Computing Node Data Ex. Time (ms) Energy (J)
BDAFL-DNN 5000 50000 10%
FLBS-DA 5000 82000 39%
FL-S-DA 5000 81000 51%

Table 11 shows the comparative analysis metrics of the models with different constraints. We compared the three methods
mentioned in Table Il on the given data, as shown in Table Ill. The proposed method has less execution time and energy
consumption. At the same time, FLBS-DA has a higher execution time than FL-S-DA because it schedules data on high
machines, which consume much more energy than small machines. However, the proposed methods still have less processing
time and energy due to the heterogeneous devices in the system. Table 111 presents a small slice of the multisensor dataset
used in our study. Each row is a time-stamped reading linked to a subject and a specific device type, with the sensor location
recorded as wrist, abdomen, forehead, or pocket. The table combines continuous signals, such as temperature in degrees
Celsius and heart rate in beats per minute, with contextual fields, including time zone, location, mobility context, and activity,
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such as sitting, walking, or running. It also includes a movement flag and an abdomen status label that marks readings as
normal or abnormal. This blend of numeric measures and categorical annotations gives a clear picture of both the
physiological state and the surrounding context at each moment. The records illustrate typical patterns one would expect in
daily monitoring. Higher heart rate values cluster around periods of walking and running, while resting or sitting corresponds
to lower values. Temperatures near 38 degrees suggest possible fever events, which align with several entries where the
abdomen label is abnormal. Mobility entries with a value of one often coincide with a movement flag of yes, indicating that
the motion sensors and activity labels are consistent. Because multiple sensors report within the same minute across different
locations, the table supports sensor fusion and window-based analysis. The explicit units and labels simplify preprocessing,
normalization, and supervised learning for tasks such as anomaly detection and early warning in remote patient monitoring.

TABLE IlI. HEALTHCARE MOBILITY SENSOR DATA (SAMPLE RECORDS)

Suﬁgect Sensor Type S\fglss)er L%)ir;st?orn Timestamp -2)[23 MobilityActivityTemperature ?ﬁt? S/Z\rk])sdoormuer?it Movement]
49 Temperature | 38.10 | Forehead 2%33508‘1681 GMT+5 Gym | Sitting °C Abnormal Yes
76 Mobility 1.00 Wrist 2%?3502%81 GMT+1 Home |Resting Abnormal No
85 Heart Rate 86.01 | Abdomen 2%2851840-81 GMT+1 Home |Walking bpm | Abnormal Yes
94 Temperature | 37.07 | Abdomen 2%25124081 GMT+5 Gym | Sitting °C Abnormal Yes
63 | HeartRate | 88.30 | Abdomen 2%%?2'8%81 GMT-+3 Hospital Walking bpm | Abnormal |  Yes
53 |AbdomenSensor 1.82 Wrist 2%2852240-81 GMT+5 Gym [Running Normal Yes
53 |AbdomenSensor 2.62 Wrist 2%2853(())40-81 GMT+0 Work | Sitting Normal No
87 | Temperature | 37.95 | Pocket 2%2:5?:2%81 GMT+2 Hospital Resting] ~ °C Abnormal | No
59 Mobility 1.00 |Abdomen 2%33548‘;81 GMT+3 Hospital| Sitting Abnormal Yes
43 Heart Rate 94.56 | Forehead 2%2854240-81 GMT+1 Gym | Sitting bpm | Abnormal No
13 Heart Rate 75.34 | Forehead 2%2558%81 GMT+1 Home [Running bpm | Abnormal Yes
96 |AbdomenSensorl 243 | Wrist zgg?égfggl GMT+1 Work | Sitting Normal No
48 Temperature | 36.54 | Forehead 2%3508‘;81 GMT+4 Home |Resting °C Abnormal Yes
81 Mobility 1.00 Pocket 2%35024681 GMT+5 Work |Resting Abnormal No
86 |AbdomenSensor 2.32 | Abdomen 2%3518%81 GMT+2 Home Walking Normal No
87 Heart Rate 94.30 | Pocket 2%3512‘581 GMT+2 Work |Walking bpm | Abnormal No
35 Heart Rate 68.99 Wrist 2%35284681 GMT+1 Work | Sitting bpm | Abnormal Yes
91 Temperature | 36.53 | Forehead 2%%522‘;81 GMT+5 Work [Running °C Abnormal Yes

2025-04-01
7 Tempe_re}ture 3841 Wrist 09:30:00 [GMT+2 Work Runn!ng oC Abnormal Yes
13 Mobility 0.00 Pocket 2%3532%—81 GMT+3 Home [Running Abnormal No
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Fig. 3. Execution Time: Location+Offloading+Edge-Cloud to Run 80,000 Subjects and Evaluate Performances with Different Methods.

Figure 3 compares energy use (in joules) for three approaches applied to a large sensor dataset of about 80,000 subjects. The
streams include heart rate, temperature, abdominal movement, so the pipeline must handle continuous input with secure,
low-latency processing. Energy matters here because longer battery life on wearables and edge servers directly affects how
long remote monitoring can run without interruption. The BDAFL DNN method (blockchain-driven aggregated federated
learning with deep neural networks) exhibits the lowest energy consumption, at approximately 45,000 J. This drop is
consistent with its design: local updates are validated efficiently, and only compact model deltas are transmitted to the cloud,
which eliminates redundant communication and reduces the need for heavy cryptographic work at every step. By contrast,
FLBS DA is close to 80,000 J, reflecting the cost of frequent blockchain checks and consensus across nodes; it offers strong
auditability but incurs additional computation and messaging costs. FL S DA sits near 79,000 J, suggesting that its secure
aggregation path remains similarly expensive even without the same ledger features. Overall, the figure highlights a clear
trade-off: FLBS DA and FL S DA provide strong trust guarantees, but at almost double the energy of BDAFL DNN. The
results point to the value of lighter consensus, reduced cryptographic overhead, and lean aggregation protocols if we want
secure, real time healthcare analytics that remain practical on energy-constrained devices.

Energy Consumption in J of
80,000 subjects with sensors
data analytics
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60000 -
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20000

T T
BDAFL-DNN FLBS-DA FL-5-DA
Models

Fig. 4. Energy Consumption (J): Location+Offloading+Edge-Cloud to Run 80,000 Subjects and Evaluate Performances with Different Methods.

Figure 4 compares the energy consumption (in Joules) of four models: BDAFL-DNN, FLBS-DA, FL-S-DA, and an
unspecified baseline (labeled "Models"). The results demonstrate that BDAFL-DNN achieves the lowest energy
consumption among all methods. BDAFL-DNN exhibits superior energy efficiency compared to FLBS-DA and FL-S-DA,
likely due to the optimization of computational or communication protocols. In contrast, FLBS-DA and FL-S-DA consume
more energy, possibly because of inefficient data aggregation, synchronization, or training processes. The enhanced
performance of BDAFL-DNN can be attributed to its integration of Big Data Analytics (BDA), Federated Learning (FL),
and Deep Neural Networks (DNN), which reduces data transmission overhead and improves localized processing.
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Fig. 5. Deadline Ratio: Location+Offloading+Edge-Cloud to Run 80,000 Subjects and Evaluate Performances with Different Methods.

Figure 5 compares the deadline miss rates of distributed and federated learning methods. BDAFL-DNN has a lower deadline
miss rate (0.02) than FLBS-DA (0.07) and FL-S-DA (0.09), indicating it struggles more with timely task completion. The
Local, Edge, and Cloud baselines show mixed results (0.00-0.06). BDAFL-DNN shows that all tasks are offloaded until
and unless they meet the subject request requirements as compared to existing methods. Figure 5
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Fig. 6. Resource Failure: Location+Offloading+Edge-Cloud to Run 80,000 Subjects and Evaluate Performances with Different Methods.

Figure 6 demonstrates that BDAFL-DNN achieves the lowest resource failure rate (near 0.02) across local devices, edge nodes,
and cloud infrastructure when processing data from 80,000 subjects, outperforming FLBS-DA and FL-S-DA. This indicates:
Higher Efficiency: BDAFL-DNN consumes fewer computational resources (CPU, memory, bandwidth) at all tiers, reducing
bottlenecks. Better Scalability: Its design ensures stable performance for large-scale federated learning (FL) tasks, unlike
competing models with higher failure rates (0.01-0.05). Reliability: Lower failure rates translate to minimized downtime
and optimized distributed analytics. BDAFL-DNN is a resource-efficient solution for FL environments handling massive
datasets, while FLBS-DA and FL-S-DA exhibit higher overheads and inefficiencies.
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Fig. 7. Blockchain Time (s): Location+Offloading+Edge-Cloud to Run 80,000 Subjects and Evaluate Performances with Different Methods.

Figure 7 evaluates blockchain validation times for three methods: BDAFL-DNN, FLBS-DA Models, and FL-S-DA across
Local, Edge, and Cloud environments. The large-scale experiment involved 80,000 subjects and 82,000 blocks per blockchain
type. BDAFL-DNN demonstrates the lowest validation time, indicating superior efficiency and minimal latency compared

to FLBS-DA and FL-S-DA, which exhibit progressively higher validation times. This highlights BDAFL-DNN’s scalability
and optimization, making it a robust solution for reducing latency in large-scale blockchain applications. Figure 8 shows the
data security analysis on the different nodes, such as local node, edge, and cloud nodes.
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Fig. 8. Data Security in Federated Learning: Location+Offloading+Edge-Cloud to Run 80,000 Subjects and Evaluate Performances with Different
Methods.

Although the proposed BDAFL-DNN method has higher blockchain validation schemes in federated learning compared to
existing processes, there is an issue of data leakage and security in federated learning, particularly when sharing weights
across aggregated data. BDAFL-DNN has a higher validation rate than existing methods. Figure 8 summarizes security
outcomes across local, edge, and cloud nodes for about 80,000 subjects by reporting the blockchain correctness rate. BDAFL
DNN achieves the highest rate, close to 0.9, indicating that its consensus and validation steps reliably accept only authentic
updates and maintain a consistent ledger. FLBS DA, which relies on a proof of work style path, reaches roughly 0.78; it
preserves integrity but is more prone to propagation delays and temporary forks that lower the share of confirmed, correct
blocks. FL S DA, which focuses on RSA encryption and decryption, records the lowest rate at around 0.62 because
encryption protects confidentiality but does not by itself provide system wide agreement on the state of the chain. In practical
terms, BDAFL DNN offers the most trustworthy audit trail and the strongest protection against tampering, which is essential
when federated learning supports large scale healthcare monitoring.
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This study demonstrates that the proposed Blockchain Data Analytics Federated Learning with Deep Neural Networks
(BDAFL-DNN) framework can effectively address the limitations of traditional centralized healthcare data analytics
systems. By integrating blockchain validation, federated learning aggregation, and edge-cloud collaboration, the framework
ensures privacy preservation, low latency, and efficient scalability when processing large-scale healthcare data streams from
heterogeneous sensors such as heart rate monitors, temperature sensors, and abdominal movement trackers. The inclusion of
blockchain validation at both the local device level and edge nodes establishes a trustworthy environment for data exchange,
ensuring correctness and integrity before offloading and aggregation. Simulation results confirm that the BDAFL-DNN
significantly reduces execution time, energy consumption, resource failures, and deadline-miss ratios compared to existing
baseline methods, thereby enhancing the reliability of real-time healthcare monitoring. The combination of distributed edge
analytics with federated learning also highlights the potential for secure, non-invasive, and continuous patient monitoring
using smart devices, making the system highly relevant for next-generation healthcare applications that demand both
accuracy and security.

Despite its promising results, this study has several limitations that must be acknowledged. First, the evaluation is primarily
based on simulation experiments, which, while useful for controlled analysis, may not fully capture the complexity and
unpredictability of real-world healthcare environments, including unreliable wireless networks, hardware failures, and
heterogeneous device capabilities. Second, the study does not explicitly explore the scalability of blockchain consensus
mechanisms under extremely large-scale deployments; while PBFT-like methods reduce latency, they may still face
bottlenecks when thousands of edge nodes participate simultaneously. Third, although the framework incorporates
blockchain validation for correctness, the computational and storage overhead associated with maintaining the blockchain
ledger across devices was not exhaustively analyzed, which could become a concern for low-power or resource-constrained
wearable devices. Additionally, the work assumes high-quality sensor data and stable network connectivity, but in practice,
sensor failures, missing data, or connectivity issues could impact performance. Finally, while the proposed framework
emphasizes reductions in execution time, energy consumption, and deadline-miss ratios, it does not include an in-depth
security and privacy attack model evaluation (e.qg., resilience against adversarial updates, poisoning attacks, or side-channel
attacks), which remains critical in healthcare analytics.

6. CONCLUSION

In this study, we addressed the challenges of traditional centralized healthcare data analytics by proposing a Blockchain-
Integrated Edge-Cloud-Enabled Healthcare Data Analytics framework based on Distributed Federated Learning and Deep
Neural Networks (BDAFL-DNN). The proposed approach incorporated local processing, deep neural network training,
blockchain validation, and federated learning aggregation to enhance real-time data analytics. By leveraging non-invasive
sensor data from devices such as smartwatches and mobile sensors, we ensure secure and efficient processing at the edge
before offloading to healthcare servers. The simulation results demonstrated that BDAFL-DNN outperformed existing
methods in execution time, energy efficiency, resource utilization, deadline adherence, and blockchain validation accuracy.
In future research, we aim to enhance the security and scalability of the BDAFL-DNN framework by integrating privacy-
preserving technigues such as homomorphic encryption and differential privacy. Additionally, we plan to extend the model
to support multi-modal healthcare data, including medical imaging and genomic data, to enhance its analytical capabilities.
Real-world deployment and validation in healthcare institutions will also be explored to assess the framework’s performance
under practical conditions. Furthermore, integrating reinforcement learning techniques for dynamic resource allocation in
edge-cloud environments could further optimize execution efficiency and cost-effectiveness.
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