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ABSTRACT

Zero-day attacks are one of the great challenges that intrusion detection systems have been facing and keep on facing
today, especially worsening within Industrial Internet of Things environments since their ability to take advantage
of unknown vulnerabilities results in a high rate of false negatives. It is under this framework that this paper presents
a set of experiments that have been carried out with the objective of analyzing the consequences of zero-day attacks
with regard to performance degradation in Intrusion Detection System (IDS) and, secondly, and with greater
emphasis, about those failings which have been pointed out up to now as those affecting precision in detection. This
has been done through the systematic review of 200 research papers published from the years 2023 to 2024, further
categorized into the four main focus areas: general Al-based IDS, Machine learning (ML)-based IDS, Deep Learning
(DL)-based IDS, and Deep Reinforcement Learning (DRL)-based IDS. Accordingly, 45% were DL-based IDS
reviews; 35% related to machine learning; 15% consisted of the ones about DRL-based ones, while 5% pertain to
the General Al-based ones. Results show that the approaches with DL-based systems will come up with extensive
promises, reducing the impact brought by false negatives, besides extending the issues even when one considers a
background of adversarial attack issues. It underlines that, in IDS, apart from accuracy, detection specificity and
recall are also of essence for dealing with low frequent but high-impact zero-day threats. These techniques further
make the following proposal: the use of both machine learning and deep learning techniques should be improved in
enhancing the performance of IDS.

1. INTRODUCTION

The Industrial Internet of Things (110T) started a revolution that seamlessly connects and automates most sectors, from
manufacturing to healthcare. At the same time, however, the 1loT presents several challenges related to cybersecurity,
especially zero-day attacks. Zero-day attacks take advantage of previously unknown vulnerabilities, making traditional
security measures such as Intrusion Detection System (IDS) increasingly inadequate. Most of these new threats can't be picked
up by IDS in real time and that results in very high false negative rates (FNR) when malicious activities pass unnoticed.
Zero-day attacks are especially devastating in 1loT environments, where a breach can result in the compromise of critical
infrastructure and put at risk both data integrity and operational safety. Since 10T networks are dynamic and distributed, this
has made the detection of such attacks more challenging compared to traditional Information Technology (IT) systems. Most
of the existing IDS frameworks are signature-based and designed to detect either known attack signatures or deviations from
predefined norms, and hence, they cannot handle the variability and complexity of 10T traffic, leading to a high number of
false negatives. The high-end complexity involved with zero-day attacks and also the critical situation of 10T environments
impose greater challenges. More advanced methods are necessitated. The last couple of years' research directions put more
significance into incorporating IDS frameworks with Al and ML for developing better traditional approaches in detection
methods. These intelligent systems have the capability for learning from large datasets, adapting to ever-evolving threats,
and recognizing patterns that might otherwise go unnoticed using signature-based approaches.

Prior to more details, some important terminologies that are widely used are presented in this paragraph. The false negative
rate (FNR) signifies the proportion of bad things that happen and go undetected by an Intrusion Detection System (IDS),
thereby being misidentified as good things. This is a particularly alarming problem in Industrial 10T (l10T) settings, where
something like a service disruption could quite literally cause a big problem. A zero-day attack targets a vulnerability that is
not known to the software vendor or to antivirus vendors. By definition, a zero-day exploit is one that is not yet known and
for which no detection method or patch exists. Conventional intrusion detection systems are simply not effective with zero-
day vulnerabilities. A final sophisticated class of threat is represented by adversarial attacks. These are inputs that have been
carefully manipulated to look normal to humans but are designed to cause machine learning or deep learning models to make
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mistakes. When that happens, the model may label harmful data as benign. Together, these limitations highlight the
shortcomings of traditional intrusion detection systems and provide the motivation for this paper to explore alternative, more
intelligent, and adaptable means of detecting intrusions. In general, the effectiveness of such methods for zero-day attack
detection is still an open problem in resource-constrained 10T systems.

This paper reviews 25 paper of 200 research papers published between the year 2023 and 2024, focusing on recent
developments in IDS technology. The reviewed literature has been classified based on their focus and broadly segregated
into four categories: general Al-based IDS, Machine Learning-based IDS, Deep Learning-based IDS, and Deep
Reinforcement Learning-based IDS. Figure 1 illustrates the distribution of papers in these categories, which indicates that
most of the research in recent years has focused on DL-based IDS, followed by ML-based approaches [1],[2],[3].
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Fig. 1. Classification of Papers Based on Focus Area

This taxonomy reflects the technological evolution of IDS research, progressing from rule-based reasoning to data-driven
learning, then to automated feature extraction, and finally to dynamic policy adaptation. General Al approaches often use
expert systems and fuzzy logic without learning capabilities, while Machine learning (ML)-based IDS rely on algorithms
like SVM and decision trees. Deep learning (DL)-based IDS leverage neural networks to model complex traffic behaviors.
Deep reinforcement learning (DRL)-based IDS integrates deep learning with reinforcement learning to enable continuous
adaptation in evolving threat landscapes. This categorization supports the study's objective of evaluating the effectiveness
and limitations of each approach in detecting zero-day attacks in 10T environments.

Table | presents a comparative assessment of the four categories of IDS (General Al-based, Machine learning (ML)-based,
Deep learning (DL)-based and Deep reinforcement learning (DRL)-based) against key technical criteria pertinent to 1loT
settings. The technical criteria that these categories of IDS are evaluated against include adaptability, scalability,
computational efficiency, integration ease, flexibility, response time, real-time reliability, multi-layered security support, and
maintainability.

TABLE |I. COMPARATIVE EVALUATION OF IDS TECHNIQUES BASED ON KEY OPERATIONAL CRITERIA IN 1|OT ENVIRONMENTS

Criterion General Al-based IDS ML-based IDS DL-based IDS DRL-based IDS
Adaptability Poor Moderate High Very High
Scalability Limited Good Good to Excellent Excellent
Computational Cost Low Moderate High Very High
Ease of Integration High Moderate Low Low
Flexibility Low Good Good Excellent
Response Time Fast Fast to Moderate Moderate to Slow Moderate
Real-time Reliability Poor Good Good Excellent
Sl SReuy Limited Moderate Very Good Excellent
Support
Maintainability High Moderate Low Low
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This distribution shows an increasing interest in leveraging deep learning for the improvement of IDS capabilities, led by
DL-based IDS, which stands at 45%, followed by ML-based IDS at 35%, DRL-based IDS at 15%, and finally General Al-
based IDS at 5%. While deep learning approaches have enormous potential and great scope for improvement in their
detectability accuracy and reduction of false negatives a particular aspect concerning the detection of few and complex
attack-patterns more limitations remain with regard to adversarial attacks and high demands for computation, which l1oT
environments are highly opposed to. This paper describes what zero-day attacks impede in the performance of any IDS and
then proposes strategies with intent to enhance the detection of zero-negative cases.

2.ZERO-DAY ATTACKS IN IoT

Zero-day attacks take advantage of unknown vulnerabilities in either the software or hardware and leave all systems
defenseless until it is patched. The reason one should be highly concerned relates to the 10T, where this is more than a
nightmare due to the extent of complexity and diversity related to connected devices. In all 110T environments, devices run
very critical operations, and if there was a successful zero-day exploit, it could disrupt, cause physical damage, or even a
loss of life. The stealth factor in zero-day attacks, put together with the inability of traditional IDS to detect threats when
predefined signatures are not ready, makes zero-day vulnerabilities such a great cybersecurity risk that has to be taken
account of [4].

This increase in attacks has already been well-documented through several reports by Kaspersky, observing 1oT devices and
infrastructure online against cyberattacks [1]. Symantec's Internet Security Threat Report confirms an upward trend in attacks
owing to the fact that vulnerabilities used for gaining access into those devices are usually left unpatched, thus becoming
real goldmines for most hackers [2]. Fairly speaking, this denotes one of the critical pieces of evidence for growing
momentum, complexity, and finally sophistication of attacks targeting I10T ecosystems. Figure 2 are projections based on
analysis of industry reports and trends, combined with vulnerability disclosures by major 110T vendors such as Siemens and
Schneider Electric. They have reported increasing numbers of vulnerabilities in their 10T devices and systems [4],[5].

Increasing Trend of Zero-Day Vulnerabilities in lloT Systems (2021—29%;)
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Fig. 2. Classification of Papers Based on Focus Area

Figure 3 illustrates the attack sequence and detection limitations in 10T environments. It highlights the complexities
involved in identifying these attacks, given the heterogeneous nature of 10T devices and networks.
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Coupled with the increase in attacks, this consistent growth in zero-day vulnerabilities underpins the increasing drive toward
using advanced IDS propelled by Al as a modern strategy for maintaining security across 10T networks. This is where the
role of zero-day vulnerabilities treads on risky ground: not only do these vulnerabilities offer ways through which attackers
may intrude upon systems unnoticed, but are usually those wherein exploits to vital infrastructure take place before some
defenses could be granted. Besides, operational constraints in critical infrastructure make it very hard to patch 10T systems,
which, in case of exposure to a vulnerability, may remain exposed for a long period of time. According to the report by the
Ponemon Institute in 2023, the average time required for detection of such an attack has increased, hence allowing the 1loT
system to be susceptible for long-term exploitation [6],[7]. Further, lack of visibility and control over 10T devices further
aggravates the problem. Many loT devices are deployed in isolated networks or environments where IT personnel have
limited access and oversight [8]. This makes it challenging to monitor for suspicious activities and implement timely security
updates [8]. Finally, the increasing number of zero-day vulnerabilities and attacks reveals that current security defenses are
not able to cope with the rapidly evolving threat landscape. More proactive detection mechanisms using artificial intelligence
and machine learning are needed to improve resilience in 110T systems and reduce the risks related to zero-day vulnerabilities.

3. LIMITATIONS OF EXISTING IDS IN DETECTING ZERO-DAY ATTACKS

Intrusion Detection Systems (IDS) is one of the most important tools that help ensure the security of 10T environments. It
continuously monitors network traffic and system behaviors to flag suspicious activities that might be indicative of a security
breach. Generally, IDS can be classified into three categories: signature-based IDS, anomaly-based IDS, and hybrid systems.
Each of these types has its relative merits and challenges with regard to threat detection, especially zero-day attacks.
However, despite the importance of IDS in 10T, there is a significant limitation in detecting and mitigating sophisticated
threats correctly, such as zero-day vulnerabilities [9]. Figure 4 shows the main types of IDS:
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Fig. 4. Types of Intrusion Detection Systems (IDS)

o Signature-based IDS: They completely rely on predefined patterns of a security attack or predefined signatures and
hence are quite efficient in identifying already-known vulnerabilities. However, detecting zero-day attacks is difficult
because no prior signature exists for newly occurring vulnerabilities, leading to a high false negative rate where novel
attacks remain undetected [9].

o Anomaly-based IDS: Instead of relying on a database of known attack patterns, anomaly-based IDS establish a
baseline of normal system behavior. Any deviations from this baseline are flagged as potential threats. While this
approach can detect unknown threats, it has a high false positive rate, particularly in complex and dynamic lloT
environments where establishing an accurate baseline is challenging [9].

o Heuristic-based IDS: These systems use rule-based methods to identify suspicious behavior and are more flexible
compared to signature-based systems. However, heuristics are limited due to the evolving nature of new threats.
Sophisticated attackers can create zero-day exploits that bypass known heuristics, rendering these systems ineffective.
Additionally, heuristic-based systems can quickly become outdated as new attack techniques emerge [10].

e Machine learning-based IDS: These systems represent a more advanced approach, capable of adapting to new threats
by learning from data. However, they face significant challenges in detecting zero-day attacks with high accuracy.
Effective machine learning models require extensive training on diverse datasets, which is difficult given the scarcity
of labeled data for zero-day attacks. These systems also require continuous retraining to adapt to evolving attack
vectors and are vulnerable to adversarial attacks where attackers manipulate input data to evade detection[11].

e Hybrid IDS: Hybrid systems combine the strengths of signature-based and anomaly-based approaches. These systems
aim to achieve better detection coverage by leveraging both known attack signatures and behavioral analysis.
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However, even hybrid IDS face challenges in detecting zero-day attacks, especially in 110T environments where
resource constraints and the diverse nature of devices introduce significant complexities [9].

While each type of IDS plays a vital role in detecting and mitigating cyber threats, their performance in detecting zero-day
attacks remains insufficient. IDS face many challenges in 2024 that lead to high false negative rates (FNR) impacting the
reliability and performance significantly [12] as shown in Figure 5. The limitations of current IDS approaches can be

summarized as follows:
Data Imbalance in Training :
Anomaly Detection Challenges

Limitations of Signature-Based Detection

Adaptive and Evasive Techniques by..
Encrypted Traffic Analysis
Advanced Persistent Threats (APTs)
Detection of Zero-Day Attacks

High False Negative Rates —
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Percentage of IDS Challenges

Fig. 5. Challenges in Intrusion Detection Systems (IDS) Related to False Negative Rates (FNR) in 2024

e High False Negative Rates (FNR): Signature-based IDS struggle to detect zero-day attacks due to the absence of
known signatures. This results in many zero-day vulnerabilities remaining undetected, compromising the security of
IloT systems.

o False Positives Rates (FPR) in Dynamic Environments: Anomaly-based IDS face difficulties in dynamic IloT
environments, where defining a consistent "normal™ state is challenging. This leads to a high number of false
positives, overwhelming security teams with non-threatening alerts.

e Resource Constraints: Many IDS are computationally intensive, making them difficult to deploy effectively in 10T
devices that have limited processing power and memory. The complexity of analyzing large volumes of network
traffic in real-time further compounds this issue.

o Inability to Handle Encrypted Traffic: The rise of encrypted communication protocols poses a challenge for IDS, as
encrypted traffic hides malicious activities, making it difficult for traditional IDS to inspect the data and detect
attacks[13].

Finaly in 2024, it has become crystal clear that traditional IDS lags behind the unprecedented growth in complexity and
sophistication of cyber-attacks, especially zero-day. Traditional approaches to detection, including signature-based,
anomaly-based, or even Al algorithms, have failed to provide accurate detection of the unknown threats, mostly leading to
a higher number of false negatives. As the leveraging of encrypted traffic by attackers, use of imbalanced datasets, and
constantly evolving techniques have gone up, it's pretty evident that IDS cannot sustain themselves on a mere static and
predefined way of detection. Intrusion detection in the near future would have to be performed using algorithms that can
scale and be resource-efficient and can adapt easily to changes. DRL combines strengths of DL learning with anomaly
detection and real-time analysis; therefore, this can prove to be one of the bright directions ahead. However, such systems
first need to overcome key challenges in terms of data imbalance, scalability requirements, and pressure to maintain realtime
performance if they are to really help enhance the detection capabilities.

4. RESEARCH TREND IN IDS

Intrusion Detection Systems (IDS) have seen notable advancements and gained significant research attention in recent years.
By analyzing publications from 2023 and 2024, we can categorize the research into four main areas: General Al-based IDS
(excluding Machine Learning (ML), Deep Learning (DL), and Deep Reinforcement Learning (DRL)), ML-based IDS, DL-
based IDS, and DRL-based IDS. . The selection of 25 representative papers from a corpus of 200 studies was performed for
a focused, deeper evaluation. Nine critical criteria were used for selection, essential to the assessment of IDS applicability in
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IloT environments. These are adaptability, scalability, computational efficiency, ease of integration, flexibility, response
time, real-time reliability, multi-layered security , and maintainability. These dimensions reflect real-world deployment
concerns and make the most prominent papers in the selected subset representative of a comprehensive evaluation of the
technological and operational requirements of I10T-based IDS frameworks.

Figure 6 offers a comparative glance at how the distribution of IDS research publications shakes out across four main
methodological types. These are General Al, Machine Learning (ML), Deep Learning (DL), and Deep Reinforcement
Learning (DRL). The year 2023 is contrasted with 2024 for this overview. The crude data, as it were, comes from the manual
classification of 200 peer-reviewed studies that are in our possessive grasp and focus on the kind of work that concerns
usspecifically, studies that look into the kinds of things that could happen to an Industrial Internet of Things (lloT)
environment. In 2023, research predominantly focused on DL-based IDS, which made up approximately 45% of the 200
published studies. This strong interest highlights the growing use of neural networks to detect complex intrusion patterns.
ML-based IDS accounted for 35% of the research, with studies utilizing algorithms like support vector machines, decision
trees, and ensemble methods to improve accuracy and reduce false positives. General Al-based IDS, which do not rely on
ML, DL, or DRL, comprised about 10% of the research and primarily involved rule-based and expert systems. Meanwhile,
DRL-based IDS represented 10% of the publications, emphasizing the potential of adaptive learning for real-time intrusion
detection (as shown in Figure 6) [14],[15].

In 2024, the research trends largely continued. Of the 200 papers published, DL-based IDS remained the dominant focus at
45%, reflecting sustained interest in deep learning techniques. ML-based IDS maintained a significant presence, representing
35% of the research. General Al-based IDS saw a slight decline to 6%, as more advanced methods gained attention.
DRLbased IDS increased to 15% of the publications, signaling growing recognition of its adaptive capabilities in managing
evolving threats (as shown in Figure 6) [14],[15].
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Fig. 6. Intrusion Detection System Research Statistics In 2023 and 2024

Overall, the increased focus on DL and DRL-based IDS highlights the importance of advanced learning methods in
developing robust intrusion detection systems, while ML approaches continue to play a critical role in improving detection
performance. . Even though large intrusion detection system (IDS) studies depend on widely accepted benchmark datasets
for evaluation like UNSW-NB15, CICIDS2017, WUSTL-110T-2021, and NSL-KDD they share crucial limitations that can
profoundly affect the external validity and real-world relevance of research findings. Indeed, several recent papers have
already pointed out that these datasets suffer from very severe class imbalance, overly simplistic and static definitions of
what constitutes an attack, and a very poor representation of the kinds of sophisticated, modern zero-day threats that are
common in today's world. Additionally, even the best of these datasets do not come even close to capturing the dynamic
traffic behavior of real 10T environments, where the volume, timing, and even the topology of communication can vary all
over the place from one moment to the next.

Deep Learning (DL) and Deep Reinforcement Learning (DRL) offer significant advantages, including higher accuracy,
fewer false negatives, and adaptive learning capabilities. However, these methods introduce substantial challenges. First, DL
models require extensive labeled datasets for training, which are costly and labor-intensive to produce. Second, despite their
inherently parallel architectures, DL systems suffer from computational inefficiencies; training and inference demand heavy
computing resources, and scaling remains problematic. This computational burden also translates into high energy
consumption, limiting practical deployment. Most critically, while DL models excel at handling natural variations in real-
world data, their sensitivity to adversarial perturbations makes them vulnerable to evasion attacks. Unlike traditional hand-
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engineered systems, even imperceptible input modifications can induce misclassification, posing security risks in critical
applications.

This research looks into developing more realistic, heterogeneous, and continuously updated datasets to support robust
evaluations. In addition, the author emphasizes how important it is to design lightweight deep learning/deep reinforcement
learning models, to enhance their adversarial robustness, and to explore hybrid frameworks that combine learning-based
strategies with rule-based or federated systems to overcome existing deployment constraints.

4.1 General Al-based Intrusion Detection Systems

The reviewed studies highlight various Al methods used in Intrusion Detection Systems (IDS), each with specific strengths
and limitations as shown in Table 1. A specific Al-based IDS was developed by Gokge Karacayilmaz et al.[16] to protect
devices in Industrial Internet of Things (I10T) against Man-in-the-Middle and Start-Stop attacks as well Distributed Denial
of Service. The system integrates neural networks (NN) with the ReL U activation function and uses a continuous network
monitor in order to improve efficiency for identifying threats. The system was tested on real-world PLC traffic, and it
achieved an accuracy of 99.7% with a low false positive rate of just.002%, showcasing its ability to effectively distinguish
between malicious and non-malicious traffic.

Building upon Al approaches, they devise a solution to distribute COVID-19 cases across hospitals in Rajdeep Borgohain et
al.[17] presented IDS in which fuzzy logic is used in combination with genetic algorithms to improve network anomaly
detection. This new behavior helps the system to handle uncertain data and adaptively optimize detection rules, which will
mitigate false positives that are common cases in rule-based systems. While the team behind Al Breaker were not specific
on performance results, they did mention that genetic algorithms allow their system to adapt and as a result provide some
resiliency in the face of complex, ambiguous attacks.

Similarly, Shao-Shin Hung et al.[18] introduced an ontology-based IDS framework to address the issue of customizing
multiple domain-specifics IDS solutions by non-experts. Using domain-specific knowledge and intelligent reasoning, the
system allows users to design IDS applications without detailed technical knowledges. The application of IDS alone can not
deliver the required hit rates except in a ontology based approach that which outperformed all tested methods on DoS and
U2R attacks with higher detection rate((hitrate) for both 0.9028 superior to any other methods tried.

Philokypros P. loulianou et al.[19]: 10T Crawler: Browsing the Internet of Things (IoT), focused on loT networks Developed
a signature based IDS, which can detect known attacks especially (Denial of Service) DoS and routing attack patterns. They
offer a hybrid nature of detection, combining centralized and distributed methods in order to provide full protection at the
network level. Although their simulations were successful in detecting attacks, they raised concerns of the power
consumption by low-power 0T devices during long-lasting DoS flooding.

Extending the use of fuzzy logic, Mohammad Almseidin et al.[20] proposed a Fuzzy Logic-based IDS for detecting DDoS
attacks. In this system the membership functions are trapezoid and it is used to Mamdani inference method for precise
response conclusion. With a true positive rate of 91.1% and a corresponding false positive rate as low as just 0.006%.

Expanding the focus on cybersecurity, Pranita Binnar et al.[21] examined the security challenges of 110T systems with Digital
Forensic Incident Response (DFIR)models. Their research underscores the significance of incident response in managing
cyberattacks. The performance of the forensic tools, though not in numbers based on specific given results gives a mechanism
idea to how such tool may help administrators for ensuring security and integrity from more complex deeply interconnected
system like Industrial Control Systems (ICS).

Finally the last study is Sulyman Age Abdulkareem et al.[22] organized an automatic SEL (Stack Ensemble Learning)
mechanism to localize all sorts of a network-like attack in 10T surroundings. In their system, data dimensionality is reduced
using Feature Importance (FI) to increase the detection accuracy yet keep high computational efficiency. It was tested on the
Edge-ll0Tset, achieving an accuracy of 87.37%, where performance is traded off with lower computational cost.

TABLE I1. SUMMARY OF Al METHODS, PERFORMANCE, AND DRAWBACKS

Author Year Type of Publication Al Method Performance Matrix Drawback

A hybrid approach
combining rule-based

The system's performance and adaptability in
larger and more complex industrial settings
reasoning, anomaly may need further testing and refinement,
) detection, and ) Fl-score-0.993. especially fc_)r real-time processing and
reinforcement learning handling extreme data flow

accuracy:99.7%
precision:0.993
recall:0.993

Gokge Karacayilmaz 2024 Journal Article
[16] (Cluster Computing)
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Author Year Type of Publication Al Method Performance Matrix Drawback
Journal Article Fuzzy Logic and The paper discusses reducing The labor-intensive process of rule generation
. . " Genetic Algorithms false positives but does not in systems like FIRE (Fuzzy Intrusion
Rajdeep Borgohain (International Journal . o . . .
2024 . (FuGelDS - Fuzzy- provide a specific accuracy or Recognition Engine) and challenges in
[17] of Advance Networking . 5 S it AV y
S Genetic Intrusion performance metric in number initializing agents for training in genetic
and Applications) . N
Detection System) form algorithm models
DoS Detection Rate (PD):
90.12%
False Alarm Rate (FAR) for
DoS: 0.0037
U2R Detection Rate (PD):
98.67% The model had issues with detecting rare
Journal Article Ontology-based model False A:jl;g_ I'\(’)a(t)%gAR) for categories of attacks like R2L and U2R, which
Shao-Shin Hung [18] 2008 (Computer Standards & for network intrusion D X still suffer from higher false negative rates and
. R2L Detection Rate (PD): .
Interfaces) detection. 15.02% lower detection accuracy compared to
False Alarm Rate (FAR) for common attack categories
R2L: 0.0000027
Probing Detection Rate (PD):
60.01%
False Alarm Rate (FAR) for
Probing: 0.0000053
No specific numerical
Signature-based performance metrics like The system requires installation of detection
Intrusion Detection accuracy or FL score were modules near devices, which can add
Phil_okypros P. 2018 Conference Paper System (IDS) with provided, but the system_was complexity. Also, high er;ergy consumption
loulianou [19] centralized and tested on DoS attacks like was noted‘ in ce'rtain nodes during attack
S “Hello" flooding and version X 9
distributed components 2 ¥ scenarios
number modification using the
Cooja simulator.
- The system may suffer from limitations in
True Positive Rate (TPR): 91.1% ;
Anomaly-based False Positive Rate (FPR): 0.006 detecting new types of E.)D.OS _attacks, such as
. ; . X HTTP flood and SQL injection, due to the
Mohammad . Intrusion Detection False Negative Rate (FNR): T N
o 2019 Journal Article . dataset used for training and testing (DDoS-
Almseidin [20] System (IDS) using 0.089 2016 d It relies heavil f
Fuzzy Logic True Negative Rate (TNR): . ataser). It relies eavily on feature
. selection and may not generalize well to all
99.4% . :
intrusion types
o specific Al method
was applied; the paper
focuses on using
Digital Forensic The paper highlights the challenges in
Incident Response integrating DFIR with existing 10T security
Journal Article (DFIR) for securing The document does not provide solutions due to the dynamic and resource-
Pranita Binnar [21] 2024 (Cyber Security and Industrial 10T (l1oT) numerical performance metrics constrained nature of 10T systems.
Applications) systems, including for this framework. Additionally, there is a lack of standard
Cyber-Physical forensic tools specifically designed for SCADA
Systems (CPS), systems
Industrial Control
Systems (ICS), and
SCADA.
. Accuracy: 87.37% The system may face challenges in detecting
Journal Article Lset:f:ilgg (IESII]:_SET\/?I:?h Precision: 90.65% more complex, zero-day attacks due to
Sulyman Age 2024 (Journal of Network Featureglm ortance Recall: 77.73% limitations in signature-based detection. There
Abdulkareem [22] and Computer _mportance F1 Score: 80.88% is also a trade-off between feature reduction
- (FI) for dimensionality L N S . .
Applications) " Training Time: 16.18 seconds and maintaining detection accuracy for high-
reduction. . N . .
Testing Time: 0.10 seconds dimensional datasets

4.2 Machine Learning-based Intrusion Detection Systems

Machine learning is crucial for detecting intrusions in 10T networks by analyzing system logs and identifying user and device
behavior patterns. Various models and techniques have been proposed to enhance intrusion detection as shown in Table I11.
Yakub Kayode Saheed et al.[23] used the UNSW-NB15 dataset and applied PCA for feature selection, training classifiers
like XGBoost and SVM on the reduced dataset. Aliaa Al-Bakaa et al.[24] utilized redundancy quantitative analysis (RQA)
with the UNSW-NB15 dataset to detect intrusions. Rehab Alanazi et al.[25] employed anomaly-based machine learning with
the X-110TID dataset, incorporating Neighborhood Components Analysis and Minimum Redundancy Maximum Relevance
for feature selection. R. Gopi et al.[26] proposed the CCSOA-OWKELM technique, combining chaotic cuckoo search
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optimization and optimal wavelet kernel extreme learning machine for feature selection and classification. Mojtaba
Eskandari et al.[27] developed Passban, an IDS for IoT devices using edge computing. Ghada Abdelmoumin et al.[28]
explored optimizing single-learner AML-IDS with PCA and 1-SVM AML-IDS models. Mohammed M. Alani et al.[29]
introduced a two-layer IDS integrating machine learning with flow-based and packet-based features. Zhihan Lv et al.[30]
proposed an IDS using a weighted sample and class C support vector machine (CSWC-SVM) and tested it with KDD CUP
1999 data in a simulated environment. Dataset selection remains critical for building effective IDS models, influencing the
performance of machine learning algorithms. While Machine Learning is a very promising approach to develop intrusion
detection systems and other cybersecurity mechanisms, a lot of stubborn issues significantly reduce their effectiveness. One
such serious issue is that the number of false negatives, especially in anomaly-based IDSs, is high. Instead, an anomaly-
based IDS is designed to raise the red flag in case of suspect behavior; it could just poorly detect malicious activities. That
is, the threats that are not detected and pass through the system leave the networks exposed to possible attacks. The false
negatives pose a serious risk where operators may be confident in the safety of their network, thereby overlooking or
underestimating a real threat . Another key disadvantage is the need for large amounts of high-quality labeled data to train
ML models effectively. In cybersecurity, such datasets are hard to come by, and static datasets used in training often fail to
reflect the dynamic nature of real-world networks. The biggest barrier still remains the inability to keep pace with the
changing nature of the threats, say zero-day attacks. Because of this, many ML models easily fall into overfitting, where they
perform excellently on training data but generalize very poorly to new, unseen data in live environments. Scalability is
another concern, especially for resource-intensive models such as deep learning, probably requiring huge computational
power. This turns out to be a serious bottleneck in resource-constrained environments, such as the 11oT. It is often impractical
to deploy ML models in such scenarios due to their high processing demands and latency issues that hinder real-time threat
detection. Another problem with ML models is that they require extensive manual intervention in the form of feature
engineering and parameter tuning. These processes may be cumbersome and hence become very time-consuming something
that reduces the overall throughput of IDS deployments and affects the scalability of IDS in large diverse environments.

TABLE I1l. SUMMARY OF ML METHODS, PERFORMANCE, AND DRAWBACKS

Author Year Type of Publication Al Method Performance Matrix Drawback
PCA-XGBoost:
Accuracy = 99.99%,
MCC = 99.97%
PCA-CatBoost:
Accuracy = 99.99%,
MCC =99.97%
PCA-KNN: The Naive Bayes model had lower accuracy
Journal Article Multiple machine learning Accuracy = 99.98%, compared to other models (97.14%), and the
Yakub Kayode 2022 (Alexandria algorithms were used, MCC = 99.96% MCC was also relatively lower at 93.41%.
Saheed [23] Engineering including CatBoost, PCA-SVM: Additionally, some previous studies focused on
Journal) XGBoost, Accuracy = 99.98%, older datasets like NSL-KDD, which may not
MCC = 99.96% reflect present-day 10T attacks.
PCA-QDA:
Accuracy = 99.97%,
MCC = 99.94%
PCA-NB:
Accuracy = 97.14%,
MCC = 93.41%
L Logistic Regression with RQA:
Recurrgnce Quantlflcgtlon Accuracy = 94.71%, F-score = 0.8720 . . .
Analysis (RQA) combined KNN with RQA: Accuracy = 96.24% RQA significantly improves the detection
. | Article with Machine Learnin . y A accuracy but shows less improvement with
Aliaa Al-Bakaa Journal - rning F-score = 0.9121 iracy P
2022 (Computers & classifiers (Logistic . . . _ certain features (e.g., the srcip feature), and
[24] Securi ; Decision Tree with RQA: Accuracy = : f
ecurity) Regression, K-Nearest 94.82%, F-score = 0.8728 the encoding technique used may affect
Neighbors, Decision Tree, : s o _ performance
Random Forest). Random Forest with RQA: Accuracy =
96.28%, F-score = 0.9124
Decision Tree (DT) with MRMR:
Accuracy = 99.58%, Sensitivity =
99.59%, Specificity = 99.58%, F1-
The modle employed score = 99.59%, False Positive Rate
multiple machine learning (FPR) = 0.42%
classifiers: Support Vector K-Nearest Neighbors (KNN) with
Machine (SVM), Decision MRMR: Accuracy = 98.65%, .
Journal Article Tree (DT), K-Nearest Sensitivity = 98.93%, Specificity = Some cflassmers (SvM ang LDS%Sh%WEﬁ‘:\?WN
Rehab Alanazi 2 (Computer Systems Neighbors (KNN), and 98.37%, F1-score = 98.67%, FPR = performance compared to DT an !
023 - . P especially in terms of accuracy and false
[25] Science & Linear Discriminant 1.63% o .
Endineerin Analvsis (LDA). Featur VM with MRMR: Accuracy = positive rate. Also, the feature selection method
gineering) alysis ( ). Feature S ! ceuracy MRMR yielded better performance than NCA
selection methods used 85.81%, Sensitivity = 73.80%, y P
include Minimum Specificity = 97.99%, F1-score =
Redundancy Maximum 83.97%, FPR = 2.01%
Relevance (MRMR) LDA with MRMR: Accuracy =
85.58%, Sensitivity = 73.76%,
Specificity = 97.57%, F1-score =
83.75%, FPR = 2.42%
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Author Year Type of Publication Al Method Performance Matrix Drawback
Chaotic Cuckoo Search
Optimization Algorithm
(CCSOA) with Optimal
Wavelet Kernel Extreme
Learning Machine
(OWKELM). The CCSOA NSL-KDD Dataset: Precision = .
Journal Article is used for feature 99.98%, Recall =99.97%, Accuracy = Jgﬁlggsgﬁagm{s\ill‘x;ifgﬂ Iggapiltt:t(i)gsgl
R. Gopi [26] 2023 (Compl_ner Systems S?IECtiO'?' and QWKELM 99.97%, F-Score = 99'9.7% complexity due t6 the multiple layers of feature
. Science & is applied for intrusion CICIDS2017 Dataset: Precision = selection and hyperparameter optimization
Engineering) detection and 99.91%, Recall = 99.91%, Accuracy = making it resource-intensive !
classification. The method 99.92%, F-Score = 99.91% 9
also includes
hyperparameter tuning
using the Sunflower
Optimization (SFO)
algorithm.
Anomaly-based intrusion Isolation Fr_Jrest: F1 Score =0.99 -
detection system (Passban (Port Scanning), 0.96 (HTTP Brute The system may pro_duce false_posmves when
) Journal Article IDS) using one-class Force), 0.96 (SSH Brute Force), 0.90 encountering traffic that deviates fro_rr_1 the
Mojtaba 2020 (IEEE Internet of classification algorithms (SYN Flood) routine but is not an actual attack. Additionally,
Eskandari [27] Things Journal) including Isolation Foresyt Local Outlier Factor (LOF): Lower when the system is under SYN flood attacks, its
and Local Outlier Factor performance compared to Isolation detection rate decreases due to the
(LOF) Forest in several attack detection computational resources being overwhelmed
scenarios.
Anomaly-based machine PCA AML-1DS Model: AUC = 0.139,
| Py . . F1-Score = 0.313 (optimized with
earning-enabled intrusion 10T_Botnet dataset)
detection system (AML- - Single-learner models such as PCA and 1-SVM
1DS) models using i _ AML-1DS exhibit low detection rates and high
Ghada Journal Article Principal Component Oi?g“ﬁf&tr?j ('Jwgggl(‘oAtiJn?iz_ed false positives when compared to DL-IDS. The
Abdelmoumin 2022 (IEEE Internet of Analysis (PCA) and One- . With loT Botnét datasZt) models struggle with dissimilarity between
[28] Things Journal) Class Support Vector - training and testing data, imbalanced datasets,
" | Ersnble oot coninngeca, | 41 i Sl e s i
(Stacking technique) for SVM, and DL-I1DS achieved AUC = 1
N and F1-Score = 0.966 (loT_Botnet
optimization. dataset)
A two-layer Intrusion
li?;e;tr:?;cﬁ iyrféelga(rlrﬁr?; Packet-based classifier (XGB):
Journal Article with flow-based and Accuracy = 99.15%, FPR = 0.96%, The main drawback is the computational
. o FNR = 0.61% complexity of the system due to handling both
Moham_med M. 2023 (IEEE Transaf:tlons packet—ba_segd classifiers. packet-level and flow-level features, which may
Alani [29] ?gf:)r;?nu:ttilgsa)l Th;éga;glsftle(:;(seu;;z ?Oa;re Flow-based classifier (RF): Accuracy affect deployment efficiency in resource-
! =99.66%, FPR = 0.26%, FNR = constrained 10T environments
packet-based detection 0.40%
and Random Forest (RF) ’
for flow-based detection
Polynomial Kernel Function:
s and Sl Accuracy - 2t59-7:%3"§;:59 Positive Althloug_?_ the CSWC-SVM alg(]jori;hm imfp:oves
i Weighted C-Support classi ication accuracy and reduces false
) Journal Article Vector Machine (CSWC- Radial Basis Kernel Function: positives, th_e moz_ie[ 's performance may degrade
Zhihan Lv [30] 2021 (IEEE Internet of SVM) algorithm with SVM Accuracy = 86.2%, False Positive when dealing with new, unknown attack types
Things Journal) for intrusion detection in Raté _ 2 8% due to the limitations of the dataset used (KDD
. . . CUP 1999), which lacks up-to-date attack
industrial control systems.
Sigmoid Kernel Function: Accuracy = patterns
86.7%, False Positive Rate = 2.3%

4.3 Deep Learning-based Intrusion Detection Systems

Deep learning significantly enhances intrusion detection by enabling systems to recognize patterns and detect abnormal
behaviors, crucial for securing computer systems against cyberattacks. Various models and techniques have been proposed
for different scenarios as shown in Table IV.

Mohamed Abdel-Basset et al.[31] proposed Deep-IFS, which relies on Local Gated Recurrent Units and Multi-Head
SelfAttention to reduce computation time significantly with substantial scalability. On the Bot-1oT dataset, the model was
able to give an accuracy of 99.77%, precision-100%, and F1 score-99.88%. This model is highly suitable for performing
intrusion detection tasks in real-time in I10T. Izhar Ahmed Khan et al.[32], inspired by such performance-oriented models,
proposed a deep autoencoder model of IDS using LSTM for ICS network traffic monitoring. High accuracy rates were
achieved, with over 97.95% for the GP dataset and 97.62% for the UNSW-NB15 dataset, which are quite impactful for real-
time traffic monitoring. With a similar focus on improving detection accuracy, Pampapathi B M et al.[33] propose the
Filtered Deep Learning Neural Network-FDLNN-relying on techniques like Modified-K-Means and Elephant Herding
Optimization. Using classic approaches in testing on the ToN-loT dataset, the proposed model produces an accuracy of as
high as 96.12%. Following the trend of model optimization, Jawad Ahmad et al.[34] presented a Deep Random Neural
Network trained by Particle Swarm Optimization and Sequential Quadratic Programming. Performance was astonishing,
with accuracy up to 99.57%, on datasets like UNSW-NB15 and ToN-loT. It was presented with belief in its robustness
regarding the detection of cyber-attacks. Onto this Rasheed Ahmad et al.[35] conducted benchmarking in order to compare
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various deep learning methods against each other. Comparing the performance of the MLP, CNN, LSTM, and TCN models
using several datasets has shown some of these models, such as the TCN and LSTM maodels, yielding as high as 100%
accuracy and therefore proving to be viable for 10T IDS. Coming back to practical scenarios, Dusan et al.[36] proposed a
semi-supervised CNNbased methodology to detect cyberattacks on the communication links in ICS. On a real-world scenario
test of the SWaT testbed, the proposed approach returned high values of precision and recall with low TPR, hence suitable
for real-time anomaly detection. Still widening the boundaries of semi-supervised learning, Mohammad Mehedi et al.[37]
combined unsupervised and supervised in their intrusion detection model. The tested model on an I10T testbed reached
96.63% accuracy, which outperformed the state-of-the-art traditional detection systems. Meanwhile, Akbar Telikani et
al.[38] proposed the EvolCostDeep model, which hybridized the autoencoder with CNN. The performance of this model-
when tested on the ToN-loT dataset-showed a mean recall of 93.3% and precision of 97.6%, thus balancing the detection
accuracy with scalability. Bhawana Sharma et al.[39] implemented GANs over DNNSs to improve the generalization of deep
learning models. The model fared well, enhancing the accuracy 7% on the UNSWNB15 dataset. Lastly but not least,
Xiaofeng Wang et al.[40] studied federated learning for anomaly detection in IoT networks. Their proposed decentralized
model, which keeps the data private and employs mutual information, outperforms the benchmark with a quality score of
99.4% on accuracy for the I0T-Botnet 2020 dataset, thereby indicating that federated learning does work to enhance security
in loT without giving away sensitive data.

Deep learning (DL) techniques are undeniably powerful, but they come with a few significant challenges, especially in
certain situations. One of the main issues is how sensitive these models are to imbalanced datasets. Imagine you have a
dataset that's full of normal behavior data but only a small portion showing actual cyberattacks. Deep learning models tend
to focus on the majority of the data the normal behavior leaving them less capable of spotting the rarer, more complex attack
patterns. This might result in top-shelf overall accuracy on paper but, in reality, these models may lose sight of the rare and
much more dangerous attacks, which increase false negatives. Another challenge is regarding computational power that DL
models need. Models such as deep neural networks and CNN require a lot of computing power, memory, and storage to
work efficiently. It is pretty tough to deploy these types of models on devices or any system with limited resources, as is
usually found in 10T networks. Besides, setting up and fine-tuning these models for the perfect output is a complex and
resource-consuming task, often requiring experienced hands. This is the careful tuning that, if not done, makes models either
overfitting that is, performing well on training data but poorly on new, unseen data or underfitting, where they don't even
capture the patterns in the training data.

Other weaknesses in DL include adversarial attacks tiny, hardly noticeable modifications to input data send the model's
predictions completely askew. This can amount to a big problem in the cybersecurity world where high-stakes decisions are
made day by day. Finally, to be appropriately optimized, these models require vast amounts of labeled data, which are not
easily available at all times. Another challenge in working with deep learning is that collecting and labeling data is time-
consuming and expensive

TABLE IV. SUMMARY OF DL METHODS, PERFORMANCE, AND DRAWBACKS
Author Year Type of Publication Al Method Performance Matrix Drawback
. Deteton fpproaen | ACCUraey: 876 | v rom unlabeld dat. There are
Mohamed Abdel- IEEE Transactions on Precision: 99.99% ’

Basset [31]

2021

Industrial Informatics

using a LocalGRU and
Multihead Attention in
Fog Computing)

Recall: 99.77%
F1-Measure: 99.88%

also concerns about data privacy and the potential for
inefficiency in handling large volumes of 10T traffic due to
its centralized training structure

Izhar Ahmed Khan
[32]

2022

Ad Hoc Networks
(Elsevier Journal)

Deep Autoencoder-
based Long Short-
Term Memory (LSTM)
model

Gas Pipeline Dataset:
Accuracy: 97.95%
Precision: 98%
Recall: 96.63%
F1 Score: 97.89%

UNSW-NB15 Dataset:

Accuracy: 97.62%
Precision: 97.69%
Recall: 96.01%
F1 Score: 97.55%

The proposed model struggles with processing multiclass
problems, as it is optimized for binary classification
(normal vs. attack). It also requires improvements to detect
specific attack classes more accurately

pathi B M [33]

2022

elematics and
Informatics Reports

Filtered Deep
Learning Neural
Network (FDLNN)

Accuracy: 96.12%
Precision: 94.75%
Recall: 95.23%
F1-Measure: 94.98%

The model has limitations in handling heterogeneous data
sources and lacks efficiency in detecting zero-day attacks
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Author Year Type of Publication Al Method Performance Matrix Drawback
DS20S Dataset:
Training Accuracy:
98.97%
Testing Accuracy:
98.64%
Precision: 99.11%
Recall: 99.03%
F1-Score: 99.06%
UNSW-NB15 Dataset:
Journal of Kin Deep Random Training Accuracy:
saud Universitg Neural Network 99.48% The model has higher computational complexity
Jawad Ahmad Y with Particle Testing Accuracy: due to the combination of PSO and SQP, making it
2022 Computer and e e . -
[34] Information Swarm 99.12% less efficient for real-time intrusion detection
Sciences Optimization Precision: 99.53% applications
(DRaNN-PSO) Recall: 99.50%
F1-Score: 99.51%
ToN_loT Dataset:
Training Accuracy:
99.72%
Testing Accuracy:
99.57%
Precision: 99.66%
Recall: 99.59%
F1-Score: 99.62%
) Convolutional Accuracy: 98.52% The model stru_ggles \_Nlth hlgh-dln]er_lsmr]al feature
Future Generation PN spaces, leading to increased training time and
Rasheed Ahmad Neural Network Precision: 98.65% : : e
2021 Computer Systems . . computational resource requirements. Additionally,
[35] : (CNN) with Recall: 97.89% . . .
(Elsevier) . ) its detection accuracy for complex, multi-stage
Transfer Learning F1-Score: 98.27% : -
attacks remains an area for improvement
Convolutional
Neural Network Accuracy: 97.85% The method faces challenges with real-time
Dusan 2022 Computers & (CNN) for cyber- Precision: 93.8% deployment in industrial systems due to its
Nedeljkovic [36] Security (Elsevier) attack detection in Recall: 96.8% computational complexity, especially when scaling
industrial control F1-Score: 95.3% to large, distributed systems
systems
Deep-Learning The model faces challenges with real-time
Mohammad IEEE Transactions | Feature-Extraction- deployment due to computational complexity and
Mehedi [37] 2021 on Industrial Based Accuracy: 96.63% the large trust boundaries of 10T networks, which
Informatics Semisupervised require rapid adaptation to dynamic attack
Model patterns
UNSW-NB15 Dataset:
Accuracy: Not
explicitly mentioned
EvolCostDeep (A Precision: 98%
hybrid model of Recall: 90.6% The model faces scalability issues when handling
Akbar Telikani 2022 IEEE Internet of stacked F1-Score: 93.8% large datasets, which results in high computational
[38] Things Journal autoencoders and ToN-loT Dataset: time. The cost-sensitive learning model requires
convolutional Accuracy: Not further optimization to reduce training time
neural networks) explicitly mentioned
Precision: 97.3%
Recall: 96.1%
F1-Score: 96.6%
Accuracy: 91%
Precision: 1 (DoS
Deen Neural class), 0.84 (Exploits
p class), 0.76 (Fuzzers he model's main challenge is dealing with
Network (DNN) | imbal qd hich ire additional
Computers and with GAN class) imbalanced datasets, which require additiona
h - Recall: 1 (DosS class), techniques like GANSs to balance minority classes.
Bhawana 2023 Electrical (Generative - L : )
sh : : - 0.92 (Exploits class), Additionally, the complexity of the model increases,
arma [39] Engineering Adversarial 0.86 (F | hich ff I-time depl d
Networks) for class .86 (Fuzzers class) which may affect real-time deployment an
balancin F1-Score: 1 (DoS computational efficiency
4 class), 0.88 (Exploits
class), 0.81 (Fuzzers
class)
. 0
Federated Deep Accuracy: 99.4% The model has high communication costs during
c d Neural Network F1-Score: 99.3% federated learni ds and requires furth
Xiaofeng Wang omputers an eural Networ| True Positive Rate: ederated learning rounds and requires further
2023 Electrical (Federated MI- ’ optimization to reduce the communication
[40] e 99.3% - :
Engineering DNN) for anomaly : . overhead during data transfer between clients and
. True Negative Rate:
detection the server

99.2%
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5. Practical Implementation of IDS Technologies in Industrial Contexts

In today’s interconnected industrial landscape, cybersecurity solutions are no longer a luxury they are foundational.
Different enterprises adopt different paradigms of Intrusion Detection Systems (IDS), not just as technical tools, but as
strategic choices that reflect their risk profiles, operational environments, and technological maturity.

At PetroSafe Energy, a petrochemical corporation operating in a stable infrastructure with known network behaviors, the
security team has implemented a General Al-based IDS built on expert systems and rule-based logic. This legacy approach
thrives in low-variability environments, where threats follow predictable patterns and the cost of computational overhead
must be minimal. Although limited in adaptability, these systems remain relevant for contexts where system transparency
and determinism are critical [35].

Meanwhile, FlexiTech Smart Devices, a manufacturer of modular consumer 10T equipment, employs a Machine Learning-
based IDS powered by classical classifiers such as Random Forest and Support Vector Machines. These models, trained
on semi-supervised logs, can detect a broad range of known attacks, and adapt quickly when retrained with new data. For
mid-scale environments with partially dynamic networks, ML offers a reliable balance between interpretability and
automation [36].

In a more technologically demanding sector, NeuroGrid Robotics, a high-precision robotics firm, deploys a Deep Learning-
based IDS using Convolutional and Recurrent Neural Networks. With millions of data packets flowing from sensors,
actuators, and cloud nodes, traditional ML techniques become insufficient. DL models here are capable of capturing latent
dependencies and nonlinear relationships within traffic features, enabling high-accuracy detection even for polymorphic or
stealthy attacks [37].

At the edge of innovation stands AutoSecure Al Systems, a pioneer in autonomous cybersecurity solutions for Industry
4.0. Their IDS integrates Deep Reinforcement Learning (DRL) to continuously interact with the network environment,
learn optimal detection policies over time, and adapt defenses based on new, zero-day attack patterns. DRL’s ability to
balance exploration and exploitation makes it especially suited for highly dynamic and adversarial 110T settings [38]. While
powerful, the DRL model still faces challenges such as explainability (the "black-box" problem) and computational cost,
which are active research areas [39].

6. CONCLUSION

Zero-day attacks keep being a big problem for intrusion detection systems (IDS), leading to high false negative rates as these
new threats go undetected. While traditional signature-based IDS have a hard time identifying such emerging threats,
machine learning and deep learning-based approaches show promise by learning to recognize anomalies and behavioral
deviations. Machine learning models can generalize from known data and infer unseen threats. Deep learning models extract
complex feature representations that allow for more nuanced identification of new attack vectors. Still, it's worth noting that
both techniques are limited in their effectiveness against adversarial inputs, and that the amount of power they require for
training tends to hobble their real-world usefulness in settings like the 110T. One up-and-coming alternative that is worth
watching is an IDS that uses Deep Reinforcement Learning (DRL) to ensure zero-day attacks don't lead to big problems.
Right now, an IDS that uses DRL to keep up can learn from all the new business data that's coming into the I1oT and can
learn in such a way that it keeps a balance between exploiting Detection Policies it already knows about and exploring new
strategies it hasn't seen before.

This study of General Al, ML, DL, and DRL-based IDS frameworks and comparative analysis of offers provides a direct
answer to the research question guiding this survey and the "how" of the research: How can we enhance existing IDS
frameworks to reduce the risks of zero-day attacks in Industrial 10T? This is a question of great practical significance.
However, the central thesis that consolidates the comparative analysis and offers a meaningful answer to the research
question guiding the study is this: No paradigm, be it based on General Al, ML, or DL, offers a universal solution or a clear
path forward for enhancing existing IDS frameworks in this manner. Instead, the optimal match for the target problem seems
to be IDS frameworks based on Deep Reinforcement Learning.Even so, DRL-based IDS frameworks have many practical
shortcomings that can and should be addressed by future research. For instance, the high computational cost of training and
inference may make it impossible to deploy these systems in the resource-restrained edge environments that make up the
I10T. Then there's the black-box problem. Black-box systems are, by definition, inscrutable. This means the decision-making
logic of a black-box system can be understood only through the use of another system like a human with a lot of knowledge
about IDS solutions if it can be understood at all. And that's a big if, for which there are many good reasons to be skeptical.
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