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A B S T R A C T  
Zero-day attacks are one of the great challenges that intrusion detection systems have been facing and keep on facing 
today, especially worsening within Industrial Internet of Things environments since their ability to take advantage 
of unknown vulnerabilities results in a high rate of false negatives. It is under this framework that this paper presents 
a set of experiments that have been carried out with the objective of analyzing the consequences of zero-day attacks 
with regard to performance degradation in Intrusion Detection System (IDS) and, secondly, and with greater 
emphasis, about those failings which have been pointed out up to now as those affecting precision in detection. This 
has been done through the systematic review of 200 research papers published from the years 2023 to 2024, further 
categorized into the four main focus areas: general AI-based IDS, Machine learning (ML)-based IDS, Deep Learning 
(DL)-based IDS, and Deep Reinforcement Learning (DRL)-based IDS. Accordingly, 45% were DL-based IDS 
reviews; 35% related to machine learning; 15% consisted of the ones about DRL-based ones, while 5% pertain to 
the General AI-based ones. Results show that the approaches with DL-based systems will come up with extensive 
promises, reducing the impact brought by false negatives, besides extending the issues even when one considers a 
background of adversarial attack issues. It underlines that, in IDS, apart from accuracy, detection specificity and 
recall are also of essence for dealing with low frequent but high-impact zero-day threats. These techniques further 
make the following proposal: the use of both machine learning and deep learning techniques should be improved in 
enhancing the performance of IDS. 

1. INTRODUCTION 

The Industrial Internet of Things (IIoT) started a revolution that seamlessly connects and automates most sectors, from 
manufacturing to healthcare. At the same time, however, the IIoT presents several challenges related to cybersecurity, 
especially zero-day attacks. Zero-day attacks take advantage of previously unknown vulnerabilities, making traditional 
security measures such as Intrusion Detection System (IDS) increasingly inadequate. Most of these new threats can't be picked 
up by IDS in real time and that results in very high false negative rates (FNR) when malicious activities pass unnoticed. 
Zero-day attacks are especially devastating in IIoT environments, where a breach can result in the compromise of critical 
infrastructure and put at risk both data integrity and operational safety. Since IIoT networks are dynamic and distributed, this 
has made the detection of such attacks more challenging compared to traditional Information Technology (IT) systems. Most 
of the existing IDS frameworks are signature-based and designed to detect either known attack signatures or deviations from 
predefined norms, and hence, they cannot handle the variability and complexity of IIoT traffic, leading to a high number of 
false negatives. The high-end complexity involved with zero-day attacks and also the critical situation of IoT environments 
impose greater challenges. More advanced methods are necessitated. The last couple of years' research directions put more 
significance into incorporating IDS frameworks with AI and ML for developing better traditional approaches in detection 
methods. These intelligent systems have the capability for learning from large datasets, adapting to ever-evolving threats, 
and recognizing patterns that might otherwise go unnoticed using signature-based approaches.  

Prior to more details, some important terminologies that are widely used are presented in this paragraph. The false negative 
rate (FNR) signifies the proportion of bad things that happen and go undetected by an Intrusion Detection System (IDS), 
thereby being misidentified as good things. This is a particularly alarming problem in Industrial IoT (IIoT) settings, where 
something like a service disruption could quite literally cause a big problem. A zero-day attack targets a vulnerability that is 
not known to the software vendor or to antivirus vendors. By definition, a zero-day exploit is one that is not yet known and 
for which no detection method or patch exists. Conventional intrusion detection systems are simply not effective with zero-
day vulnerabilities. A final sophisticated class of threat is represented by adversarial attacks. These are inputs that have been 
carefully manipulated to look normal to humans but are designed to cause machine learning or deep learning models to make 
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mistakes. When that happens, the model may label harmful data as benign. Together, these limitations highlight the 
shortcomings of traditional intrusion detection systems and provide the motivation for this paper to explore alternative, more 
intelligent, and adaptable means of detecting intrusions. In general, the effectiveness of such methods for zero-day attack 
detection is still an open problem in resource-constrained IIoT systems. 

This paper reviews 25 paper of 200 research papers published between the year 2023 and 2024, focusing on recent 
developments in IDS technology. The reviewed literature has been classified based on their focus and broadly segregated 
into four categories: general AI-based IDS, Machine Learning-based IDS, Deep Learning-based IDS, and Deep 
Reinforcement Learning-based IDS. Figure 1 illustrates the distribution of papers in these categories, which indicates that 
most of the research in recent years has focused on DL-based IDS, followed by ML-based approaches [1],[2],[3]. 

 

Fig. 1. Classification of Papers Based on Focus Area 

This taxonomy reflects the technological evolution of IDS research, progressing from rule-based reasoning to data-driven 
learning, then to automated feature extraction, and finally to dynamic policy adaptation. General AI approaches often use 
expert systems and fuzzy logic without learning capabilities, while Machine learning (ML)-based IDS rely on algorithms 
like SVM and decision trees. Deep learning (DL)-based IDS leverage neural networks to model complex traffic behaviors. 
Deep reinforcement learning (DRL)-based IDS integrates deep learning with reinforcement learning to enable continuous 
adaptation in evolving threat landscapes. This categorization supports the study's objective of evaluating the effectiveness 
and limitations of each approach in detecting zero-day attacks in IIoT environments.  

Table I presents a comparative assessment of the four categories of IDS (General AI-based, Machine learning (ML)-based, 
Deep learning (DL)-based and Deep reinforcement learning (DRL)-based) against key technical criteria pertinent to IIoT 
settings. The technical criteria that these categories of IDS are evaluated against include adaptability, scalability, 
computational efficiency, integration ease, flexibility, response time, real-time reliability, multi-layered security support, and 
maintainability. 

TABLE I.  COMPARATIVE EVALUATION OF IDS TECHNIQUES BASED ON KEY OPERATIONAL CRITERIA IN IIOT ENVIRONMENTS 

Criterion General AI-based IDS ML-based IDS DL-based IDS DRL-based IDS 

Adaptability Poor Moderate High Very High 

Scalability Limited Good Good to Excellent Excellent 

Computational Cost Low Moderate High Very High 

Ease of Integration High Moderate Low Low 

Flexibility Low Good Good Excellent 

Response Time Fast Fast to Moderate Moderate to Slow Moderate 

Real-time Reliability Poor Good Good Excellent 

Multi-layer Security 

Support 
Limited Moderate Very Good Excellent 

Maintainability High Moderate Low Low 
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This distribution shows an increasing interest in leveraging deep learning for the improvement of IDS capabilities, led by 
DL-based IDS, which stands at 45%, followed by ML-based IDS at 35%, DRL-based IDS at 15%, and finally General AI-
based IDS at 5%. While deep learning approaches have enormous potential and great scope for improvement in their 
detectability accuracy and reduction of false negatives a particular aspect concerning the detection of few and complex 
attack-patterns more limitations remain with regard to adversarial attacks and high demands for computation, which IIoT 
environments are highly opposed to. This paper describes what zero-day attacks impede in the performance of any IDS and 
then proposes strategies with intent to enhance the detection of zero-negative cases. 

2. ZERO-DAY ATTACKS IN IoT 
Zero-day attacks take advantage of unknown vulnerabilities in either the software or hardware and leave all systems 
defenseless until it is patched. The reason one should be highly concerned relates to the IIoT, where this is more than a 
nightmare due to the extent of complexity and diversity related to connected devices. In all IIoT environments, devices run 
very critical operations, and if there was a successful zero-day exploit, it could disrupt, cause physical damage, or even a 
loss of life. The stealth factor in zero-day attacks, put together with the inability of traditional IDS to detect threats when 
predefined signatures are not ready, makes zero-day vulnerabilities such a great cybersecurity risk that has to be taken 
account of [4]. 

This increase in attacks has already been well-documented through several reports by Kaspersky, observing IoT devices and 
infrastructure online against cyberattacks [1]. Symantec's Internet Security Threat Report confirms an upward trend in attacks 
owing to the fact that vulnerabilities used for gaining access into those devices are usually left unpatched, thus becoming 
real goldmines for most hackers [2]. Fairly speaking, this denotes one of the critical pieces of evidence for growing 
momentum, complexity, and finally sophistication of attacks targeting IIoT ecosystems. Figure 2 are projections based on 
analysis of industry reports and trends, combined with vulnerability disclosures by major IIoT vendors such as Siemens and 
Schneider Electric. They have reported increasing numbers of vulnerabilities in their IIoT devices and systems [4],[5]. 

 

Fig. 2. Classification of Papers Based on Focus Area 

Figure 3 illustrates the attack sequence and detection limitations in IIoT environments. It highlights the complexities 

involved in identifying these attacks, given the heterogeneous nature of IIoT devices and networks. 

 

 

Fig. 3. Sequence of IoT/IIoT Attack and Detection Limitations 
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Coupled with the increase in attacks, this consistent growth in zero-day vulnerabilities underpins the increasing drive toward 
using advanced IDS propelled by AI as a modern strategy for maintaining security across IIoT networks. This is where the 
role of zero-day vulnerabilities treads on risky ground: not only do these vulnerabilities offer ways through which attackers 
may intrude upon systems unnoticed, but are usually those wherein exploits to vital infrastructure take place before some 
defenses could be granted. Besides, operational constraints in critical infrastructure make it very hard to patch IIoT systems, 
which, in case of exposure to a vulnerability, may remain exposed for a long period of time. According to the report by the 
Ponemon Institute in 2023, the average time required for detection of such an attack has increased, hence allowing the IIoT 
system to be susceptible for long-term exploitation [6],[7]. Further, lack of visibility and control over IoT devices further 
aggravates the problem. Many IoT devices are deployed in isolated networks or environments where IT personnel have 
limited access and oversight [8]. This makes it challenging to monitor for suspicious activities and implement timely security 
updates [8]. Finally, the increasing number of zero-day vulnerabilities and attacks reveals that current security defenses are 
not able to cope with the rapidly evolving threat landscape. More proactive detection mechanisms using artificial intelligence 
and machine learning are needed to improve resilience in IIoT systems and reduce the risks related to zero-day vulnerabilities. 

3. LIMITATIONS OF EXISTING IDS IN DETECTING ZERO-DAY ATTACKS 
Intrusion Detection Systems (IDS) is one of the most important tools that help ensure the security of IIoT environments. It 
continuously monitors network traffic and system behaviors to flag suspicious activities that might be indicative of a security 
breach. Generally, IDS can be classified into three categories: signature-based IDS, anomaly-based IDS, and hybrid systems. 
Each of these types has its relative merits and challenges with regard to threat detection, especially zero-day attacks. 
However, despite the importance of IDS in IIoT, there is a significant limitation in detecting and mitigating sophisticated 
threats correctly, such as zero-day vulnerabilities [9]. Figure 4 shows the main types of IDS: 

 
Fig. 4. Types of Intrusion Detection Systems (IDS) 

 Signature-based IDS: They completely rely on predefined patterns of a security attack or predefined signatures and 
hence are quite efficient in identifying already-known vulnerabilities. However, detecting zero-day attacks is difficult 
because no prior signature exists for newly occurring vulnerabilities, leading to a high false negative rate where novel 
attacks remain undetected [9]. 

 Anomaly-based IDS: Instead of relying on a database of known attack patterns, anomaly-based IDS establish a 
baseline of normal system behavior. Any deviations from this baseline are flagged as potential threats. While this 
approach can detect unknown threats, it has a high false positive rate, particularly in complex and dynamic IIoT 
environments where establishing an accurate baseline is challenging [9]. 

 Heuristic-based IDS: These systems use rule-based methods to identify suspicious behavior and are more flexible 
compared to signature-based systems. However, heuristics are limited due to the evolving nature of new threats. 
Sophisticated attackers can create zero-day exploits that bypass known heuristics, rendering these systems ineffective. 
Additionally, heuristic-based systems can quickly become outdated as new attack techniques emerge [10]. 

 Machine learning-based IDS: These systems represent a more advanced approach, capable of adapting to new threats 
by learning from data. However, they face significant challenges in detecting zero-day attacks with high accuracy. 
Effective machine learning models require extensive training on diverse datasets, which is difficult given the scarcity 
of labeled data for zero-day attacks. These systems also require continuous retraining to adapt to evolving attack 
vectors and are vulnerable to adversarial attacks where attackers manipulate input data to evade detection[11]. 

 Hybrid IDS: Hybrid systems combine the strengths of signature-based and anomaly-based approaches. These systems 
aim to achieve better detection coverage by leveraging both known attack signatures and behavioral analysis. 
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However, even hybrid IDS face challenges in detecting zero-day attacks, especially in IIoT environments where 
resource constraints and the diverse nature of devices introduce significant complexities [9]. 

While each type of IDS plays a vital role in detecting and mitigating cyber threats, their performance in detecting zero-day 

attacks remains insufficient. IDS face many challenges in 2024 that lead to high false negative rates (FNR) impacting the 

reliability and performance significantly [12] as shown in Figure 5. The limitations of current IDS approaches can be 

summarized as follows: 

 
Fig. 5. Challenges in Intrusion Detection Systems (IDS) Related to False Negative Rates (FNR) in 2024 

 High False Negative Rates (FNR): Signature-based IDS struggle to detect zero-day attacks due to the absence of 
known signatures. This results in many zero-day vulnerabilities remaining undetected, compromising the security of 
IIoT systems. 

 False Positives Rates (FPR) in Dynamic Environments: Anomaly-based IDS face difficulties in dynamic IIoT 
environments, where defining a consistent "normal" state is challenging. This leads to a high number of false 
positives, overwhelming security teams with non-threatening alerts. 

 Resource Constraints: Many IDS are computationally intensive, making them difficult to deploy effectively in IIoT 
devices that have limited processing power and memory. The complexity of analyzing large volumes of network 
traffic in real-time further compounds this issue. 

 Inability to Handle Encrypted Traffic: The rise of encrypted communication protocols poses a challenge for IDS, as 
encrypted traffic hides malicious activities, making it difficult for traditional IDS to inspect the data and detect 
attacks[13]. 

Finaly in 2024, it has become crystal clear that traditional IDS lags behind the unprecedented growth in complexity and 
sophistication of cyber-attacks, especially zero-day. Traditional approaches to detection, including signature-based, 
anomaly-based, or even AI algorithms, have failed to provide accurate detection of the unknown threats, mostly leading to 
a higher number of false negatives. As the leveraging of encrypted traffic by attackers, use of imbalanced datasets, and 
constantly evolving techniques have gone up, it's pretty evident that IDS cannot sustain themselves on a mere static and 
predefined way of detection. Intrusion detection in the near future would have to be performed using algorithms that can 
scale and be resource-efficient and can adapt easily to changes. DRL combines strengths of DL learning with anomaly 
detection and real-time analysis; therefore, this can prove to be one of the bright directions ahead. However, such systems 
first need to overcome key challenges in terms of data imbalance, scalability requirements, and pressure to maintain realtime 
performance if they are to really help enhance the detection capabilities. 

 

4. RESEARCH TREND IN IDS 
Intrusion Detection Systems (IDS) have seen notable advancements and gained significant research attention in recent years. 
By analyzing publications from 2023 and 2024, we can categorize the research into four main areas: General AI-based IDS 
(excluding Machine Learning (ML), Deep Learning (DL), and Deep Reinforcement Learning (DRL)), ML-based IDS, DL-
based IDS, and DRL-based IDS. . The selection of 25 representative papers from a corpus of 200 studies was performed for 
a focused, deeper evaluation. Nine critical criteria were used for selection, essential to the assessment of IDS applicability in 
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IIoT environments. These are adaptability, scalability,  computational efficiency, ease of integration, flexibility,  response 
time,  real-time reliability, multi-layered security , and  maintainability. These dimensions reflect real-world deployment 
concerns and make the most prominent papers in the selected subset representative of a comprehensive evaluation of the 
technological and operational requirements of IIoT-based IDS frameworks. 

Figure 6 offers a comparative glance at how the distribution of IDS research publications shakes out across four main 
methodological types. These are General AI, Machine Learning (ML), Deep Learning (DL), and Deep Reinforcement 
Learning (DRL). The year 2023 is contrasted with 2024 for this overview. The crude data, as it were, comes from the manual 
classification of 200 peer-reviewed studies that are in our possessive grasp and focus on the kind of work that concerns 
usspecifically, studies that look into the kinds of things that could happen to an Industrial Internet of Things (IIoT) 
environment. In 2023, research predominantly focused on DL-based IDS, which made up approximately 45% of the 200 
published studies. This strong interest highlights the growing use of neural networks to detect complex intrusion patterns. 
ML-based IDS accounted for 35% of the research, with studies utilizing algorithms like support vector machines, decision 
trees, and ensemble methods to improve accuracy and reduce false positives. General AI-based IDS, which do not rely on 
ML, DL, or DRL, comprised about 10% of the research and primarily involved rule-based and expert systems. Meanwhile, 
DRL-based IDS represented 10% of the publications, emphasizing the potential of adaptive learning for real-time intrusion 
detection (as shown in Figure 6) [14],[15]. 

In 2024, the research trends largely continued. Of the 200 papers published, DL-based IDS remained the dominant focus at 
45%, reflecting sustained interest in deep learning techniques. ML-based IDS maintained a significant presence, representing 
35% of the research. General AI-based IDS saw a slight decline to 6%, as more advanced methods gained attention. 
DRLbased IDS increased to 15% of the publications, signaling growing recognition of its adaptive capabilities in managing 
evolving threats (as shown in Figure 6) [14],[15]. 

 
Fig. 6. Intrusion Detection System Research Statistics In 2023 and 2024 

Overall, the increased focus on DL and DRL-based IDS highlights the importance of advanced learning methods in 
developing robust intrusion detection systems, while ML approaches continue to play a critical role in improving detection 
performance. . Even though large intrusion detection system (IDS) studies depend on widely accepted benchmark datasets 
for evaluation like UNSW-NB15, CICIDS2017, WUSTL-IIoT-2021, and NSL-KDD they share crucial limitations that can 
profoundly affect the external validity and real-world relevance of research findings. Indeed, several recent papers have 
already pointed out that these datasets suffer from very severe class imbalance, overly simplistic and static definitions of 
what constitutes an attack, and a very poor representation of the kinds of sophisticated, modern zero-day threats that are 
common in today's world. Additionally, even the best of these datasets do not come even close to capturing the dynamic 
traffic behavior of real IIoT environments, where the volume, timing, and even the topology of communication can vary all 
over the place from one moment to the next. 

Deep Learning (DL) and Deep Reinforcement Learning (DRL) offer significant advantages, including higher accuracy, 
fewer false negatives, and adaptive learning capabilities. However, these methods introduce substantial challenges. First, DL 
models require extensive labeled datasets for training, which are costly and labor-intensive to produce. Second, despite their 
inherently parallel architectures, DL systems suffer from computational inefficiencies; training and inference demand heavy 
computing resources, and scaling remains problematic. This computational burden also translates into high energy 
consumption, limiting practical deployment. Most critically, while DL models excel at handling natural variations in real-
world data, their sensitivity to adversarial perturbations makes them vulnerable to evasion attacks. Unlike traditional hand-
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engineered systems, even imperceptible input modifications can induce misclassification, posing security risks in critical 
applications. 

This research looks into developing more realistic, heterogeneous, and continuously updated datasets to support robust 
evaluations. In addition, the author emphasizes how important it is to design lightweight deep learning/deep reinforcement 
learning models, to enhance their adversarial robustness, and to explore hybrid frameworks that combine learning-based 
strategies with rule-based or federated systems to overcome existing deployment constraints. 

4.1 General AI-based Intrusion Detection Systems 

The reviewed studies highlight various AI methods used in Intrusion Detection Systems (IDS), each with specific strengths 
and limitations as shown in Table II. A specific AI-based IDS was developed by Gökçe Karacayılmaz et al.[16] to protect 
devices in Industrial Internet of Things (IIoT) against Man-in-the-Middle and Start-Stop attacks as well Distributed Denial 
of Service. The system integrates neural networks (NN) with the ReLU activation function and uses a continuous network 
monitor in order to improve efficiency for identifying threats. The system was tested on real-world PLC traffic, and it 
achieved an accuracy of 99.7% with a low false positive rate of just.002%, showcasing its ability to effectively distinguish 
between malicious and non-malicious traffic. 

Building upon AI approaches, they devise a solution to distribute COVID-19 cases across hospitals in Rajdeep Borgohain et 
al.[17] presented IDS in which fuzzy logic is used in combination with genetic algorithms to improve network anomaly 
detection. This new behavior helps the system to handle uncertain data and adaptively optimize detection rules, which will 
mitigate false positives that are common cases in rule-based systems. While the team behind AI Breaker were not specific 
on performance results, they did mention that genetic algorithms allow their system to adapt and as a result provide some 
resiliency in the face of complex, ambiguous attacks. 

Similarly, Shao-Shin Hung et al.[18] introduced an ontology-based IDS framework to address the issue of customizing 
multiple domain-specifics IDS solutions by non-experts. Using domain-specific knowledge and intelligent reasoning, the 
system allows users to design IDS applications without detailed technical knowledges. The application of IDS alone can not 
deliver the required hit rates except in a ontology based approach that which outperformed all tested methods on DoS and 
U2R attacks with higher detection rate((hitrate) for both 0.9028 superior to any other methods tried. 

Philokypros P. Ioulianou et al.[19]: IoTCrawler: Browsing the Internet of Things (IoT), focused on IoT networks Developed 
a signature based IDS, which can detect known attacks especially (Denial of Service) DoS and routing attack patterns. They 
offer a hybrid nature of detection, combining centralized and distributed methods in order to provide full protection at the 
network level. Although their simulations were successful in detecting attacks, they raised concerns of the power 
consumption by low-power IoT devices during long-lasting DoS flooding. 

Extending the use of fuzzy logic, Mohammad Almseidin et al.[20] proposed a Fuzzy Logic-based IDS for detecting DDoS 
attacks. In this system the membership functions are trapezoid and it is used to Mamdani inference method for precise 
response conclusion. With a true positive rate of 91.1% and a corresponding false positive rate as low as just 0.006%. 

Expanding the focus on cybersecurity, Pranita Binnar et al.[21] examined the security challenges of IIoT systems with Digital 
Forensic Incident Response (DFIR)models. Their research underscores the significance of incident response in managing 
cyberattacks. The performance of the forensic tools, though not in numbers based on specific given results gives a mechanism 
idea to how such tool may help administrators for ensuring security and integrity from more complex deeply interconnected 
system like Industrial Control Systems (ICS). 

Finally the last study is Sulyman Age Abdulkareem et al.[22] organized an automatic SEL (Stack Ensemble Learning) 
mechanism to localize all sorts of a network-like attack in IIoT surroundings. In their system, data dimensionality is reduced 
using Feature Importance (FI) to increase the detection accuracy yet keep high computational efficiency. It was tested on the 
Edge-IIoTset, achieving an accuracy of 87.37%, where performance is traded off with lower computational cost. 

TABLE II.  SUMMARY OF AI METHODS, PERFORMANCE, AND DRAWBACKS 

Author Year Type of Publication AI Method Performance Matrix Drawback 

Gökçe Karacayılmaz 

[16] 
2024 

 Journal Article  

(Cluster Computing) 

A hybrid approach 

combining rule-based 

reasoning, anomaly 

detection, and 

reinforcement learning 

accuracy:99.7% 

precision:0.993 

recall:0.993 

F1-score:0.993. 

The system's performance and adaptability in 

larger and more complex industrial settings 

may need further testing and refinement, 

especially for real-time processing and 

handling extreme data flow 
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Author Year Type of Publication AI Method Performance Matrix Drawback 

Rajdeep Borgohain 

[17] 
2024 

Journal Article 

(International Journal 

of Advance Networking 

and Applications) 

Fuzzy Logic and 

Genetic Algorithms 

(FuGeIDS - Fuzzy-

Genetic Intrusion 

Detection System) 

The paper discusses reducing 

false positives but does not 

provide a specific accuracy or 

performance metric in number 

form 

 The labor-intensive process of rule generation 

in systems like FIRE (Fuzzy Intrusion 

Recognition Engine) and challenges in 

initializing agents for training in genetic 

algorithm models 

Shao-Shin Hung [18] 2008 

 Journal Article 

(Computer Standards & 

Interfaces) 

Ontology-based model 

for network intrusion 

detection. 

DoS Detection Rate (PD): 

90.12% 

False Alarm Rate (FAR) for 

DoS: 0.0037 

U2R Detection Rate (PD): 

98.67% 

False Alarm Rate (FAR) for 

U2R: 0.0029 

R2L Detection Rate (PD): 

15.02% 

False Alarm Rate (FAR) for 

R2L: 0.0000027 

Probing Detection Rate (PD): 

60.01% 

False Alarm Rate (FAR) for 

Probing: 0.0000053 

 The model had issues with detecting rare 

categories of attacks like R2L and U2R, which 

still suffer from higher false negative rates and 

lower detection accuracy compared to 

common attack categories 

Philokypros P. 

Ioulianou [19] 
2018 Conference Paper 

Signature-based 

Intrusion Detection 

System (IDS) with 

centralized and 

distributed components 

No specific numerical 

performance metrics like 

accuracy or F1 score were 

provided, but the system was 

tested on DoS attacks like 

"Hello" flooding and version 

number modification using the 

Cooja simulator. 

The system requires installation of detection 

modules near devices, which can add 

complexity. Also, high energy consumption 

was noted in certain nodes during attack 

scenarios 

Mohammad 

Almseidin [20] 
2019 Journal Article 

Anomaly-based 

Intrusion Detection 

System (IDS) using 

Fuzzy Logic 

True Positive Rate (TPR): 91.1% 

False Positive Rate (FPR): 0.006 

False Negative Rate (FNR): 

0.089 

True Negative Rate (TNR): 

99.4% 

The system may suffer from limitations in 

detecting new types of DDoS attacks, such as 

HTTP flood and SQL injection, due to the 

dataset used for training and testing (DDoS-

2016 dataset). It relies heavily on feature 

selection and may not generalize well to all 

intrusion types 

Pranita Binnar [21] 2024 

Journal Article  

(Cyber Security and 

Applications) 

o specific AI method 

was applied; the paper 

focuses on using 

Digital Forensic 

Incident Response 

(DFIR) for securing 

Industrial IoT (IIoT) 

systems, including 

Cyber-Physical 

Systems (CPS), 

Industrial Control 

Systems (ICS), and 

SCADA. 

The document does not provide 

numerical performance metrics 

for this framework. 

 The paper highlights the challenges in 

integrating DFIR with existing IIoT security 

solutions due to the dynamic and resource-

constrained nature of IIoT systems. 

Additionally, there is a lack of standard 

forensic tools specifically designed for SCADA 

systems 

Sulyman Age 

Abdulkareem [22] 
2024 

Journal Article  

(Journal of Network 

and Computer 

Applications) 

Stacking Ensemble 

Learning (SEL) with 

Feature Importance 

(FI) for dimensionality 

reduction. 

Accuracy: 87.37% 

Precision: 90.65% 

Recall: 77.73% 

F1 Score: 80.88% 

Training Time: 16.18 seconds 

Testing Time: 0.10 seconds 

 The system may face challenges in detecting 

more complex, zero-day attacks due to 

limitations in signature-based detection. There 

is also a trade-off between feature reduction 

and maintaining detection accuracy for high-

dimensional datasets 

4.2 Machine Learning-based Intrusion Detection Systems 

Machine learning is crucial for detecting intrusions in IoT networks by analyzing system logs and identifying user and device 
behavior patterns. Various models and techniques have been proposed to enhance intrusion detection as shown in Table III. 
Yakub Kayode Saheed et al.[23] used the UNSW-NB15 dataset and applied PCA for feature selection, training classifiers 
like XGBoost and SVM on the reduced dataset. Aliaa Al-Bakaa et al.[24] utilized redundancy quantitative analysis (RQA) 
with the UNSW-NB15 dataset to detect intrusions. Rehab Alanazi et al.[25] employed anomaly-based machine learning with 
the X-IIoTID dataset, incorporating Neighborhood Components Analysis and Minimum Redundancy Maximum Relevance 
for feature selection. R. Gopi et al.[26] proposed the CCSOA-OWKELM technique, combining chaotic cuckoo search 
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optimization and optimal wavelet kernel extreme learning machine for feature selection and classification. Mojtaba 
Eskandari et al.[27] developed Passban, an IDS for IoT devices using edge computing. Ghada Abdelmoumin et al.[28] 
explored optimizing single-learner AML-IDS with PCA and 1-SVM AML-IDS models. Mohammed M. Alani et al.[29] 
introduced a two-layer IDS integrating machine learning with flow-based and packet-based features. Zhihan Lv et al.[30] 
proposed an IDS using a weighted sample and class C support vector machine (CSWC-SVM) and tested it with KDD CUP 
1999 data in a simulated environment. Dataset selection remains critical for building effective IDS models, influencing the 
performance of machine learning algorithms. While Machine Learning is a very promising approach to develop intrusion 
detection systems and other cybersecurity mechanisms, a lot of stubborn issues significantly reduce their effectiveness. One 
such serious issue is that the number of false negatives, especially in anomaly-based IDSs, is high. Instead, an anomaly-
based IDS is designed to raise the red flag in case of suspect behavior; it could just poorly detect malicious activities. That 
is, the threats that are not detected and pass through the system leave the networks exposed to possible attacks. The false 
negatives pose a serious risk where operators may be confident in the safety of their network, thereby overlooking or 
underestimating a real threat . Another key disadvantage is the need for large amounts of high-quality labeled data to train 
ML models effectively. In cybersecurity, such datasets are hard to come by, and static datasets used in training often fail to 
reflect the dynamic nature of real-world networks. The biggest barrier still remains the inability to keep pace with the 
changing nature of the threats, say zero-day attacks. Because of this, many ML models easily fall into overfitting, where they 
perform excellently on training data but generalize very poorly to new, unseen data in live environments. Scalability is 
another concern, especially for resource-intensive models such as deep learning, probably requiring huge computational 
power. This turns out to be a serious bottleneck in resource-constrained environments, such as the IIoT. It is often impractical 
to deploy ML models in such scenarios due to their high processing demands and latency issues that hinder real-time threat 
detection. Another problem with ML models is that they require extensive manual intervention in the form of feature 
engineering and parameter tuning. These processes may be cumbersome and hence become very time-consuming something 
that reduces the overall throughput of IDS deployments and affects the scalability of IDS in large diverse environments. 

TABLE III.  SUMMARY OF ML METHODS, PERFORMANCE, AND DRAWBACKS 

Author Year Type of Publication AI Method Performance Matrix Drawback 

Yakub Kayode 

Saheed [23] 
2022 

Journal Article 

(Alexandria 

Engineering 

Journal) 

Multiple machine learning 

algorithms were used, 

including CatBoost, 

XGBoost, 

PCA-XGBoost:  

Accuracy = 99.99%,  

MCC = 99.97% 

PCA-CatBoost:  

Accuracy = 99.99%,  

MCC = 99.97% 

PCA-KNN:  

Accuracy = 99.98%,  

MCC = 99.96% 

PCA-SVM:  

Accuracy = 99.98%,  

MCC = 99.96% 

PCA-QDA:  

Accuracy = 99.97%,  

MCC = 99.94% 

PCA-NB:  

Accuracy = 97.14%,  

MCC = 93.41% 

The Naïve Bayes model had lower accuracy 

compared to other models (97.14%), and the 

MCC was also relatively lower at 93.41%. 

Additionally, some previous studies focused on 

older datasets like NSL-KDD, which may not 

reflect present-day IoT attacks. 

Aliaa Al-Bakaa 

[24] 
2022 

Journal Article 

(Computers & 

Security) 

Recurrence Quantification 

Analysis (RQA) combined 

with Machine Learning 

classifiers (Logistic 

Regression, K-Nearest 

Neighbors, Decision Tree, 

Random Forest). 

Logistic Regression with RQA: 

Accuracy = 94.71%, F-score = 0.8720 

KNN with RQA: Accuracy = 96.24%, 

F-score = 0.9121 

Decision Tree with RQA: Accuracy = 

94.82%, F-score = 0.8728 

Random Forest with RQA: Accuracy = 

96.28%, F-score = 0.9124 

RQA significantly improves the detection 

accuracy but shows less improvement with 

certain features (e.g., the srcip feature), and 

the encoding technique used may affect 

performance 

Rehab Alanazi 

[25] 
2023 

Journal Article 

(Computer Systems 

Science & 

Engineering) 

The modle employed 

multiple machine learning 

classifiers: Support Vector 

Machine (SVM), Decision 

Tree (DT), K-Nearest 

Neighbors (KNN), and 

Linear Discriminant 

Analysis (LDA). Feature 

selection methods used 

include Minimum 

Redundancy Maximum 

Relevance (MRMR) 

Decision Tree (DT) with MRMR: 

Accuracy = 99.58%, Sensitivity = 

99.59%, Specificity = 99.58%, F1-

score = 99.59%, False Positive Rate 

(FPR) = 0.42% 

K-Nearest Neighbors (KNN) with 

MRMR: Accuracy = 98.65%, 

Sensitivity = 98.93%, Specificity = 

98.37%, F1-score = 98.67%, FPR = 

1.63% 

SVM with MRMR: Accuracy = 

85.81%, Sensitivity = 73.80%, 

Specificity = 97.99%, F1-score = 

83.97%, FPR = 2.01% 

LDA with MRMR: Accuracy = 

85.58%, Sensitivity = 73.76%, 

Specificity = 97.57%, F1-score = 

83.75%, FPR = 2.42% 

Some classifiers (SVM and LDA) showed lower 

performance compared to DT and KNN, 

especially in terms of accuracy and false 

positive rate. Also, the feature selection method 

MRMR yielded better performance than NCA 

 

 



 

 

1193 Hashim et al., Mesopotamian Journal of Cybersecurity Vol.5, No.3, 1184–1198 

Author Year Type of Publication AI Method Performance Matrix Drawback 

R. Gopi [26] 2023 

Journal Article 

(Computer Systems 

Science & 

Engineering) 

Chaotic Cuckoo Search 

Optimization Algorithm 

(CCSOA) with Optimal 

Wavelet Kernel Extreme 

Learning Machine 

(OWKELM). The CCSOA 

is used for feature 

selection, and OWKELM 

is applied for intrusion 

detection and 

classification. The method 

also includes 

hyperparameter tuning 

using the Sunflower 

Optimization (SFO) 

algorithm. 

NSL-KDD Dataset: Precision = 

99.98%, Recall = 99.97%, Accuracy = 

99.97%, F-Score = 99.97% 

CICIDS2017 Dataset: Precision = 

99.91%, Recall = 99.91%, Accuracy = 

99.92%, F-Score = 99.91% 

The CCSOA-OWKELM technique, although 

highly accurate, involves high computational 

complexity due to the multiple layers of feature 

selection and hyperparameter optimization, 

making it resource-intensive 

Mojtaba 

Eskandari [27] 
2020 

Journal Article 

(IEEE Internet of 

Things Journal) 

Anomaly-based intrusion 

detection system (Passban 

IDS) using one-class 

classification algorithms, 

including Isolation Forest 

and Local Outlier Factor 

(LOF) 

Isolation Forest: F1 Score = 0.99 

(Port Scanning), 0.96 (HTTP Brute 

Force), 0.96 (SSH Brute Force), 0.90 

(SYN Flood) 

Local Outlier Factor (LOF): Lower 

performance compared to Isolation 

Forest in several attack detection 

scenarios. 

The system may produce false positives when 

encountering traffic that deviates from the 

routine but is not an actual attack. Additionally, 

when the system is under SYN flood attacks, its 

detection rate decreases due to the 

computational resources being overwhelmed 

Ghada 

Abdelmoumin 

[28] 

2022 

Journal Article 

(IEEE Internet of 

Things Journal) 

Anomaly-based machine 

learning-enabled intrusion 

detection system (AML-

IDS) models using 

Principal Component 

Analysis (PCA) and One-

Class Support Vector 

Machine (1-SVM) with 

ensemble learning 

(Stacking technique) for 

optimization. 

PCA AML-IDS Model: AUC = 0.139, 

F1-Score = 0.313 (optimized with 

IoT_Botnet dataset) 

 

1-SVM AML-IDS Model: AUC = 

0.472, F1-Score = 0.968 (optimized 

with IoT_Botnet dataset) 

 

Ensemble models combining PCA, 

SVM, and DL-IDS achieved AUC = 1 

and F1-Score = 0.966 (IoT_Botnet 

dataset) 

Single-learner models such as PCA and 1-SVM 

AML-IDS exhibit low detection rates and high 

false positives when compared to DL-IDS. The 

models struggle with dissimilarity between 

training and testing data, imbalanced datasets, 

and the use of single-learner methods, which 

affects their prediction accuracy 

Mohammed M. 

Alani [29] 
2023 

Journal Article 

(IEEE Transactions 

on Industrial 

Informatics) 

A two-layer Intrusion 

Detection System (IDS) 

using machine learning 

with flow-based and 

packet-based classifiers. 

The classifiers used are 

XGBoost (XGB) for 

packet-based detection 

and Random Forest (RF) 

for flow-based detection 

Packet-based classifier (XGB): 

Accuracy = 99.15%, FPR = 0.96%, 

FNR = 0.61% 

 

Flow-based classifier (RF): Accuracy 

= 99.66%, FPR = 0.26%, FNR = 

0.40% 

The main drawback is the computational 

complexity of the system due to handling both 

packet-level and flow-level features, which may 

affect deployment efficiency in resource-

constrained IoT environments 

Zhihan Lv [30] 2021 

Journal Article 

(IEEE Internet of 

Things Journal) 

Class and Sample 

Weighted C-Support 

Vector Machine (CSWC-

SVM) algorithm with SVM 

for intrusion detection in 

industrial control systems. 

Polynomial Kernel Function: 

Accuracy = 85.7%, False Positive 

Rate = 3.8% 

 

Radial Basis Kernel Function: 

Accuracy = 86.2%, False Positive 

Rate = 2.8% 

 

Sigmoid Kernel Function: Accuracy = 

86.7%, False Positive Rate = 2.3% 

Although the CSWC-SVM algorithm improves 

classification accuracy and reduces false 

positives, the model’s performance may degrade 

when dealing with new, unknown attack types 

due to the limitations of the dataset used (KDD 

CUP 1999), which lacks up-to-date attack 

patterns 

 

4.3 Deep Learning-based Intrusion Detection Systems 

Deep learning significantly enhances intrusion detection by enabling systems to recognize patterns and detect abnormal 
behaviors, crucial for securing computer systems against cyberattacks. Various models and techniques have been proposed 
for different scenarios as shown in Table IV. 

Mohamed Abdel-Basset et al.[31] proposed Deep-IFS, which relies on Local Gated Recurrent Units and Multi-Head 
SelfAttention to reduce computation time significantly with substantial scalability. On the Bot-IoT dataset, the model was 
able to give an accuracy of 99.77%, precision-100%, and F1 score-99.88%. This model is highly suitable for performing 
intrusion detection tasks in real-time in IIoT. Izhar Ahmed Khan et al.[32], inspired by such performance-oriented models, 
proposed a deep autoencoder model of IDS using LSTM for ICS network traffic monitoring. High accuracy rates were 
achieved, with over 97.95% for the GP dataset and 97.62% for the UNSW-NB15 dataset, which are quite impactful for real-
time traffic monitoring. With a similar focus on improving detection accuracy, Pampapathi B M et al.[33] propose the 
Filtered Deep Learning Neural Network-FDLNN-relying on techniques like Modified-K-Means and Elephant Herding 
Optimization. Using classic approaches in testing on the ToN-IoT dataset, the proposed model produces an accuracy of as 
high as 96.12%. Following the trend of model optimization, Jawad Ahmad et al.[34] presented a Deep Random Neural 
Network trained by Particle Swarm Optimization and Sequential Quadratic Programming. Performance was astonishing, 
with accuracy up to 99.57%, on datasets like UNSW-NB15 and ToN-IoT. It was presented with belief in its robustness 
regarding the detection of cyber-attacks. Onto this Rasheed Ahmad et al.[35] conducted benchmarking in order to compare 



 

 

1194 Hashim et al., Mesopotamian Journal of Cybersecurity Vol.5, No.3, 1184–1198 

various deep learning methods against each other. Comparing the performance of the MLP, CNN, LSTM, and TCN models 
using several datasets has shown some of these models, such as the TCN and LSTM models, yielding as high as 100% 
accuracy and therefore proving to be viable for IoT IDS. Coming back to practical scenarios, Dusan et al.[36] proposed a 
semi-supervised CNNbased methodology to detect cyberattacks on the communication links in ICS. On a real-world scenario 
test of the SWaT testbed, the proposed approach returned high values of precision and recall with low TPR, hence suitable 
for real-time anomaly detection. Still widening the boundaries of semi-supervised learning, Mohammad Mehedi et al.[37] 
combined unsupervised and supervised in their intrusion detection model. The tested model on an IIoT testbed reached 
96.63% accuracy, which outperformed the state-of-the-art traditional detection systems. Meanwhile, Akbar Telikani et 
al.[38] proposed the EvolCostDeep model, which hybridized the autoencoder with CNN. The performance of this model-
when tested on the ToN-IoT dataset-showed a mean recall of 93.3% and precision of 97.6%, thus balancing the detection 
accuracy with scalability. Bhawana Sharma et al.[39] implemented GANs over DNNs to improve the generalization of deep 
learning models. The model fared well, enhancing the accuracy 7% on the UNSWNB15 dataset. Lastly but not least, 
Xiaofeng Wang et al.[40] studied federated learning for anomaly detection in IoT networks. Their proposed decentralized 
model, which keeps the data private and employs mutual information, outperforms the benchmark with a quality score of 
99.4% on accuracy for the IOT-Botnet 2020 dataset, thereby indicating that federated learning does work to enhance security 
in IoT without giving away sensitive data. 

Deep learning (DL) techniques are undeniably powerful, but they come with a few significant challenges, especially in 
certain situations. One of the main issues is how sensitive these models are to imbalanced datasets. Imagine you have a 
dataset that's full of normal behavior data but only a small portion showing actual cyberattacks. Deep learning models tend 
to focus on the majority of the data the normal behavior leaving them less capable of spotting the rarer, more complex attack 
patterns. This might result in top-shelf overall accuracy on paper but, in reality, these models may lose sight of the rare and 
much more dangerous attacks, which increase false negatives. Another challenge is regarding computational power that DL 
models need. Models such as deep neural networks and CNN require a lot of computing power, memory, and storage to 
work efficiently. It is pretty tough to deploy these types of models on devices or any system with limited resources, as is 
usually found in IoT networks. Besides, setting up and fine-tuning these models for the perfect output is a complex and 
resource-consuming task, often requiring experienced hands. This is the careful tuning that, if not done, makes models either 
overfitting that is, performing well on training data but poorly on new, unseen data or underfitting, where they don't even 
capture the patterns in the training data. 

Other weaknesses in DL include adversarial attacks tiny, hardly noticeable modifications to input data send the model's 
predictions completely askew. This can amount to a big problem in the cybersecurity world where high-stakes decisions are 
made day by day. Finally, to be appropriately optimized, these models require vast amounts of labeled data, which are not 
easily available at all times. Another challenge in working with deep learning is that collecting and labeling data is time-
consuming and expensive 

TABLE IV.  SUMMARY OF DL METHODS, PERFORMANCE, AND DRAWBACKS 

Author Year Type of Publication AI Method Performance Matrix Drawback 

 Mohamed Abdel-

Basset [31] 
2021 

IEEE Transactions on 

Industrial Informatics 

Deep-IFS (Intrusion 

Detection Approach 

using a LocalGRU and 

Multihead Attention in 

Fog Computing) 

Accuracy: 99.77% 

Precision: 99.99% 

Recall: 99.77% 

F1-Measure: 99.88% 

The Deep-IFS model is trained in a supervised manner, 

limiting its ability to learn from unlabeled data. There are 

also concerns about data privacy and the potential for 

inefficiency in handling large volumes of IIoT traffic due to 

its centralized training structure 

Izhar Ahmed Khan 

[32] 
2022 

Ad Hoc Networks 

(Elsevier Journal) 

Deep Autoencoder-

based Long Short-

Term Memory (LSTM) 

model 

Gas Pipeline Dataset: 

Accuracy: 97.95% 

Precision: 98% 

Recall: 96.63% 

F1 Score: 97.89% 

 

UNSW-NB15 Dataset: 

Accuracy: 97.62% 

Precision: 97.69% 

Recall: 96.01% 

F1 Score: 97.55% 

The proposed model struggles with processing multiclass 

problems, as it is optimized for binary classification 

(normal vs. attack). It also requires improvements to detect 

specific attack classes more accurately 

pathi B M [33] 2022 
elematics and 

Informatics Reports 

Filtered Deep 

Learning Neural 

Network (FDLNN) 

Accuracy: 96.12% 

Precision: 94.75% 

Recall: 95.23% 

F1-Measure: 94.98% 

The model has limitations in handling heterogeneous data 

sources and lacks efficiency in detecting zero-day attacks 
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Author Year Type of Publication AI Method Performance Matrix Drawback 

Jawad Ahmad 

[34] 
2022 

Journal of King 

Saud University 

Computer and 

Information 

Sciences 

Deep Random 

Neural Network 

with Particle 

Swarm 

Optimization 

(DRaNN-PSO) 

DS2OS Dataset: 

Training Accuracy: 
98.97% 

Testing Accuracy: 

98.64% 

Precision: 99.11% 

Recall: 99.03% 

F1-Score: 99.06% 

UNSW-NB15 Dataset: 
Training Accuracy: 

99.48% 

Testing Accuracy: 

99.12% 

Precision: 99.53% 

Recall: 99.50% 

F1-Score: 99.51% 

ToN_IoT Dataset: 
Training Accuracy: 

99.72% 

Testing Accuracy: 

99.57% 

Precision: 99.66% 

Recall: 99.59% 

F1-Score: 99.62% 

The model has higher computational complexity 

due to the combination of PSO and SQP, making it 

less efficient for real-time intrusion detection 

applications 

Rasheed Ahmad  

[35] 
2021 

Future Generation 

Computer Systems 

(Elsevier) 

Convolutional 

Neural Network 

(CNN) with 

Transfer Learning 

Accuracy: 98.52% 

Precision: 98.65% 

Recall: 97.89% 

F1-Score: 98.27% 

The model struggles with high-dimensional feature 

spaces, leading to increased training time and 

computational resource requirements. Additionally, 

its detection accuracy for complex, multi-stage 

attacks remains an area for improvement 

Dusan 

Nedeljkovic [36] 
2022 

Computers & 

Security (Elsevier) 

Convolutional 

Neural Network 

(CNN) for cyber-

attack detection in 
industrial control 

systems 

Accuracy: 97.85% 

Precision: 93.8% 

Recall: 96.8% 
F1-Score: 95.3% 

The method faces challenges with real-time 

deployment in industrial systems due to its 

computational complexity, especially when scaling 
to large, distributed systems 

Mohammad 
Mehedi [37] 

2021 
IEEE Transactions 

on Industrial 

Informatics 

Deep-Learning 

Feature-Extraction-
Based 

Semisupervised 

Model 

Accuracy: 96.63% 

The model faces challenges with real-time 

deployment due to computational complexity and 
the large trust boundaries of IIoT networks, which 

require rapid adaptation to dynamic attack 

patterns 

Akbar Telikani 

[38] 
2022 

IEEE Internet of 

Things Journal 

EvolCostDeep (A 

hybrid model of 

stacked 

autoencoders and 

convolutional 

neural networks) 

UNSW-NB15 Dataset: 
Accuracy: Not 

explicitly mentioned 

Precision: 98% 

Recall: 90.6% 

F1-Score: 93.8% 

ToN-IoT Dataset: 

Accuracy: Not 

explicitly mentioned 
Precision: 97.3% 

Recall: 96.1% 

F1-Score: 96.6% 

The model faces scalability issues when handling 

large datasets, which results in high computational 

time. The cost-sensitive learning model requires 

further optimization to reduce training time 

 

Bhawana 

Sharma [39] 

2023 

Computers and 

Electrical 

Engineering 

Deep Neural 

Network (DNN) 
with GAN 

(Generative 

Adversarial 

Networks) for class 

balancing 

Accuracy: 91% 

Precision: 1 (DoS 

class), 0.84 (Exploits 

class), 0.76 (Fuzzers 

class) 
Recall: 1 (DoS class), 

0.92 (Exploits class), 

0.86 (Fuzzers class) 

F1-Score: 1 (DoS 

class), 0.88 (Exploits 

class), 0.81 (Fuzzers 

class) 

he model's main challenge is dealing with 

imbalanced datasets, which require additional 
techniques like GANs to balance minority classes. 

Additionally, the complexity of the model increases, 

which may affect real-time deployment and 

computational efficiency 

Xiaofeng Wang 
[40] 

2023 
Computers and 

Electrical 

Engineering 

Federated Deep 

Neural Network 
(Federated MI-

DNN) for anomaly 

detection 

Accuracy: 99.4% 

F1-Score: 99.3% 

True Positive Rate: 
99.3% 

True Negative Rate: 

99.2% 

The model has high communication costs during 

federated learning rounds and requires further 
optimization to reduce the communication 

overhead during data transfer between clients and 

the server 
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5. Practical Implementation of IDS Technologies in Industrial Contexts 
In today’s interconnected industrial landscape, cybersecurity solutions are no longer a luxury they are foundational. 

Different enterprises adopt different paradigms of Intrusion Detection Systems (IDS), not just as technical tools, but as 

strategic choices that reflect their risk profiles, operational environments, and technological maturity. 

At PetroSafe Energy, a petrochemical corporation operating in a stable infrastructure with known network behaviors, the 

security team has implemented a General AI-based IDS built on expert systems and rule-based logic. This legacy approach 

thrives in low-variability environments, where threats follow predictable patterns and the cost of computational overhead 

must be minimal. Although limited in adaptability, these systems remain relevant for contexts where system transparency 

and determinism are critical [35]. 

Meanwhile, FlexiTech Smart Devices, a manufacturer of modular consumer IoT equipment, employs a Machine Learning-

based IDS powered by classical classifiers such as Random Forest and Support Vector Machines. These models, trained 

on semi-supervised logs, can detect a broad range of known attacks, and adapt quickly when retrained with new data. For 

mid-scale environments with partially dynamic networks, ML offers a reliable balance between interpretability and 

automation [36]. 

In a more technologically demanding sector, NeuroGrid Robotics, a high-precision robotics firm, deploys a Deep Learning-

based IDS using Convolutional and Recurrent Neural Networks. With millions of data packets flowing from sensors, 

actuators, and cloud nodes, traditional ML techniques become insufficient. DL models here are capable of capturing latent 

dependencies and nonlinear relationships within traffic features, enabling high-accuracy detection even for polymorphic or 

stealthy attacks [37]. 

At the edge of innovation stands AutoSecure AI Systems, a pioneer in autonomous cybersecurity solutions for Industry 

4.0. Their IDS integrates Deep Reinforcement Learning (DRL) to continuously interact with the network environment, 

learn optimal detection policies over time, and adapt defenses based on new, zero-day attack patterns. DRL’s ability to 

balance exploration and exploitation makes it especially suited for highly dynamic and adversarial IIoT settings [38]. While 

powerful, the DRL model still faces challenges such as explainability (the "black-box" problem) and computational cost, 

which are active research areas [39].  

 

6. CONCLUSION 
Zero-day attacks keep being a big problem for intrusion detection systems (IDS), leading to high false negative rates as these 
new threats go undetected. While traditional signature-based IDS have a hard time identifying such emerging threats, 
machine learning and deep learning-based approaches show promise by learning to recognize anomalies and behavioral 
deviations. Machine learning models can generalize from known data and infer unseen threats. Deep learning models extract 
complex feature representations that allow for more nuanced identification of new attack vectors. Still, it's worth noting that 
both techniques are limited in their effectiveness against adversarial inputs, and that the amount of power they require for 
training tends to hobble their real-world usefulness in settings like the IIoT. One up-and-coming alternative that is worth 
watching is an IDS that uses Deep Reinforcement Learning (DRL) to ensure zero-day attacks don't lead to big problems. 
Right now, an IDS that uses DRL to keep up can learn from all the new business data that's coming into the IIoT and can 
learn in such a way that it keeps a balance between exploiting Detection Policies it already knows about and exploring new 
strategies it hasn't seen before. 

This study of  General AI, ML, DL, and DRL-based IDS frameworks and comparative analysis of offers provides a direct 
answer to the research question guiding this survey and the "how" of the research: How can we enhance existing IDS 
frameworks to reduce the risks of zero-day attacks in Industrial IoT? This is a question of great practical significance. 
However, the central thesis that consolidates the comparative analysis and offers a meaningful answer to the research 
question guiding the study is this: No paradigm, be it based on General AI, ML, or DL, offers a universal solution or a clear 
path forward for enhancing existing IDS frameworks in this manner. Instead, the optimal match for the target problem seems 
to be IDS frameworks based on Deep Reinforcement Learning.Even so, DRL-based IDS frameworks have many practical 
shortcomings that can and should be addressed by future research. For instance, the high computational cost of training and 
inference may make it impossible to deploy these systems in the resource-restrained edge environments that make up the 
IIoT. Then there's the black-box problem. Black-box systems are, by definition, inscrutable. This means the decision-making 
logic of a black-box system can be understood only through the use of another system like a human with a lot of knowledge 
about IDS solutions if it can be understood at all. And that's a big if, for which there are many good reasons to be skeptical.  
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