
 

 

 

*Corresponding author. Email: tarza.abdullah@su.edu.krd 

                      

 
 
 

Research Article 

Covid-19 Diagnosis using Deep Learning Approaches: A Systematic Review  
Tarza Hasan Abdullah 1,*, , Berivan Hasan Abdullah 2,   

 

1 Department of Computer Science, College of Science, Salahaddin University-Erbil(SUE), Erbil, Kurdistan of Iraq 

 2 College of Medicine, Hawler Medical University, Erbil, Kurdistan of Iraq. 
 

 

A R T I C L E  I N F O 
 

Article History 

Received 19  May  2024 

Accepted 19  Jul    2024 

Published 01 Aug.  2024 

 
Keywords 

Deep learning  

systematic review  

Covid-19 

PRISMA  

 

 

A B S T R A C T  
 

The utilisation of deep learning techniques has witnessed a surge in popularity within the realm of 
medical image analysis, particularly in the context of identifying COVID-19. Following the occurrence 
of the COVID-19 pandemic, extensive investigations have been conducted to identify the existence of 
Sars-Cov-2 through the utilisation of several deep learning algorithms. The objective of this study is to 
conduct a comprehensive review of deep learning techniques utilised for the detection of COVID-19. 
"Can deep learning methodologies serve as a viable substitute for radiologists in the diagnostic process 
of COVID-19?" is the research inquiry.  In order to compile research articles for the purpose of 
conducting a systematic review, two scientific databases were employed as primary sources. Databases 
such as PubMed and IEEE Xplore have been utilised for this purpose till January 2022. The published 
studies were examined in accordance with the PRISMA guidelines. The study established predetermined 
criteria for exclusion and inclusion, and subsequently identified relevant works based on these criteria. 
The findings indicated that a total of 543 out of the 634 articles that were initially retrieved were excluded 
due to their lack of conformity with the predetermined criteria. Conversely, 87 articles met the inclusion 
criteria and were retained for further analysis. The research articles presented in this compilation are 
categorised into three distinct groups: the types of visual representations utilised, the methods employed 
for applying deep learning techniques, and the programming languages that are most frequently utilised. 
The exclusive reliance on deep learning algorithms is insufficient for substituting the visual diagnostic 
performed by physicians and radiologists in the detection of COVID-19. Due to the lack of substantiation 
by the medical establishment. CT and x-ray imaging modalities are commonly utilised in various fields. 
However, alternative imaging techniques, such as Optical Coherence Tomography (OCT) and Ultrasonic 
imaging, are either overlooked or not given due consideration. The predominant focus of study is on 
retrospective (theoretical) rather than prospective (pragmatic) investigations. Consequently, there exists 
a significant need for researchers to enhance the practicality of their investigations. 

 

 

1. INTRODUCTION 

The SARS-CoV-2 outbreak in late 2019 affected 2.81 million people in a short period of time [1]. The first Covid-19 case 
was reported in China's Wuhan province. The virus's transmission then shifted from epidemic to endemic. Covid-19 is more 
likely to be an endemic illness and will not go extinct anytime soon due to a number of influencing variables [1]. Despite the 
absence of sufficient healthcare facilities, all countries throughout the world are fighting this pandemic. Fever, cough, 
dyspnea, sweating, and myalgia are frequent symptoms with SARS-Cov-2 infection. However, symptoms are not limited to 
covid.  

Real-time reverse transcription-polymerase chain reaction (RT-PCR) is the gold standard and most often used method for 
detecting coronavirus. This approach, however, has significant disadvantages, including a scarcity of test kits, a 24-hour 
turnaround time, and a 30% false-negative rate. This means that it incorrectly identifies positive Covid-19 cases as negative. 
As a result of the insufficient number of healthcare facilities, practitioners in the healthcare sector confront numerous 
challenges, and many places have been closed down to prevent the spread of the virus [2]. Another way for diagnosing 
Covid-19 is to use chest radiography images such as X-rays and CT scans, which show particular characteristics such as 
ground-glass opacities and pleural thickening [3]. This medical imaging must be visually analysed by specialists, which is a 
tiresome and time-consuming task. As a result, researchers have created numerous algorithms to analyse radiologic pictures 
of the chest in order to distinguish between healthy and sick instances. Skin cancer detection [4, 5], tumour classification [5, 
and lung segmentation [6] are among the challenges that must be addressed by artificial intelligence, machine learning, and, 
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more specifically, deep learning. Figure 1 depicts artificial intelligence subsets. Extensive research has been undertaken in 
the Covid-19 era employing different deep learning approaches such as Generative Adversarial Networks (GAN) [7], [8], 
Lon-Term Short Memory (LSTM) [9], [10], and Convolutional Neural Network (CNN)[11], [12], and Recurrent Neural 
Network (RNN)[13]. There have been various narrative literature reviews on deep learning strategies for Covid-19 
identification [14], [15], [16], and [17], but completing a systematic literature study that compiles and compares the existing 
approaches is still limited. As a result, we present a systematic evaluation of deep learning algorithms in Covid-19 
identification using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) procedure [18]. 
Rather of a narrative literature review, the present work contributes by systematically reviewing deep learning-based research 
activities undertaken in the literature of Covid-19 detection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Schematic representation of artificial intelligence sub-branches 

The following is how the rest of the paper is organised: Section 2 provides the PRISMA protocol that was used to carry out 
this review. Section 3 presents the review's final results. Section 4 contains an in-depth explanation of the achieved outcomes. 
The main findings, limits, and future work have all been discussed in the last section. 

 

2. METHODOLOGY  

Deep learning is a subclass of machine learning that has recently acquired prominence in medical image analysis 

applications such as dermatology[19], ophthalmology[20], [21], and gastroenterology[22], [23]. Convolutional Neural 

Network (CNN) is an efficient deep learning technology that may be used in a variety of classification tasks using several 

picture modalities [24]. As the Coronavirus spread, researchers began to use CNN models to detect Covid-19 early. Transfer 

learning of pre-trained networks or developing a bespoke CNN architecture are the most common methods for 

implementing CNNs. The rationale for doing this systematic review is to review the literature on deep learning algorithms 

in Covid-19 detection in accordance with the PRISMA criteria, as seen in figure 2. The current study sought to identify the 

most prevalent deep-learning architectures utilised by academics to address Covid-19. This study was carried out in 

accordance with the PRISMA checklists (2009). In which a comprehensive literature search was conducted. 
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Fig. 2. PRISMA flow diagram 

2.1 Search Criteria  

The primary objective of this systematic review is to address the subsequent research inquiries:  What are the current deep 

learning methodologies employed in the identification of COVID-19? What are the imaging modalities employed for the 

detection of COVID-19? What performance metrics are utilised for the detection of COVID-19?. The literature search was 

performed utilizing two different electronic databases which are IEEEXplore (https://ieeexplore.ieee.org), and PubMed 

(https://pubmed.ncbi.nlm.nih.gov). The search keywords of “artificial intelligence “, ” machine learning”, ” deep learning”, 

“coronavirus”, “covid-19”,” new coronavirus”, ” SARS-CoV-2”, “X-Ray”, ”MRI”, “CT”, “classification“,  “detection”, 

“diagnosis”, and “image”. Table 1 shows the search syntaxes used to retrieve publications from the literature sources and 

the number of retrieved articles from each source. 

In the PubMed database, the provided syntax has been used for searching in titles and abstracts of published materials in 

Medline journals retrieving 230 articles. To broaden our search, we apply search filters to be from the outbreak date of 

coronavirus 2019/12/12 to 2020/12/29. However, the number of returned works of literature in the search engine of IEEE 
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Exclude duplicate 
records 
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Records after removing 
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Records to be title/abstract 
screened 
(n =305) 

Records excluded: 
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Xplore is 404 research items.  Firstly, the article duplications were removed from both digital archives. Secondly, the title 

and abstract of the articles were screened to exclude review articles from both databases. 

TABLE I. LITERATURE SEARCH DETAIL 

Database  Search syntax Search in No. of retrieved articles 

PubMed ((artificial intelligence)OR(machine learning)OR(deep learning))AND((covid-
19)OR(coronavirus)OR(SARS-CoV-2)OR(new 

coronavirus))AND((diagnosis)OR(detection)OR(classification))AND((x-

ray)OR(CT)OR(MRI)OR(image)) 

Title/abstract 230 

IEEE ("Abstract":artificial intelligence OR "Abstract":machine learning OR 

"Abstract":deep learning) AND ("Abstract":covid-19 OR "Abstract":coronavirus OR 

"Abstract":SARS-CoV-2 OR "Abstract":new coronavirus) AND 
("Abstract":diagnosis OR "Abstract":detection OR "Abstract":classification) AND 

("Abstract":x-ray OR "Abstract":CT OR "Abstract":MRI OR "Abstract":image) 

 

abstract 404 

 

2.2 Eligibility criteria (inclusion/exclusion criteria) 

After conducting a comprehensive review of pertinent literature, papers that do not meet the specified eligibility criteria 

are omitted from the analysis. The eligibility criteria established for this systematic review are as follows:  The articles 

must be published in a peer-reviewed academic journal.  The articles are required to utilise an image dataset as the primary 

source for their specified methodology. The articles must possess a scientific or scholarly quality, while excluding 

commercial works. Evaluate the methodology by employing a minimum of one performance statistic.  Articles, 

publications, surveys, review papers, and correspondence written in languages other than English are prohibited. The 

combination of artificial intelligence and mathematical or statistical models is prohibited.  Conventional machine learning 

methodologies are prohibited.  Exclude studies that employ deep learning methodologies for non-significant tasks such as 

image generation and data augmentation. 

2.3 Study selection 

This section describes the process of choosing studies.   During the initial round of searching, a large number of research 

articles were obtained as a wide range of search keywords were used.  Initially, the titles of the papers were checked to 

exclude irrelevant ones, as well as the article reviews. The abstract was then examined to determine the studies that were 

included in the purview of this review, such as statistical and mathematical ways to dealing with Covid-19. The complete 

text was then downloaded and thoroughly analysed to see whether or not they met the eligibility criteria. The PRISMA 

protocol outlines the stages for selecting research, such as identification, screening, eligibility, and included studies. Table 

2 displays the number of papers returned by the PubMed and IEEE Xplore search engines.. 

TABLE II. NUMBER OF PAPERS RETRIEVED FROM JOURNALS AND CONFERENCES 

 

2.4 Data extraction 

Tables 3 and 4 exhibit the extracted data from papers from the PubMed and IEEE databases that match the eligibility 

criteria, respectively. CNN models were found to be the most commonly utilised models in the Covid-19 era. Deep learning 

has arisen to address two major problems: classification and segmentation. To that goal, several imaging modalities such 

as CT scans, MRI, and ultrasound are used. 

1) Title screening 

The title was screened as the initial stage of the search approach. At this stage, irrelevant papers such as comparative 

analysis/study, survey, critical review and analysis, and predictive analytics were eliminated. We also omitted indirectly 

relevant papers such as exploratory investigations, deep learning applications, deep learning technology evaluation, and 

design studies. Other publications, such as data imbalance analysis, performance analysis, and exploratory investigations, 

PubMed Journals IEEE Xplore Journals and Conferences 

230 404 
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were also removed. Mathematically related publications such as Polynomial Based Linear Regression Model to Predict 

COVID-19 Cases and partially unrelated COVID-19 Severity prediction were also eliminated. 

2) Abstract screening 

The abstracts of retrieved publications were thoroughly evaluated in the second round of the screening. The fundamental 

reasons for the exclusion of research at this level include the following criteria. The first rationale for exclusion was 

employing deep learning techniques for goals other than classification and segmentation, such as data augmentation and 

image synthesis using versions of Generative Adversarial Network (GAN). The second issue was the absence of 

performance measures in the abstracts of chosen research. Furthermore, research on detecting severity and progression, as 

well as predicting morbidity and mortality, were ruled out. Traditional machine-learning techniques, as well as articles 

focused on statistics and mathematics, were also rejected. 

3) Full-text screening 

Non-English publications were rejected at this step because the complete text of several of the qualified studies in abstract 

screening was written in a non-English language.  Some of the publications chosen do not provide enough information 

regarding the deep-learning approaches employed in Covid-19 detection. As a result, it was rejected with reviews and case 

studies. 

3. RESULTS  

The current analysis examines 89 chosen papers out of 634 investigations. Figure 2 displays information about the research 

selection. In spite of the fact that Covid-19 and artificial intelligence were referenced in their titles and/or abstracts, the 

literature searches turned up (230+404) entries, of which 545 had to be excluded since they had flagged serious inclusion 

criteria violations.  Some of the proposed approaches' datasets and source code were not directly supplied in their papers; 

therefore, we indicate that they are publicly available rather than providing a reference. As an illustration, it was said that 

the code for Karakanis and Leontidis [25] and Javor et al. [26] will be accessible on the github repository. 

 

TABLE III. PUBMED SELECTED PAPERS 

Ref. Modali

ty 

DL technique Task Performance 

metric 

Code  Language  Validatio

n 

[27] CT BigBiGAN classification AUC=97.2 
Sensitivity=92 

Specificity=92 

https://github.com/MI-12/BigBIGAN-
for-COVID-19 

Python  A 
 

[28] X-ray  VGG 19 classification Precision=95.1
5 

Recall=96.55 

F1-score=95.8 

Not available Not 
specified 

MNA 

[29] CT COVNet classification Sensitivity=84 

Specificity=56 

https://github.com/bkong999/COVNet Python A 

 

[30] CT U-Net segmentation Sensitivity=10

0 
F1-score=97 

Not available Not 

specified 

A 

 

[31] CT EfficientNet 

NasNetLarge 
NasNetMobile 

Inception V3 

ResNet 50 
SeResNet 50 

Xception 

DenseNet 121 
ResNext 50 

 

classification Accuracy=85 

Precision=85.7 
Recall=85.4 

Not available Python NM 

 

[32] X-ray Resnet 32 classification Accuracy=91.

08 

Not available Python NM 

 

[33] X-ray Resnet 32 classification Accuracy=90.

2 

https: 

//github.com/Perceptron21/CovXNet 

Python MNA 

[34] X-ray Inception V3 classification Accuracy=99.

06 

Not available Not 

specified 

MNA 

[35] X-ray VGG 19 classification Sensitivity=98

.33 

Not available Python MNA 
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Specificity=98

.68 
Accuracy=96.

91 

 [36] X-ray DarkNet [37] 

 

Classification Accuracy=87.

02 
Sensitivity=85

.35 

Specificity=92
.18 

Precision=89.9

6 
F1-

score=87.37 

https://github.com/muh 

ammedtalo/COVID-19 

Python MNA 

 

[38] X-ray MobileNet V2  
SqueezeNet  

 

Classification Accuracy=98.
25 

Sensitivity=97

.04 
Specificity=99

.15 

F1-
scorel=97.09 

https://github.com/mtogacar/COVID_1
9 

Python 
MATLAB  

MNA 

[39] CT U-Net 

ResNet 50 

Segmentation 

Classification 

Accuracy=96.

74 

Code not available/An online CT-based 

diagnostic platform for COVID-19 

derived from our proposed framework 
is now available 

Not 

specified 

MNA 

[40] X-ray SqueezeNet Classification Accuracy=98.

3 
Specificity=99

.1 

F1-score=98.3 

Not available MATLAB MNA 

[41] X-ray VGG 16 Classification Accuracy=92.

53 

Specificity=95
.1 

Sensitivity=86

.1 

Not available Not 

specified 

MNA 

[42] X-ray U-Net[43] 
ResNet 152[44] 

Segmentation  
classification 

AUC=97.27 
Sensitivity=95

.91 

Specificity=91
.99 

https://github.com/ChenWWWeixiang/
diagnosis_covid19 

Python A 

[45] X-ray InceptionNet 

[46] 

classification F1-

score=99.97 

https://drive.google.com/fle/d/1-oK-

eeEgdCMCny 
kH364IkAK3opmqa9Rvasx/view?usp=

sharing 

Python NM 

[11] X-ray COVID-Net classification Precision=93.3

3 
Accuracy=93.

3 

https://github.com/linda 

wangg/COVID-Net 

Python NM 

[47] CT DenseNet 
201[48] 

classification Precision=96.2
9 

Recall=96.29 

F1-
measure=96.2

9 

Specificity=96

.21 

Accuracy=96.

25 

Not available Not 
specified 

NM 

[49] CT 3D U-Net [50] 

3D ResNet [44] 

Segmentation 

Classification 

 

Accuracy=93.

3 
Sensitivity=87

.6 

Specificity= 
95.5 

Not available Python  NM  

[51] CT 3D ResNet34 

[52] 

Classification AUC=94.4 Not available Python MNA 
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Accuracy=87.

5 
Sensitivity=86 

Specificity=90 

F1-score=82 
 

[53] CT Custom an 

attention-based 

deep 3D multiple 
instance learning 

(AD3D-MIL) 

Classification Accuracy=94.

3 

AUC=98.8 
F1-score=92.3 

Precision=95.9 

Recall=90.5 
Cohen-

Kappa=91.1 

https://github.com/zhyhan Python MNA 

 

[44] CT ResNet 50[44] Classification Specificity=95 
Sensitivity=90 

AUC=96 

https://github.com/bkong999/COVNet Python 
 

NM 

[55] CT  EfficientNet B4 

[56] 

Classification Accuracy=96 

sensitivity=95 
Specificity=95 

ROC=95 

http://github.com/robinwang08/COVID

19. 

Python 

 

A 

 

[57] X-ray CV19-Net Classification AUC=92 
Sensitivity=88 

Specificity=79 

https://github.com/uw-ctgroup/CV19-
Net 

Python 
 

A  

[58] X-ray DenseNet-121 

[59] 
ResNet-50 [44] 

InceptionV3 [60] 
InceptionResNet 

V2[67] 

Xception[62] 
EfficientNet-

B2[56] 

(DeepCOVID-
XR) 

Classification Accuracy=83 

AUC=90 

https://github.com/ 

IVPLatNU/deepcovidxr 

Python 

 

A  

[63] X-ray  VGG 16[64] 

VGG 19 [64] 

InceptionNet v3 
[60] 

MobileNet 

V2[65] 
ResNet 50[44] 

DenseNet 121 

[59] 

Classification 

(2 classes ) 

ROC=96.51 

Sen=93.84 

Spec=99.18 
Acc=98.50 

Not available  

Not 

specified 

NM 

[66] 

 

X-ray  Custom  Classification 

(3 classes ) 

Acc=91.34 

F1-

score=89.66 
Recall=88.33 

Prec=91 

Not available  

Not 

specified 

MNA 

[67] CT  U-Net[43] 

DenseNet 
121[59] 

Segmentation 

classification 

AUC=90 

Sen=78.93 
Spec=89.93 

https://github.com/ 

wangshuocas/COVID-19 

Python  MNA 

[68] CT Multi-task U-

Net[43] 

Segmentation Dice 

coefficient=85 

https://www.jianp 

eicn.com/category/yuepianjiqiren 

https://www

.simpleitk.or
g 

A 

 

[69] X-ray InceptionResNet 

V2[67] 

InceptionNet v3 

[60] 

NasNetLarge[70
] 

Classification  Acc=97.87 

Acc=97.87 

Acc=96.24 

Not available Not 

specified 

MNA  

[71] CT ConvLSTM Classification  Acc=96 Not available Python MNA 

 

[72] X-ray Inception V3 
ResNet 

Classification  Acc=66.43 
Acc=59.81 

Not available Not 
specified 

NM 

[73] CT Custom Classification  

Segmentation  

Reconstructio
n 

Acc=94.67 

Dice 

coefficient=88 

Not available Python MNA 
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[74] CT U-Net[43] Segmentation  Dice 

coefficient=97  

Not available Nora 

software 

MA 

 

[75] X-ray StackNet-
DenseVIS 

GAN[76] 

DenseNet-121 
[59] 

VGG 19 [64] 

InceptionResNet 
V2[67] 

SEResNeXt50-

32 × 4d [77] 

Augmentation 
Segmentation 

Classification 

Acc=95.07 
Sen=99.40 

Spec=94.61 

Not available Python MNA 

[78] CT U-Net++[79] Classification  Acc=100 

Sen=81.82 

Spec=92.59 
Prec=88.89 

Recall =100 

https://github.com/endo-angel/ct-angel Python  A 

 

[80] X-ray  SE-ResNeXt-50-

32x4d [77]  
(COV19NET) 

Classification  AUC=81 

Sen=85 
Spec=72 

Prec=55 

Recall=92 

http://www.radiology.hku.hk/MAIL/pag

es/covid19.html 
(Upon request) 

Python A 

 

[81] X-ray AlexNet[82] 

MobileNet 

V2[83] 
SuffleNet[84] 

SqueezeNet[85] 

Xception[62] 

Classification Recall=93 

Precision=94 

F1-score=93.5 

Not available MATLAB MNA 

 

[86] X-ray VGG 16[87] classification Acc=95 

Prec=88.33 

Recall=95 
F1-score=91 

Not available Allen 

Institute for 

AI 

NM 

[88] X-ray Custom  classification AUC=99.79 

Acc=98.27 

Not available MATLAB MNA 

[26] CT ResNet 50[44] classification Sen=84.4 
Spec=93.3 

[44] Python A 
 

[25] X-ray  Custom  

ResNet 8 

classification Acc=98.3 

Sen=99.3 

Spec=98.1 

Will be Publicly available Python NM 

[89] X-ray Xception[62] classification Prec=95 

Recall=96.9 

F1score=95.6 
Acc=95 

https://github.com/drkhan107/CoroNet Python MNA 

[90] X-ray ResNet 18[44] 

ResNet 50 [44] 

SqueezeNet[85] 
DenseNet 

121[59] 

classification Sen=98 

Spec=90.7 

https://github.com/shervinmin/DeepCov

id.git 

Python NM 

[91] CT VGG 16[64] 
Inception V3[60] 

ResNet 50[44] 

DenseNet  
121[59] 

DenseNet  201 

classification Acc=88.34 
AUC=88.32 

F1-score=86.7 

Not available Python NM 

[92] X-ray Custom  
 

classification AUC=81 
Prec=68 

Recall=81 

Not available CAD4TB 
v6 software 

A 

[93] X-ray VGG 16 [64] classification Acc=83.6 https://github.com /jurader/covid19_xp Python MNA 

[94] X-ray ResNet 18[44] 
ResNet 50[44] 

COVID-Net [95] 

DenseNet 121 
[59] 

classification Sen=88 
Spec=94 

AUC=97 

BA=91 
DOR=112.93 

https://github.com/EIDOSlab/unveiling-
covid19-from-cxr 

Python NM 

[96] 

 

CT U-Net[43] 

ResNet 50 [44] 

(COVID-AL) 

Segmentation  

classification 

Acc=95 Not available Not 

specified 

NM 

[97] CT U-Net[43] 

ResNet 50 [44] 

(IDANNet) 

Segmentation  

classification 

Acc=81 

Sen=81 

Spec=82 

https://github.com/LittleRedHat/COVI

D-19 

Python A 

http://www.radiology.hku.hk/MAIL/pages/covid19.html
http://www.radiology.hku.hk/MAIL/pages/covid19.html
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Prec=94 

Recall=57 

 

TABLE IV. IEEE SELECTED PAPERS 

Ref. Modality DL technique Task Performance 

metric 

Code  Langua

ge  

Validat

ion 

[98] CT U-Net[43] 

AlexNet[99] 

ResNet[44] 
(DeCoVNet) 

Segmenta

tion 

Classifica
tion 

 

AUC=96.7 

ROC=95.9 

Accuracy=90.1 
Precision=84 

Recall=98.2 

 

https://github.com/ sydney0zq/covid-19-detection Python A 

 
[100] 

CT DenseNet 121 
DenseNet 169 

DenseNet 120 
VGG 19[64] 

Classifica
tion 

 

Accuracy=97.3
5 

Precision=97.52 
Recall=98.80 

F1-score=98.6 

https://github.com/qianliu1219/ 
iMP 

Python NM 

[101] CT 

X-ray 

Squeezenet 

[85] 
MobileNet[83

] 

VGG 19[64] 
ResNet 18 

Inception  V3 

ResNet 101 
ChexNet 

DenseNet 201 

Classifica

tion 
 

Accuracy=99.4

0 
Precsion=99.40 

Recall=99.40 

F1-score=99.40 
Specificity=98.

84 

Not available 

 
 

MATL

AB 

MNA  

 

[102] CT VB-Net [103] Segmenta
tion 

Classifica

tion 
 

Accuracy=91.7
9 

Sensitivity=93.0

5 
Specificity=89.

95 

Sensitivity=93.0
5 

AUC=96.35 

Precision=93.10 

F1-score=93.07 

Not available Not 
specifie

d 

NM 
 

[104] CT, X-

ray, 
Ultrasoun

d 

VGG 16[64] 

VGG 19[64] 
Xception[62] 

InceptionRes

Net[67] 
Inception 

V3[60] 

NASNETLar
ge[70] 

DenseNet 

121[59] 
ResNet 50 

V2[64] 

 

Classifica

tion  

F1-score(X-ray, 

Ultrasound, and 
CT)=(79, 99, 

and 79) 

Not available Python MNA 

 

[65] X-ray  GAN 
Darkcovidnet 

[36] 

Generate 
synthetic 

images 

AUC=95.25 Not available Python MNA 

[106] CT, X-

ray 

DenseNet 

121[59] 

VGG 16[64] 

InceptionRes
Net v2[46] 

ResNet 50 

[70] 
 

 Accuracy (X-

ray, and CT)= 

(91.79.8) 

Sensitivity (X-
ray, and 

CT)=(77.7, 

76.5) 
Specificity (X-

ray and 

CT)=(95.4, 
80.1) 

Not available Python NM 
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AUC(X-ray, 

and CT)=(96.6, 
81.9) 

 

 

[107] 

X-ray 

 

MobileNet[65

] 
VGG 16[64] 

VGG 19[64] 

Xception[62] 
InceptionRes

Net V2[67]  

DenseNet 
121[59] 

DenseNet 201 

DenseNet 
201[48] 

DenseNet 169 

[59] 

classifica

tion 

Accuracy=98.4

6 
F1-score=98.46 

Not available Python 

MATL
AB  

NM 

  

 

[108] 

X-ray DenseNet 

121[59] 

(CSEN) 

classifica

tion 

Accuracy=96.3

5 

Sensitivity=98.8
6 

Specificity=91.

71 

https://github.com/meteahishali/methods-early-cov19 

 

Python MNA 

[109] CT GAN 
U-Net[43] 

ResNet 
18[44] 

Segmenta
tion 

Classifica
tion 

AUC=88.3 
Dice=57.5 

Accuracy=88.4 
F1-score=64 

https://github.com/guaguabujianle/COVID-19-GAN Python NM 

 

[110] 

CT 

X-ray 

Genetic Deep 

Learning 

Convolutional 
Neural 

Network 

(GDCNN) 

classifica

tion 

Accuracy=98.8

4 

Precision=93 
Sensitivity=98.8

4 

F1-score=93 
Specification=9

8.84 

 

https://github.com/ BABUKARTHIKRG/covid19.git Python MNA 

[111] X-ray COVID-

Net[95] 

classifica

tion 

Sensitivity=95.2

7 

Precision=94.53 

[95] 

 

Python NM 

[112] CT U-Net[43] 
Inception [46] 

 

Segmenta
tion 

Classifica

tion 

Dice 
coefficient=83.2

5 

Sensitivity=84.0
6 

Specificity=99.

88 
Intersection 

over Union 

(IOU)=74.2 

Not available Python NM 

[113] CT U-Net[43] 

 

Segmenta

tion 

 

Dice 

coefficient=78.3 

Recall=77.6 
 

https://github.com/lzx325/COVID-19-repo.git. Python 

 

NM 

[114] CT Mobilenet V2 

[83] 

Classifica

tion 

Accuracy=99.3

8 
Precision=99.20 

Recall=99.60 

F1-score=99.40 
AUC=99.58 

Not available MATL

AB  

MNA 

[115] X-ray CovFrameNet 

Custom  

Classifica

tion 

Precision=85 

Recall=85 

Accuracy=100 
Specificity=100 

AUC=50 

F1-score=90 
 

https://github.com/NathanielOy/covid19cnn Python 

 

NM 

 

[116] 

CT VGG 16[64] 

VGG 19[64] 

Classifica

tion 

Accuracy=58.2

1 
Sensitivity=95.8 

Not available Not 

specifie
d 

NM 

 

https://github.com/meteahishali/methods-early-cov19
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ResNet 50 

[117] 
AlexNet[118] 

Inception 

[119] 

Specificity=28.

44 
Precision=51.75 

Recall=87.74 

F1-score=67.02 

[120] CT The deep 
learning 

model of 3D 

lesion 
segmentation 

and 

classification 
for 

diagnosing 

COVID-19 
(DeepSC-

COVID) 

Segmenta
tion 

Classifica

tion 

Dice 
Coefficient=73.

3 

Sensitivity=80.2 
normalized 

surface Dice 

(NSD)=71.8 

https://github.com/XiaofeiWang2018/DeepSC-
COVID 

Python MNA 
 

[121] CT Details 
Relation 

Extraction 

neural 
network 

(DRENet) 

ResNet 50 
[44] 

Classifica
tion 

Accuracy=93 
Precision=93 

Recall=93 

Specification=9
3 

F1-score=93 

http://biomed.nscc-gz.cn/model.php 
Code not available 

Python 
 

MNA 
 

[122] X-ray U-Net[43] Segmenta

tion 
Classifica

tion 

Accuracy=94.6

7 
AUC=98.42 

Sensitivity=94.3

4 
Precision=94.97 

F1-score=94.65 

Matthews 
Correlation 

Coefficient 

(MCC)=89.34 
 

 

https://github.com/sivaramakrishnanrajaraman/Iterati

vely-pruned-model-ensembles-for-COVID19-
detection-in-CXRs 

 

Python 

 

NM 

[123] CT U-Net[43] 

VGG [64] 

Segmenta

tion 
Classifica

tion 

Accuracy=82.2 

Precision=69.93 
Sensitivity=74.9 

Specificity=89.

46 
AUC=87.9 

Not available  Python NM 

[124] X-ray ResNet 

18[44] 
Inception[60] 

VGG 19[64] 

Classifica

tion 

Accuracy=92.5 

Sensitivity=65.0
1 

Specificity=94.

3 
 

https://github.com/asmaa4may/4S-DT Python 

MATL
AB 

NM 

[125] CT Multi-scale 

discriminative 
network(MS

D-Net) 

U-Net[43] 
U-Net++[79] 

U-Net + 

CBAM  [126] 

Attention U-

net [127] 

 

Segmenta

tion 
 

Dice 

coefficient=87.7
9 

Sensitivity=84.4

5 
Specificity=98.

89 

 

Not available Python NM 

[128] X-ray Multiscale 
Attention 

Guided deep 

network with 
Soft Distance 

regularization 

(MAG-SD) 
 

Classifica
tion 

Accuracy=96.9
4 

F1-score=96.23 

Specification=9
4.93 

Sensitivity=97.8

3 
 

https://github.com/JasonLeeGHub/MAG-SD Python MNA 

http://biomed.nscc-gz.cn/model.php
https://towardsdatascience.com/the-best-classification-metric-youve-never-heard-of-the-matthews-correlation-coefficient-3bf50a2f3e9a
https://towardsdatascience.com/the-best-classification-metric-youve-never-heard-of-the-matthews-correlation-coefficient-3bf50a2f3e9a
https://towardsdatascience.com/the-best-classification-metric-youve-never-heard-of-the-matthews-correlation-coefficient-3bf50a2f3e9a
https://towardsdatascience.com/the-best-classification-metric-youve-never-heard-of-the-matthews-correlation-coefficient-3bf50a2f3e9a
https://towardsdatascience.com/the-best-classification-metric-youve-never-heard-of-the-matthews-correlation-coefficient-3bf50a2f3e9a
https://towardsdatascience.com/the-best-classification-metric-youve-never-heard-of-the-matthews-correlation-coefficient-3bf50a2f3e9a
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[129] 

X-ray, 

CT 

Multilevel 

deep-
aggregated 

boosted 

network 
(MDA-BN) 

Classifica

tion 

Accuracy=95.3

8 
F1-score=95.57 

Specification=9

2.53 
Sensitivity=98.1

4 

Precision=93.16 
AUC=98.55 

https://github.com/Owais786786/MDA-BN-Model MATL

AB 

MNA 

 

[130] CT Lung 

Infection 

Segmentation 
Deep 

Network (Inf-

Net) 

Segmenta

tion  

Dice 

coefficient=57.9 

Sensitivity=87 
Specificity=97 

Precision=50 

Mean Absolute 
Error 

(MAE)=47 

https://github.com/DengPingFan/InfNethttps://github

.com/DengPingFan/Inf-Net 

(Both dataset and code are the same 

Python 

 

NM 

[131] CT, X-
ray 

VGG 16[64] Classifica
tion  

Accuracy=97 
F1-score=98 

Sensitivity=99 

Specificity=99 
Recall=99 

Precision=97 

Not available Python 
MATL

AB 

NM 

[132] CT ResNet 

50[44] 

Classifica

tion  

Accuracy=95.2

1 

Not available Python 

 

MNA 

[133] Ultrasoun

d  

U-Net++[79] 

Inspired by 

[134] 

Segmenta

tion  

Classifica
tion 

Precision=70 

F1-score=61 

Recall=60 
 

https://github.com/mhugTrento/DL4covidUltrasound

. 

Python 

 

A 

[135] CT, X-

ray 

DenseNet-

169[59] 

Classifica

tion 

Accuracy=93.4

4 
Precision=90.97 

Recall=93.8 

F1-score=92.06 
CK-

score=88.85 

Not available Python 

 

NM 

[136] X-ray modified 

multi-
crossover 

genetic 

algorithm 
(MMCGA) 

DenseNet 

264[137] 

Classifica

tion 

Accuracy=99.3

4 
 

Not available MATL

AB 

NM 

[138] X-ray ResNet-

50[44] 

Classifica

tion 

Accuracy=71.4 

AUC=78.4 

Sensitivity=71.3 
Specificity=71.

5 

Not available Not 

specifie

d 

MNA 

 [89] CT ResNext+ 

inspired by 
ResNext[139] 

called 
COVID-

Attention-Net 

 

Classifica

tion 

Accuracy=77.6 

Precision=81.9 
F1-score=81.4 

Sensitivity=85.5 
Specificity=79.

3 

Not available Python 

 

MNA 

 

[140] X-ray, 

Ultrasoun

d 

capsule 

network 

Classifica

tion 

Precision=98.33 

F1-score=98 

Sensitivity=98 

Specificity=97.
66 

[141]point of care ultrasound (POCUS)  

 

Not 

specifie

d 

NM 

[142] CT U-Net Segmenta

tion  

Hausdorff 

Distance=17.12 
Relative 

Volume 

Error=15.96 
Dice 

coefficient=80.7

2 

https://github.com/HiLab-git/COPLE-Net Python 

 

NM 

https://github.com/DengPingFan/InfNethttps:/github.com/DengPingFan/Inf-Net
https://github.com/DengPingFan/InfNethttps:/github.com/DengPingFan/Inf-Net
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[143] CT U-Net segmenta

tion 

Dice 

coefficient=88.0
2 

Sensitivity=89.3

8 
Precision=87.59 

Not available Not 

specifie
d 

NM 

An 

et al.  

X-ray U-Net 

DenseNet 

Segmenta

tion 

classifica
tion 

Accuracy=98.8

3 

Precision=98.91 
Recall=98.53 

F1-score=98.71 

 

Not available Python 

 

NM 

 

3.1 Image modalities 

Several imaging methods have been utilised to detect the presence of the coronavirus.  The image modalities examined in 

this literature review encompass Ultrasound, CT, MRI, and X-ray pictures. Figure 3 displays the chest X-ray (CXR), 

computed tomography (CT), and ultrasound images, in that order. The detection of COVID-19 has been facilitated by the 

utilisation of a range of medical imaging tools in conjunction with RT-PCR in response to the outbreak of the disease. The 

radiographic modalities encompass Positron Emission Tomography (PET)/Computed Tomography (CT), X-ray, and 

Ultrasonography pictures. The subsequent section offers a concise elucidation of each of them in a succinct manner. 

1)  X-ray  

In addition to reverse transcription polymerase chain reaction (RT-PCR), X-ray imaging serves as an alternate modality for 

the identification of COVID-19. The utilisation of chest X-ray (CXR) as a readily accessible and expeditious method for 

the visual identification of COVID-19, in collaboration with radiologists, is well-established. Nevertheless, there exist 

several limitations associated with chest X-rays (CXR) in relation to the detection of viral persistence, mostly due to its 

restricted sensitivity. Additionally, it should be noted that X-ray imaging is unable to effectively identify anomalies in soft 

tissues. Hence, it is not the optimal selection for the purpose of COVID-19 screening [144]. Moreover, the early phases of 

infection are characterised by the inability to identify Ground Glass Opacity (GGO) and consolidation. While X-ray 

imaging has demonstrated the ability to identify some uncommon presentations of pleural effusions and pneumothorax in 

COVID-19 cases, it is not effective in detecting lung lesions and pneumonia, including both bacterial and viral pneumonia 

[145], [146]. Moreover, X-ray imaging lacks the ability to distinguish between pneumonia cases caused by the corona virus 

and those resulting from other forms of pneumonia. 

2) CT  

During the current COVID-19 pandemic, computed tomography (CT) has been recognised as a fundamental imaging 

technique for the diagnosis of the virus [147]. Moreover, the utilisation of CT imaging characteristics, such as peripheral 

Ground Glass Opacification (GGO) and lower and middle lung consolidation, has been extensively employed for the 

diagnosis of COVID-19 [148], [149]. Computed tomography (CT) scans have a higher level of sensitivity in comparison 

to X-rays when it comes to detecting ground-glass opacities (GGO) and consolidative opacities. The COVID-19 disease 

exhibits a higher susceptibility to the development of pulmonary symptoms, lymphadenopathy, and pneumothorax. 

Although X-ray imaging was incapable of detecting these manifestations. Hence, health practitioners generally prioritise 

the utilisation of CT scans for the detection of infection in individuals who are asymptomatic but have serious health issues. 

Chest computed tomography (CT) has a notable degree of sensitivity when employed for the purpose of diagnosing lung 

disease symptoms, including bacterial and viral pneumonia. Numerous studies have demonstrated that computed 

tomography (CT) imaging results exhibit superior performance compared to reverse transcription polymerase chain 

reaction (RT-PCR) results. Furthermore, it has been shown that a significant number of patients who initially tested negative 

for SARS-CoV-2 using reverse transcription polymerase chain reaction (RT-PCR) had positive results after lung 

abnormalities were seen in their computed tomography (CT) scans of the lungs [150], [151], [152]. Multiple studies have 

indicated that the rate of misdiagnosis for the coronavirus is significantly reduced in comparison to the RT-PCR test. 

Moreover, computed tomography (CT) is a suitable modality for the timely detection of COVID-19 [153]. While computed 

tomography (CT) is a valuable and efficient method for promptly diagnosing COVID-19, it is unable to differentiate 

COVID-19 from other infectious diseases such as Severe Acute Respiratory Syndrome (SARS) and Middle East respiratory 

syndrome (MERS) [151], [153]. Additionally, there is a potential risk of disease transmission from suspected patients to 
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healthcare practitioners [154]. Finally, it should be noted that CT imaging subjects patients to a significant amount of 

radiation. 

3) Ultrasound  

Ultrasound represents an additional modality employed in the diagnostic assessment of lung pathology. The diagnostic 

accuracy of lung diseases, such as acute respiratory disorders, pneumothorax, and hyperinflation, is comparatively higher 

than that of X-ray and CT scans [146], [155]. Ultrasound is a non-invasive imaging modality utilised for surface 

examination, capable of identifying artefacts such as pleural visceral structures. The ultrasonographic findings observed in 

individuals with COVID-19 include pleural abnormalities characterised by the progressive thickening of pleural lines with 

irregularities, peripheral consolidation, and the presence of B-lines and A-lines. Although ultrasonic radiography offer 

several benefits, they are unable to effectively identify lesions located in the core regions of the lung. Ultrasonography is 

limited in its ability to detect pneumonia that has spread deeper into the body. Therefore, a computed tomography (CT) 

scan is considered to be highly favourable in such instances (156).  Ultrasound imaging has the capability to detect viral 

infections in their early stages by identifying abnormalities in focal B-line patterns and the thickness of the pleural line, 

which indicates lung involvement in cases of pneumonia. Lung ultrasonography plays a pivotal role in the detection of 

COVID-19 owing to its cost-effectiveness, absence of radiation, and safety considerations. Figure 3 illustrates the 

distribution of studies that employ X-ray, CT scan, and Ultrasound techniques.   

 

Fig.3. Image modalities, (a) PubMed, (b) IEEE Xplore, (c) Both databases. 

 

3.2 Deep learning architectures  

The convolutional neural network (CNN) is a fundamental component of deep learning and falls within the supervised 

domain of deep learning. The topic of Artificial Neural Networks (ANN) has witnessed significant advancements. Since 

2012, it has resurfaced as a pivotal element in diverse computer vision jobs, encompassing medical-related issues. The 

introduction of AlexNet in 2012 brought about a significant transformation in the domain of convolutional neural networks 

(CNNs) by introducing novel layers in contrast to the conventional layers seen in artificial neural networks (ANNs). The 

primary objective of Convolutional Neural Networks (CNNs) is to acquire knowledge pertaining to the distinctive 

characteristics present within a given dataset by use of convolution operations. The Convolutional Neural Network (CNN) 

is composed of multiple layers which receive an input image, undergo a sequence of processes, and ultimately make a 

prediction regarding the class of the input image. Instead of doing manual feature extraction, Convolutional Neural Network 

(CNN) layers employ a sequence of convolution, Rectified Linear Unit (ReLU), and pooling operations to automatically 

extract features. Convolutional Neural Networks (CNNs) often consist of various types of layers, including convolutional 

layers, pooling layers, and fully connected layers. The convolutional layer functions as a feature extraction mechanism, 

wherein several filters are employed to acquire knowledge about distinct features. The production of feature maps is 

achieved by convolving the filters across the entirety of the image. Every individual neuron within the convolutional layer 

establishes connections with a limited area of the input image, referred to as the receptive field. The pooling layer is 

responsible for reducing the dimensionality of feature maps through downsampling in the dimensionality reduction 

technique. The pooling layer encompasses various forms, including max pooling and average pooling. The initial operation 
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extracts the maximum value from the feature map, whereas the subsequent operation computes the average value of the 

activation map elements. Similar to artificial neural networks (ANNs), every neuron inside this particular layer is connected 

to all the neurons present in the preceding layer. The final layer of the Convolutional Neural Network (CNN) employs the 

"softmax" activation function in order to make predictions regarding the class of the given input image. The subsequent 

enumerations include descriptions of contemporary CNN architectures that have been extensively employed to address the 

COVID-19 pandemic. The CNN architectures most frequently employed in various applications include Alexnet 

Krizhevsky et al. [158],  Visual Geometry Group (VGG16) [159], GoogleNet [46], ResNet [160], and DenseNet [59]. 

Transfer learning and bespoke deep learning techniques were grouped in this study. The first is supervised machine learning 

that solves deep learning challenges. As shown, deep learning architecture training from scratch involves a lot of data and 

time. Therefore, Zhang et al. [32], Mahmud et al. [33], Das et al. [34], Ozturk et al. [36], Howard et al. [65], Chiu et al. 

[80], Xie et al. [97], Song et al. [121], Zheng et al. [125], and Woo et al. [126] have used transfer learning in Covid-19 

detection to accelerate the training process and solve the problem of a small dataset. Some writers preferred specialised 

architectures to train the network from scratch. For example, Echtioui et al. [66], Hu [71], Amyar [73], Irmak [88], 

Karakanis and Leontidis [25], Murphy [92], Babukarthik [110], Li [128], Qwais [129], and Fan [130]. Figure 4 illustrates 

the percentage of writers using custom and transfer learning methodologies in this review. 

 

 

Fig. 4. deep learning models (a) PubMed, (b) IEEE Xplore, (c) Both databases. 

 

3.3 Programming languages 

The findings derived from the accessed literature in the review indicate that a range of programming languages have been 

employed to enact the recommended approaches, including Python, MATLAB, and other languages. Several writers 

disclosed the programming languages employed and made them available for public utilisation. The prevailing 

programming language in widespread usage is Python, followed by MATLAB. It is worth noting that several writers have 

not explicitly indicated the programming language they employed. 

 

 

 

 

 

 

 

 

Fig. 5. Programming languages, (a) PubMed, (b) IEEE Xplore, (c) Both databases. 

 

(a)                                                                      (b)                                                                           (c) 

(a) (b) (c) 
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3.4 Types of studies  

Javor The primary aim of this literature review is to ascertain the proportion of studies employing deep learning techniques 

that have been implemented in practical applications within the medical domain. The terms A, MNA, and NM correspond 

to the categories "Approved," "Mention but not Approved," and "Not Mentioned," respectively. Figure 4 displays the 

proportion of studies obtained from each database archives as well as the combined retrieval. The majority of the studies 

conducted in this field are retrospective in nature, however a subset of the data utilised has been annotated by radiologists, 

as demonstrated by Yu et al. [161]. While the methodologies have received validation from radiologists, several approaches 

merely categorise COVID-19 instances as positive or negative, as indicated by reference [97]. The code, as referenced by 

[27], is accessible to health providers in the absence of a specific platform for utilisation. This section will include an 

analysis of some papers that have been assessed by resident radiologists in the sequel. 

The AI-based system CAD4COVIDX-ray, developed by Murphy et al. [92], was trained using a dataset consisting of 

24,678 pictures. The obtained outcomes of the artificial intelligence (AI) system are afterwards juxtaposed with the findings 

of six radiologists. The model's performance was assessed using the Receiver Operating Characteristic (ROC) curve 

measure. The system exhibits precision and recall rates of 77% and 76%, respectively. Nevertheless, the collective outcome 

determined by the radiologist indicates precision and recall rates of 72% and 78% respectively. In a separate study, 

Anastasopoulos et al. (74) gathered data from a scholarly hospital in order to create an artificial intelligence (AI)-driven 

software capable of segmenting and quantifying CT lung opacities. The study's project team consists of eight physicians. 

The proposed methodology is accessible in the form of an open-source web application and has been developed using the 

Nora medical software development platform. The system's performance was evaluated in comparison to a manual 

diagnosis of COVID-19 conducted by resident radiologists. The utilisation of performance indicators such as the Dice 

Coefficient and Hausdorff Distance has been seen. 

 Chiu et al. (80) proposed the utilisation of a deep learning (DL) methodology known as COV19Net for the identification 

of coronavirus in X-ray pictures. The model was trained and evaluated using a publicly accessible dataset. The assessment 

of the outcomes of the created algorithm was conducted by three radiologists who are certified by a professional board. 

The validation cohort was assessed by radiologists in a blinded manner, with no prior knowledge of RT-PCR or any other 

patient-related information. In order to establish consensus among readers of radiography, a method of majority voting has 

been employed to determine the presence or absence of COVID-19 in a given image. The proposed COV19Net 

demonstrates a positive predictive value (PPV) of 55% and a negative predictive value (NPV) of 92%. In comparison, 

radiologists exhibit a PPV of 44% and an NPV of 78%. Chen et al. [78] presented an additional approach for CT images 

that utilises deep learning techniques. The proposed system was put out by a collective of researchers, and the source code 

for the suggested approach can be accessed by interested researchers at the following public repository: 

https://github.com/endo-angel/ct-angel. Furthermore, the system is accessible to physicians through an open-access 

website, which may be found at the following URL: https://121.40.75.149/znyx-ncov/index. The CT images were obtained 

from a cohort of patients who were prospectively enrolled at Renmin Hospital of Wuhan University. The research was 

granted approval by both Qiangjiang Central and Renmin Hospital of Wuhan University. Within this study, a model was 

constructed based on the UNet++ framework [79]. The model's performance was assessed in comparison to human 

performance in terms of both time and accuracy. During the course of the studies, it was observed by the researchers that 

the average duration required by the expert radiologist dropped by 65%. 

Javor and colleagues (2019) proposed a model based on the ResNet50 architecture, implemented using the fastai deep 

learning framework (Howard et al., 2018). In order to assess the resilience of the model, a comparison was made between 

the obtained outcomes and those of two radiology specialists. In order to mitigate potential bias in the diagnostic process, 

the individuals responsible for interpreting the radiographs were intentionally kept unaware of the incidence of COVID-19 

infection among the subjects. The approach has been evaluated using performance criteria such as AUC, ROC, specificity, 

and sensitivity. The authors demonstrated the superiority of the model by attaining an average specificity of 94.45%. 

Nevertheless, it is worth noting that the sensitivity of manual diagnosis surpasses that of automatic identification by the 

model, with a rate of 81.1%. The fundamental framework of the proposed Identification and Analysis of New covid-19 Net 

(IDANNet) [97] comprises the utilisation of UNet and ResNet-50 models. The researchers employed a five-fold cross-

validation technique to assess the reliability and stability of the developed deep learning model. The obtained outcomes are 

examined by three proficient radiologists through a process of re-diagnosing the CT images in a blinded manner, wherein 

they are unaware of the previous results of RT-PCR testing for the prospective participants. The performance measurements 
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utilised in this study are positive predictive value (PPV), negative predictive value (NPV), specificity, sensitivity, and 

accuracy. The average values obtained for these metrics are 90.33%, 51.33%, 66.66%, 79.66%, and 76.33%, respectively. 

Nevertheless, the proposed model has an accuracy, sensitivity, precision, and recall of 81%, 81%, 82%, 94%, 94%, and 

57% respectively. In a separate study, the researchers in [27] devised a diagnostic algorithm for COVID-19 utilising the 

BigBiGAN model [163]. The system underwent training and testing using a specialised dataset of CT images. 

Cardiothoracic radiologists who have accumulated a decade of expertise have begun to discern visual manifestations 

depicted in medical imaging. The conclusive determination regarding the presence or absence of the virus has been reached 

following an agreement among professionals in the field of radiography. The proposed method demonstrates a specificity 

of 88% and a sensitivity of 85%. In comparison, radiologists achieve an average specificity of 75% and an average 

sensitivity of 77% in their diagnostic results. The approach provided by Ni et al. [30] involved the utilisation of a bespoke 

dataset comprising CT scan images. A clinical reading of CT images, which have been previously blinded to patient 

circumstances, was conducted by a group of three radiologists. The mean values for accuracy, sensitivity, specificity, 

positive predictive value (PPV), negative predictive value (NPV), and F1-score, following the establishment of a consensus 

among residents, are 88%, 84.33%, 78%, 93%, and 86% correspondingly, for the metrics listed above. 

 

 

 

Fig. 6. Types of studies which validated the results with radiologists mentioned, mentioned but without validation, and did not mention (a) PubMed, (b) 

IEEE Xplore, (c) Both databases. 

 

Figure 4 depicts the distribution percentage of chosen articles among scholars who validate the study findings with 

radiologists (A), scholars who acknowledge the potential usefulness of the study in aiding healthcare professionals (MNA) 

but do not endorse it, and scholars who do not mention it at all (NM). The distribution of retrieved publications to A, MNA, 

and NM from both the PubMed and IEEE databases is depicted in the left and middle sub-figures, respectively. Based on 

the analysis of the sub-figure on the right, it is evident that a total of 34 studies, accounting for 43% of the sample, did not 

indicate the potential practical implications of their research. Additionally, a total of 37 papers, accounting for 39% of the 

sample, indicate that their research findings are deemed valuable but lack validation from radiologists. In conclusion, a 

total of 16 publications, representing 18% of the researchers, successfully obtained  validation from medical practitioners 

for their conducted studies. This validation serves to reinforce the researchers' stance on the ailment in question. 

3.5 The core tasks  

Figure 7 illustrates the fundamental activities undertaken by researchers in their investigations, namely classification and 

segmentation. The quantity of scholarly articles obtained from the PubMed search engine pertaining to the topics of 

classification, segmentation, and the combination of both is 40, 2, and 8, respectively. The classification, segmentation, 

and joint performance metrics for the task at hand have been reported as 23, 5, and 9, respectively, in works published by 

the Institute of Electrical and Electronics Engineers (IEEE). The utilisation of deep learning techniques for classification 

was observed in 72% of the studies, while segmentation was employed in 8% of the studies. Additionally, a combination 

of classification and segmentation approaches was implemented in 20% of the investigations. 

 

(a)                                                                             (b)                                                                                (c) 
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4. DISCUSSION  

Deep learning approaches have been utilised to a significant degree in addressing the challenges posed by the Covid-19 

pandemic at varying rates. The aforementioned systematic review yields the following conclusion. The majority of the 

conducted experiments utilised deep learning techniques primarily for classification tasks as opposed to segmentation 

activities. Although each image modality has its own merits and downsides, certain modalities, such as X-ray, have been 

more widely utilised than others. Certain types of imaging, such as ultrasonography, are often disregarded due to their 

infrequent utilisation. Furthermore, the use of transfer learning approaches has been extensively employed as opposed to 

the proposition of a novel convolutional neural network (CNN) architecture and the training of the model from its initial 

state. The justification for this can be attributed to the significant computational expense associated with training the model 

from the beginning. Based on the categorization of studies in this review, a limited proportion of the literature has received 

validation from healthcare professionals and is deemed suitable for their utilisation.  The predominant body of research 

produced in this field tends to be retrospective in nature, rather than prospective. This observation suggests that the findings 

of these studies may not provide health practitioners with adequate assistance.  This suggests that there remains a practical 

gap in the utilisation of various techniques. 

 

5. CONCLUSION  

The primary objective of this work was to investigate the utilisation of deep learning techniques in the diagnosis of Covid-

19. This was achieved through a comprehensive examination of relevant literature available in two prominent databases, 

namely IEEE and PubMed. The investigation encompassed several facets of the study, such as the exploration of CNN 

architectures, visual modalities, programming languages, and other relevant factors, in order to address the research 

inquiries. The research findings will be of interest to researchers and health practitioners, as they explore the potential of 

deep learning technologies in aiding doctors with the diagnosis of Covid-19-related diseases. An additional finding of this 

study pertains to the preference for transfer learning over the development of a custom architecture, owing to its practicality 

and user-friendly nature. Moreover, X-ray is considered the most extensively utilised image modality, although alternative 

modalities such as ultrasound exhibit somewhat lower levels of popularity. Furthermore, it is worth noting that the literature 

reviewed in this study mostly focuses on approaches based on Convolutional Neural Networks (CNNs), whereas other deep 

learning techniques, including Generative Adversarial Networks (GANs), Long Short-Term Memory (LSTM), and 

Recurrent Neural Networks (RNNs), have not been adequately explored.  

One of the notable findings derived from this study is that relying exclusively on deep learning techniques is still not a 

viable substitute for healthcare professionals. This is mostly due to the fact that many of the studies examined in this 

research neglected to consider the practical implementation aspect of the proposed methodology. Hence, it is imperative to 

conduct a thorough investigation into the connections between deep learning researchers and healthcare professionals 

specialising in Covid-related illnesses. 

 

(a)                                                                     (b)                                                                             (c) 

Fig. 7. Performed tasks (classification, segmentation), (a) PubMed, (b) IEEE Xplore, (c) Both databases. 
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