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A B S T R A C T  
 

This study presents an AI-driven multi-objective optimization approach using the Non-Dominated 
Sorting Genetic Algorithm II (NSGA-II) to enhance hospital operational efficiency in Syria. Using real-
world data from the Tishreen University Hospital over a 60-day period, the research addresses three 
conflicting objectives: minimizing average patient waiting time, reducing daily operational costs, and 
maximizing the number of patients treated. Six key operational variables were selected to build the 
optimization model, including bed availability, physician count, and daily admissions. The NSGA-II 
algorithm successfully generated a set of Pareto-optimal solutions, each reflecting different trade-offs 
among the objectives. Statistical analysis and visualizations confirmed the complexity and nonlinearity 
of hospital operations, showing that increases in resources or costs do not always lead to improved 
outcomes. The results offer decision-makers a range of efficient operational configurations tailored to 
various institutional priorities. This model provides a valuable decision-support tool, especially in 
resource-constrained healthcare environments like Syria. Future research will focus on integrating real-
time data, expanding operational variables, and validating the model across different institutions to 

support broader policy implementation and operational standardization. 

1. INTRODUCTION 

Artificial intelligence has earned significant milestones in growing healthcare services by analyzing large amounts of data, 

conducting predictions, and making decisions [1-5]. Healthcare operations in Syria struggle with multiple difficulties due to 

increasing service requirements and scarce resources and performance shortcomings in medical care. Operating difficulties 

at Tishreen University Hospital Department remain severe because the institution needs to find a balance between its 

operational efficiency and cost-effectiveness and healthcare quality standards. Healthcare management problems which 

challenge complex healthcare settings now receive promising solutions through recent developments of artificial intelligence 

(AI) and multi-objective optimization methods [6][7]. The research investigates hospital operational optimization through 

NSGA-II as a strong multi-objective optimization tool to reduce waiting times and operational expenses simultaneously 

while enhancing patient flow. Operations research and healthcare management literature form the foundation of this study 

since they reveal how AI-driven models enhance decision-making under resource restrictive situations [8][9]. Through 

analysis of Tishreen University Hospital real data, the study selects average waiting time and daily patient admissions and 

available beds and physician count and operational costs and treated patients as essential variables for building their multi-

objective structure. NSGA-II effectively produces Pareto-optimal solution sets because the conflicting multiple objectives 

require such generation methods. Stakeholders then access these trade-offs independent of weighting assignments [10][11]. 
This research enhances healthcare operations optimization studies by offering practical strategies based on Syrian hospital 

needs. This research supports worldwide AI applications in healthcare [12] while also giving specific methods to enhance 

hospital performance [12]. Through the study, the team used both descriptive statistics and Pareto-front analysis to show that 

their solutions worked properly as described [13]. The research results assist healthcare leaders and government officials 

who aim to improve public services while growing healthcare needs and limited funding. 
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2. LITERATURE REVIEW 

Significant interest has developed during recent decades regarding operations research (OR) and artificial intelligence (AI) 

integration in healthcare management because organizations need optimized resource utilization combined with cost 

reductions and better patient health outcomes. OR serves as an essential instrument for healthcare systems optimization in 

situations where resources are limited according to the work of [14]. Through research conducted by Xie and Lawley [6] 

scientists extended previous work by demonstrating how OR approaches enhance crucial hospital operational performance 
indicators related to patient journey optimization and service rendering periods. Multi-objective optimization frameworks 

developed further healthcare management by allowing administrators to optimize cost reduction against service quality 

elevation [7]. The Non-Dominated Sorting Genetic Algorithm II (NSGA-II) stands as a vital evolutionary algorithm which 

addresses intricate healthcare optimization problems. NSGA-II became an industrial standard because it generates Pareto-

optimal solutions efficiently for trade-off problems where weights are not needed [10]. NSGA-II demonstrates remarkable 

capabilities for non-linear and high-dimensional datasets according to Zhang et al. [11] and offers valuable benefits for 

healthcare applications working with variables like patient admissions and bed capacity and staffing levels. The algorithm 

proved best-in-class in practical implementation while demonstrating capabilities that exceeded hospital requirements for 

developing regions as shown by [13]. Modern healthcare research focuses on data-driven decision systems which enhance 

healthcare operational processes. The collaboration between big data analytics techniques with OR models allow 

researchers to detect unseen operational issues while simultaneously forecasting demand patterns according to [12]. The 

approach works exactly for the Tishreen University Hospital because they possess historical performance data about 

waiting times and operational costs along with patient throughput metrics. Research conducted by Saghafian et al. [8] 

together with Dai and Tayur [9] presented concrete examples about how AI-OR applications transform emergency casualty 

treatment and big healthcare organizations. These research works demonstrate optimizing hospital operations demands 

leading computational tools as well as profound knowledge of regional constraints and stakeholder requirements. The 

existing literature provides a robust theoretical and methodological foundation for this study, bridging gaps between OR, 
AI, and healthcare management. By leveraging NSGA-II and real-world data, this research extends prior work to address 

the unique operational challenges of Syrian healthcare institutions, offering a replicable framework for similar settings 

globally [15-17]. 

3. METHODOLOGY 

3.1. Data collection 

This study relies on six key variables, selected based on their importance in evaluating the performance of healthcare 

institutions and their ability to represent the operational, financial, and service aspects of the healthcare system. These 

variables include: (1) average waiting time per patient, which reflects the speed of service provision; (2) the number of 

patients admitted daily, as an indicator of demand; (3) the number of available beds, to measure capacity; (4) the number 

of available physicians, as a measure of human resources; (5) daily operating costs, to measure the financial burden; and 

(6) the number of patients treated, as an indicator of the system's efficiency in providing care. These variables represent 

key inputs and outputs within the multi-objective programming model and are used to analyze and improve the balance 

between operational efficiency, service quality, and cost. Public health institutions in Syria are experiencing increasing 

pressures due to population growth, increasing demand for healthcare services, and a shortage of human and material 

resources. At the Tishreen University Hospital, the operational challenge is centered on the inability to achieve an effective 

balance between speed of service delivery, cost, and quality. High average waiting times, limited bed capacity, and 

insufficient human resources lead to a decline in the overall performance efficiency of the institution. The objective of the 

model is to analyze these factors and propose operational solutions that achieve the optimal balance between efficiency, 
cost, and quality of service. Six operational variables were identified based on their importance in measuring performance:  

TABLE I.  DESCRIPTION OF STUDY VARIABLES 

Symbol Variable  Type Description 

X₁ Average waiting time per patient Minimization objective Reflects service delivery efficiency and speed 

X₂ Daily patient admissions Input Indicator of daily demand volume 

X₃ Available beds Input Measure of capacity 

X₄ Available physicians Input Indicator of human resources 

X₅ Daily operational cost Minimization objective Measure of daily financial burden 

X₆ Number of treated patients Maximization objective Meas 
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Based on the previous variables, three main objectives were formulated : 

- Reduce the average waiting time per patient 𝑚𝑖𝑛.𝑋1 

- Reduce the daily operating cost 𝑚𝑖𝑛.𝑋5 

- Increase the number of patients treated 𝑚𝑎𝑥.𝑋6 

These objectives often conflict, requiring trade-offs through multi-objective mathematical modeling . 

A 60-day data collection was conducted from the records of the Tishreen University Hospital, including: 

TABLE II.  DAILY OPERATING DATA FOR THE TISHREEN UNIVERSITY HOSPITAL DURING THE PERIOD FROM 1/1/2025 TO 2/29/2025. 

Date Average waiting time 

per patient (minutes) 

Daily patient 

admissions 

Available beds Available 

physicians 

Daily 

operational cost 

(dinars) 

Number of 

treated patients 

01/01/2025 46.22 159 150 34 961988.8 83 

02/01/2025 86.55 188 154 28 1072056 152 

03/01/2025 71.24 161 239 39 888640.6 172 

04/01/2025 61.91 190 163 36 870755.4 105 

05/01/2025 30.92 132 176 36 669296.6 112 

06/01/2025 30.92 103 158 39 565171.9 154 

07/01/2025 24.07 105 228 31 1128051 158 

08/01/2025 80.63 168 164 26 1130293 119 

09/01/2025 62.08 139 239 21 943171 156 

10/01/2025 69.57 188 191 22 737320.9 175 

11/01/2025 21.44 120 226 36 744446.7 122 

12/01/2025 87.89 108 200 24 1008169 144 

13/01/2025 78.27 94 212 36 1127977 91 

14/01/2025 34.86 124 245 36 1120961 146 

15/01/2025 32.73 144 201 36 1045913 92 

16/01/2025 32.84 168 245 21 949422.2 126 

17/01/2025 41.3 150 153 21 558898 77 

18/01/2025 56.73 88 243 24 613140.1 84 

19/01/2025 50.24 167 172 20 1128988 165 

20/01/2025 40.39 80 164 20 924500.3 154 

21/01/2025 62.83 187 192 38 506437.9 113 

22/01/2025 29.76 87 178 21 571030.1 117 

23/01/2025 40.45 167 185 31 964451.2 126 

24/01/2025 45.65 142 162 25 503543.1 163 

25/01/2025 51.92 90 181 23 612565.6 105 

26/01/2025 74.96 194 220 30 884113.7 83 

27/01/2025 33.98 160 208 36 984326.6 173 

28/01/2025 56 87 235 25 956372.9 91 

29/01/2025 61.47 114 177 24 656988.5 106 

30/01/2025 23.25 114 215 39 998525.5 145 

31/01/2025 62.53 112 191 21 666074.4 82 

01/02/2025 31.94 84 194 25 727779.8 125 

02/02/2025 24.55 185 211 30 1022544 86 

03/02/2025 86.42 182 206 35 954743 165 

04/02/2025 87.59 120 155 35 1094456 61 

05/02/2025 76.59 107 177 20 960329 149 

06/02/2025 41.32 86 177 28 897816 76 

07/02/2025 26.84 152 193 25 565572.3 163 

08/02/2025 67.9 151 233 35 757401.1 92 

09/02/2025 50.81 91 179 22 685641.7 68 

10/02/2025 28.54 113 211 39 670792.8 102 

11/02/2025 54.66 112 224 23 1181107 177 

12/02/2025 22.41 127 241 38 775168.4 107 

13/02/2025 83.65 198 238 22 1124433 98 

14/02/2025 38.11 102 211 38 941797 152 

15/02/2025 66.38 141 246 39 1056368 101 

16/02/2025 41.82 167 150 26 851846 178 

17/02/2025 56.4 116 176 39 903832.7 85 

18/02/2025 58.27 178 211 28 844762.4 158 

19/02/2025 32.94 123 226 20 636670.1 109 

20/02/2025 87.87 183 152 27 1005716 84 

21/02/2025 74.26 165 219 26 696540.7 83 

22/02/2025 85.76 170 221 37 517021.2 72 
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23/02/2025 82.64 114 176 27 951830.6 119 

24/02/2025 61.85 144 158 20 623977.5 66 

25/02/2025 84.53 178 211 30 1158321 116 

26/02/2025 26.19 180 186 37 1167750 95 

27/02/2025 33.72 126 246 29 1140405 104 

28/02/2025 23.17 157 200 22 759111.1 79 

29/02/2025 42.77 82 193 26 510819.6 124 

 

3.2. Statistics framework 

The optimization problem in healthcare operations involves multiple conflicting objectives that must be balanced. The 

general formulation is: 

min𝐟(𝐱) = [𝑓1(𝐱), 𝑓2 (𝐱), … , 𝑓𝑘(𝐱)] 
𝑔𝑖(𝐱) ≤ 0, 𝑖 = 1,2, … , 𝑚 

ℎ𝑗(𝐱) = 0, 𝑗 = 1,2, … , 𝑝 

𝐱 ∈ ℝ𝑛 

where: 𝑓.(𝐱) is the vector of objective functions, 𝑔𝑖(𝐱) and ℎ𝑗(𝐱) are inequality and equality constraints, respectively. A 

solution 𝐱∗ is Pareto optimal if no other solution 𝐱 exists such that: 

𝑓𝑖(𝐱) ≤ 𝑓𝑖(𝐱∗) ∀𝑖 ∈ {1,2, … , 𝑘} 

and at least one objective is strictly improved: 

𝑓𝑗(𝐱) < 𝑓𝑗(𝐱∗)  for at least one 𝑗 

The set of all Pareto-optimal solutions forms the Pareto front (Deb et al., 2002). The Non-dominated Sorting Genetic 

Algorithm II (NSGA-II) (Deb et al., 2002) is an evolutionary multi-objective optimization technique that efficiently 

approximates the Pareto front. Its key components are: 

Non-Dominated Sorting 

Solutions are ranked into fronts based on dominance: 

• Front 1: Non-dominated solutions. 

• Front 2: Solutions dominated only by Front 1. 

 

Crowding Distance 

To maintain diversity, NSGA-II uses a crowding distance metric: 

𝐶𝐷𝑖 = ∑𝑗=1
𝑘  

𝑓𝑗(𝑖 + 1) − 𝑓𝑗(𝑖 − 1)

𝑓𝑗
max − 𝑓𝑗

min
 

where: 𝑓𝑗(𝑖) is the j-th objective value of the i-th solution. 𝑓𝑗
max, 𝑓𝑗

min are the max and min values of the j-th objective. 

Tournament selection prefers solutions with better ranks and higher crowding distances and Crossover & mutation generate 

new candidate solutions. 

The model is based on integrating three conflicting operational objectives within a multi-objective programming 

framework. The goal is to achieve a balance between reducing waiting time and operational costs on the one hand, and 

increasing the number of patients treated on the other. Three main objective functions are defined, and constraints are 

derived from statistical and functional relationships between resources and actual outputs, using coefficients based on 

historical data or empirical estimates. Where : 

The variables 𝑋2, 𝑋3, 𝑋4 serve as operational constraints (capabilities and demands), and the objectives represent conflicting 

objective functions. The model is as follows: 

𝑚𝑖𝑛𝑓1(𝑋1) =. 𝑋1         (Minimize average waiting time)  
min 𝑓2(𝑋) = 𝑋5  (Minimize operating cost) 

max 𝑓3(𝑋) = 𝑋6  (Maximize number of patients treated) 
 

Constraints: 
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𝑋6 ≤ 𝛼1𝑋4 + 𝛼2𝑋3

𝑋5 = 𝛽1𝑋4 + 𝛽2𝑋3 + 𝛽3𝑋2

𝑋1 = 𝛾1 ⋅
𝑋2

𝑋4

+ 𝛾2 ⋅
𝑋2

𝑋3

𝑋𝑖 ≥ 0 ∀𝑖 ∈ {1,2,3,4,5,6}

𝑋2, 𝑋3, 𝑋4 ∈ ℕ

 

The parameters 𝛾𝑖  𝛼𝑖 𝛽𝑖 are extracted from recorded historical data. The first constraint relates the number of patients that 

can be treated to the number of doctors and beds. The second constraint calculates the daily operating cost as the sum of 

the costs of human and material resources and demand. The third constraint reflects a direct relationship between waiting 

time and demand intensity compared to the number of resources. This model is solved using the AI - NSGA-II algorithm 

in Python to generate a set of Pareto-optimal solutions, which balance conflicting objectives without imposing prior 

weights. AI - NSGA-II (Non-Dominated Sorting Genetic Algorithm II) algorithm was chosen for the following reasons : 

- Its efficiency in handling multi-objective models 

- Its ability to find Pareto-efficient solutions 

- It’s executable in Python using open libraries such as DEAP and Platypus. 

4. RESULTS 

Last part of this research shows how NSGA-II was used to analyze operational data from Tishreen University Hospital. A 

descriptive statistical approach provides initial information about the variations and distributions of operational indicators 

such as average waiting time operational costs and patient throughput numbers. After establishing statistical foundations, 

the procedure proceeds with detecting Pareto-optimal solutions that reflect the trade-offs among studied conflicting 

objectives. Hospital performance correlations with resource distribution can be evaluated through visual display techniques 

that incorporate bivariate graphs and three-dimensional graphical representations. These research findings deliver an entire 

assessment regarding how artificial intelligence-based multi-objective optimization approaches can support healthcare 

operations strategic decision systems. 

TABLE III.  DESCRIPTIVE STATISTICS OF OPERATIONAL DATA FOR THE STUDY PERIOD  

Indicator Waiting Time (minutes) Admitted Patients Available Beds Available Physicians Cost (SYP) Treated Patients 

count 60 60 60 60 60 60 

mean 52.72 137.73 198.13 29.12 861,302.4 118.08 

std 21.38 35.36 29.73 6.68 206,168.1 33.91 

min 21.44 80 150 20 503,543.1 61 

25% 32.92 111 176 23 670,418.7 89.75 

50% 51.36 140 197 28 900,824.4 112.5 

75% 69.99 167.25 221.75 36 1,011,763 152 

max 87.89 198 246 39 1,181,107 178 

 
The descriptive statistics presented in Table 2 provide a comprehensive overview of the operational data collected over the 

60-day study period at the Tishreen University Hospital Department. The results reveal significant variability across key 

performance indicators. The average waiting time per patient was 52.72 minutes, with a standard deviation of 21.38 

minutes, indicating considerable fluctuations in service delivery efficiency. The minimum and maximum waiting times 

ranged from 21.44 to 87.89 minutes, highlighting periods of both optimal performance and notable inefficiency. Daily 
patient admissions averaged 137.73, with a standard deviation of 35.36, reflecting fluctuating demand. The department 

operated with an average of 198.13 available beds and 29.12 physicians, though these resources exhibited variability (SD 

= 29.73 and 6.68, respectively). Operational costs averaged 861,302.4 Syrian dinars (SYP) per day, with a wide range from 

503,543.1 to 1,181,107 SYP, suggesting disparities in daily expenditures. The number of treated patients averaged 118.08 

daily, with a standard deviation of 33.91, underscoring inconsistencies in throughput. The quartile analysis further 

elucidates these trends. For instance, 25% of days had waiting times below 32.92 minutes, while 75% fell below 69.99 

minutes, demonstrating that a significant proportion of days experienced moderate to high delays. Similarly, the median 

values for admitted patients (140), beds (197), and physicians (28) align closely with the means, suggesting a relatively 

symmetric distribution for these variables. However, the cost and treated patient’s metrics show skewness, as evidenced 

by the disparity between median and mean values. 
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Fig. 1. Distribution Analysis of Key Operational Variables 

The distribution analysis of operational variables exists in Figure 1 for the 60-day study period from Tishreen University 

Hospital. The figure demonstrates the characteristics of each variable through three visualization methods which include 
box plots with histogram foundations and density curve features for understanding average waiting time per patient 

(minutes), daily patient admissions, available beds, available physicians, daily operational costs (SYP), and number of 

treated patients. A central line in each box points to the median while box edges demonstrate interquartile ranges (IQR) to 

evaluate both data variability and distribution symmetry. Average waiting times demonstrate a right-skewed pattern 

because extra-long durations exceeding 80 minutes exist along with a median of 51.36 minutes. The data distribution 

analysis through density plots and density curves shows multimodal patterns in daily patient arrival rates and treated patient 

totals because these variables exhibit varying demand patterns. The illustration emphasizes that available resources 

(including beds and physicians) do not correspond with operational results (such as waiting times and treated patients). The 

limited range of available physicians from 20 to 39 affects both waiting times and treatment facility capacity through the 

indicated inverse relationships. The graphical analysis supports the findings shown in Table 4 showing that multiple 

objectives must optimize these linked factors. The figure functions as an essential diagnostic method by showing 

operational challenges so it can guide the following NSGA-II modeling framework. 

TABLE IV.  TOP 10 PARETO-OPTIMAL SOLUTIONS USING AI - NSGA-II ALGORITHM 

Solution 

# 

Avg. Waiting Time 

(min) 

Operating Cost 

(SYP) 

Patients 

Treated 

Patients 

Admitted 

Beds 

Available 

Physicians 

Available 

10 21.44 744,446.7 122 120 226 36 

42 22.41 775,168.4 107 127 241 38 

58 23.17 759,111.1 79 157 200 22 

29 23.25 998,525.5 145 114 215 39 

6 24.07 1,128,051 158 105 228 31 

32 24.55 1,022,544 86 185 211 30 

56 26.19 1,167,750 95 180 186 37 

37 26.84 565,572.3 163 152 193 25 

40 28.54 670,792.8 102 113 211 39 

21 29.76 571,030.1 117 87 178 21 
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Table 4 presents the top 10 Pareto-optimal solutions derived from the NSGA-II algorithm, each representing a distinct 

trade-off between the conflicting objectives of minimizing average waiting time, reducing operational costs, and 

maximizing the number of patients treated. These solutions exemplify the principle of Pareto efficiency, where no single 

objective can be improved without compromising another. The data reveals several critical insights. First, the solution with 

the lowest average waiting time (21.44 minutes, Solution #10) achieves this efficiency at a moderate operational cost 

(744,447 SYP) and a balanced patient throughput (122 treated). Conversely, solutions prioritizing cost minimization (e.g., 

Solution #21 at 571,030 SYP) exhibit higher waiting times (29.76 minutes) and lower physician availability (21), 

underscoring the inherent trade-offs between resource allocation and service speed. Notably, Solution #6 demonstrates that 
higher costs (1,128,051 SYP) can yield superior patient throughput (158 treated) but require optimized bed and physician 

ratios (228 beds, 31 physicians). The variability in physician availability (21–39) and bed capacity (178–246) across 

solutions highlights the nonlinear relationship between resources and outcomes. For instance, Solutions #29 and #40, both 

with 39 physicians, differ in cost and waiting time, suggesting that mere increases in staff do not guarantee efficiency 

without strategic alignment with other variables. The Pareto front thus provides actionable configurations, enabling 

policymakers to select solutions tailored to specific institutional priorities—whether cost containment, patient satisfaction, 

or treatment capacity. 

The NSGA-II algorithm produces Pareto-optimal solutions which are visualized through three-dimensional scatter data 

concerning actual operational data from Tishreen University Hospital in Figure 2. The figure demonstrates how three 

opposing objectives relate to each other through their display of average waiting time (in minutes) on the X-axis while 

using daily operating cost in Syrian Dinar (SYP) on the Y-axis and patient numbers on the Z-axis. The points in this chart 

show various solutions where different trade-offs find equilibrium while neglecting any specific criterion. The intensity of 
color scheme communicates the patient treatment numbers which aids in identifying solutions with superior performance. 

The movement pattern of points exhibits discernible trade-off relationships. Solutions in the bottom front part of the graph 

achieve good patient throughput at the expense of reduced waiting times and operating costs. Multiple factors determine 

the Z-dimension placement of points with higher positions indicating enhanced treatment capacity although these 

configurations demand investment costs or prolonged wait periods. Hospital operational points are distributed across the 

assessment graph as an indication of the complex non-linear nature of hospital operations that create trade-offs between 

different measurement points. Visual data representation plays a fundamental role when administrators from hospitals want 

to assess their operational approaches within practical conditions. The decision tool provides decision support through a 

range of non-inferior options that match various healthcare priorities between cost-effectiveness and service delivery speed 

and local capacity. 

 

 
Fig. 2. 3D Visualization of Pareto Front Solutions Using AI - NSGA-II Algorithm 
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Fig. 3. Bivariate Relationship Between Average Waiting Time and Number of Treated Patients 

The graphical presentation in Figure 3 shows the relationship between waiting time and the number of treated patients 

based on solutions generated by NSGA-II algorithm from Pareto-optimal values. The line chart displays how optimized 

configurations affect both service speed and treatment volume among possible options. The graphical representation 

includes the waiting time duration in minutes on the x-axis alongside the number of daily patients on the y-axis. Hospital 

operational dynamics create a complex nonlinear pattern because there is no step-by-step monotonic relationship between 

waiting times and patient numbers. The combination of short waiting times (around 24 minutes) enables treatment centers 

to process more than 160 patients, yet there are also points with comparable or even slightly longer waiting times that result 

in considerably lower patient volumes. Available resources along with system capacity constraints act as the mediators that 

affect the speed-throughput connection in hospital services. Operational variables generate fine changes in data points 

because their sensitivity controls outcome performance. A minor extension of patient waiting times does not necessarily 

improve operational capacity because the effect may sometimes produce decreased system performance. The figure shows 

that operational configurations need individual assessment since decision-makers cannot depend on linear patterns here. 

Healthcare strategies that require NSGA-II optimization frameworks remain essential due to their ability to identify realistic 

solutions under operational limitations. 

 

Fig. 4. Operational Cost-Efficiency Frontier: Treatment Capacity vs. Daily Expenditure 
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Figure 4 showcases the two-dimensional presentation that demonstrates operating cost against patient treatment numbers 

based on NSGA-II optimized solutions. The Syrian Dinar operating costs for daily expenses appear on the horizontal x-

axis and the patient treatment numbers are shown on the vertical y-axis. The graph displays multiple feasible solutions 

which demonstrate proper allocation between health service capacity and financial expenses. The datapoints demonstrate 

irregularity because there is no simple linear or monotonic correlation. Treatment solutions under 700,000 SYP demonstrate 

cost-efficient operation by providing medical care to over 160 patients. The patient’s throughput capacity from high-cost 

configurations (over 1,100,000 SYP) remains limited, which indicates wasted resources or poor allocation of funding. 

Results demonstrate that when resource expenses rise it does not guarantee superior performance because of this non-linear 
relationship between financing and results. Blocking centers identify multiple critical financial levels which create dramatic 

impact zones on the ability to treat patients. The NSGA-II model presents solutions in clusters at different cost points 

because it maintains flexibility in finding various operational approaches with identical budget limitations. Hospital 

administrators can use this figure to make decisions through its practical functionality which demonstrates patient treatment 

enhancement versus cost-effective operational configurations. The necessary elements for healthcare resource allocation 

in limited environments include both performance benchmarking techniques and cost-benefit analysis methods. 

5. CONCLUSION 

This study demonstrated the effectiveness of integrating AI-based multi-objective optimization, specifically the NSGA-II 
algorithm, to improve operational efficiency in a large Syrian hospital using real-world data. The results confirmed that 
balancing waiting time, cost, and patient throughput can be achieved through Pareto-optimal configurations, offering 
decision-makers flexibility without imposing rigid prioritizations. The generated solution space provides actionable 
alternatives for resource allocation, capacity planning, and performance benchmarking. Future work will focus on enhancing 
the model’s predictive capability by incorporating dynamic, real-time hospital data and expanding the variable set to include 
emergency cases, surgery types, and seasonal demand fluctuations. Moreover, hybrid models combining NSGA-II with 
machine learning techniques such as neural networks or reinforcement learning could further improve adaptability and 
responsiveness in high-uncertainty environments. Finally, validation across multiple healthcare facilities will assess the 

model's generalizability and support nationwide scalability. 
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