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A B S T R A C T  
 

This paper reports a comparative analysis of four supervised machine learning algorithms: RF, SVM 
(using radial and linear kernels), Logistic Regression, and Multi-Layer Perceptron, for breast cancer 
recurrence prediction on a carefully curated clinical dataset. The data set, first collected by Royston and 
Altman and subsequently released on Kaggle, has patient age, menopausal status, tumor size, histological 
grade, lymph node status, estrogen and progesterone receptor levels, hormone therapy for treatment, 
recurrence-free survival time, and a binary recurrence outcome. The data set was then divided after the 
elimination of identifiers and z-score normalization in an 80:20 ratio using stratified sampling. Models 
were compared based on accuracy, precision, recall, F1-score, and area under the ROC curve, with RF 
and Logistic Regression having the highest test-set accuracy of 0.703. Feature significance analysis Gini 
impurity in R F, linear model absolute coefficients, and permutation importance in neural networks all 
showed lymph node count, survival time, and hormone receptor levels to be significant predictors. 
Visualized confusion matrices, ROC curves, and correlation heatmaps enhanced interpretability.  The 
results illustrate the potential of explainable machine learning to enhance individualized surveillance and 
treatment planning in breast cancer care. 

 

1. INTRODUCTION 

Breast cancer remains a formidable global health issue, the most frequently diagnosed malignancy and second most common 
cause of cancer-related death in women across the globe. In 2018, the GLOBOCAN project had projected 2.1 million new 
instances of breast cancer and 627 000 mortalities in 185 nations, demonstrating the urgent need for improved prediction 
and care [1]. Population-based screening programmers have undoubtedly reduced mortality but create ethical, psychological, 
and economic problems around overdiagnosis and individualized vs. standard screening intervals. The "My Personal Breast 
Screening" (MyPeBS) randomized trial, for example, compares the impact of risk-adapted screening on health outcomes 
with standard annual mammography, highlighting patient choice and resource use considerations [2]. Concurrently, the 
WISDOM Study will resolve disputes around imaging test frequency by comparing fixed yearly regimens to dynamic, risk-
adapted protocols [3]. Outside screening, advances in prognostic staging have been proposed to more accurately capture 
heterogeneity of breast cancer. Recent revisions to the tumor–node–metastasis (TNM) classification add additional 
biomarkers and molecular subtypes to assist individualized therapeutic choice-making [4]. Recurrence of disease is a 
continued driver of morbidity and mortality despite these advances. A population-based study with numerous cases from the 
Netherlands offered ten-year recurrence rates by subtype with the best prognosis being seen in luminal A tumors while triple-
negative and HER2-positive subtypes exhibited much higher relapse rates early on [5]. Such patterns according to subtype 
are critical in the planning of effective treatment and surveillance strategies. 
Hormone receptor status, in the form of estrogen receptor (ER) and progesterone receptor (PGR) levels, is a cornerstone of 
prognostic assessment and treatment planning. Low ER and PGR levels have been associated with unfavorable clinical 
outcome and can affect the selection of adjuvant hormone therapy regimens [6][7]. Furthermore, longitudinal comparisons 
of matched primary and metastatic lesions illustrate dynamic alterations in molecular subtype that may alter treatment 
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response and survival upon relapse, illustrating the necessity for adaptive prognostic models that can accommodate 
alterations over time in tumor biology [8]. In addition to hormone receptor–mediated phenotypes, triple-negative breast 
cancer (TNBC), which is defined as the absence of ER, PGR, and HER2 expression, is especially problematic due to its 
clinically aggressive course and relative lack of targeted therapeutic agents. Epidemiological analyses estimate that TNBC 
accounts for approximately 15 % of breast cancers with distinct demographic and recurrence patterns that demand 
personalized interventions [9][10]. 
The complexity of predicting recurrence risk has propelled the use of machine learning (ML) and artificial intelligence (AI) 
methods, which are on the cusp of being able to integrate high-dimensional clinical, pathological, and molecular data. In 
broader clinical environments, ML approaches have demonstrated high performance: convolutional neural networks perform 
best in automatic ECG-based arrhythmia classification [11], support vector machines and ensembles can predict onset of 
diabetes from usual clinical predictors [12], and probabilistic techniques capture the risk for readmission to hospital from 
electronic health records [13]. Deep learning–powered segmentation algorithms optimize anatomical structure delineation 
in medical imaging, resulting in improved accuracy in downstream diagnostic procedures [14]. AI pipelines were rapidly set 
up during the COVID-19 pandemic for viral identification from diagnostic specimens, illustrating the agility of data-driven 
approaches in disrupting public health crises [15][16]. In cancer, interpretable ML models outperformed Cox proportional 
hazards models with conventional methods by providing better discrimination and interpretable feature importance 
information. Moncada-Torres et al. demonstrated that interpretable algorithms could offer actionable prognostic information 
for survival in breast cancer, paving the way for readable decision-support tools [17]. Such solutions were later applied to 
other types of tumors such as brain tumor typing by probabilistic neural networks [18], thyroid nodule description on 
ultrasound images by AI-based diagnostic systems [19], and non-invasive diagnosis of breast cancer by infrared thermal 
imaging coupled with deep neural models [20]. Personal health data combined with supervised classifiers have led to risk of 
breast cancer predictive models, while ensemble methods forecast six-month survival in heterogeneously diagnosed cancer 
patients [21][22]. Comparative studies of supervised methods for the prediction of oral tongue cancer recurrence also 
highlight the adaptability of ML across head and neck cancers [23]. Building on this extensive body of work, our analysis 
employs a well-curated clinical data set originally constructed by Royston and Altman and subsequently made available 
through the Kaggle website. The data set contains patient-level covariates like age at diagnosis, menopausal status, tumor 
size, histological grade, number of involved lymph nodes, ER and PGR measurements, hormone therapy indicator, 
recurrence-free survival time, and binary recurrence status [24][25]. We eliminated patient identifiers and non-informative 
metadata, performed z-score normalization of continuous attributes, and substituted categorical variables with binary values 
to be compatible with ML pipelines. Our analytical pipeline encompasses training and testing four supervised classification 
models: Random Forest (RF), Support Vector Machine (SVM)  radial and linear kernel Logistic Regression (LR), and a 
Multi-Layer Perceptron (MLP) neural network. We employed an 80:20 stratified train-test split to preserve class distributions 
and prevent selection bias. Model performance was assessed in accuracy, precision, recall, F1-score, and area under receiver 
operating characteristic curve (AUC-ROC) metrics. We also challenged model behavior through confusion matrix 
visualization and performed feature importance analysis using Gini importance for RF, absolute coefficient values for LR 
and linear SVM, and permutation importance for the MLP. To elucidate data behavior, we conducted statistical distribution 
tests and computed a correlation heatmap between variables, thereby identifying potential multicollinearity and distributional 
variation between recurrence and non-recurrence groups. Combining rigorous metric testing with interpretable feature 
ranking provides insight into model performance and underlying clinical determinants of recurrence risk. 
Our results indicate that the non-linear and linear classifiers are both able to maintain effective discrimination between 
recurrence outcomes, with RF and LR always achieving superior overall performance metrics. The key predictors, which 
were lymph node status, survival time, and hormone receptor level, were all consistent with clinical knowledge, supporting 
our ML-based prognostic approach. 

2. RELATED WORK  

Machine learning–based prediction of recurrence has been studied across several malignancies with both domain specificity 
and methodological heterogeneity. Xu et al. developed and compared several algorithms such as decision trees, support 
vector machines (SVM), and ensemble models to predict tumor resection recurrence in stage IV colorectal cancer and 
achieved an AUC of 0.82 with a gradient-boosting classifier [26]. In breast carcinoma, Lou et al. employed prospective 
cohort study with logistic regression, random forest (RF), gradient boosting, and deep neural networks to predict ten-year 
postoperative recurrences and reported that ensemble methods were better in terms of sensitivity with good specificity [27]. 
Boeri et al. performed an initial evaluation of RF, SVM, k-nearest neighbors, and naïve Bayes classifiers using a breast 
cancer prognosis data set and found that RF provided the best discrimination and interpretability [28]. Yang et al. enhanced 
recurrence models by incorporating cost-sensitive learning in ensemble models and boosting early relapse prediction in 
hormone receptor–positive and –negative subtypes [29]. These advances have resulted from the convergence of scalable 
algorithms and big data infrastructure. Ngiam and Khor categorized applications of distributed computing and ML in 
healthcare provision, particularly focusing on cloud-based platforms and parallelized training of big clinical datasets [30]. 
Chen et al. demonstrated disease prediction across diverse big data sources EHRs, claims, and patient self-reported data 
employing deep belief networks and XGBoost with excellent performance on multiple endpoints [31]. Zhang et al. combined 
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structured fields (e.g., demographics, laboratory values) with free-text clinical notes employing a hybrid deep learning model 
with significant predictive accuracy improvement for postoperative complications [32]. 
Natural language processing (NLP) permitted automatically extracting recurrence events from free-text clinical text. Zeng 
et al. used conditional random fields and SVM classifiers to detect local breast cancer recurrence mentions in pathology and 
progress notes with a score of 0.87 using F1-score [33]. Karimi et al. extended this study to the domain of far recurrence 
using rule-based heuristics and neural language models on EHR stories to achieve recall of more than 90 % [34]. Datta et al. 
introduced a frame-semantic analysis of NLP architectures of cancer-related EHR information extraction, highlighting the 
importance of transfer learning and domain-adapted ontologies [35]. Extrapolation outside, Barber et al. applied a 
combination of NLP and gradient-boosting machines to predict post-surgical outcomes of ovarian cancer, emphasizing cross-
tumor generalizability [36]. Ribelles et al. integrated NLP-derived features with structured features in a machine learning 
pipeline to predict early progression in hormone receptor–positive/HER2–negative advanced breast cancer, improving time-
to-event prediction compared to clinical staging alone [37]. Reproducible and interoperable ML workflows require 
standardization of data model and coding practice. CASIDE, a FHIR-based cancer survivorship data model, was proposed 
by González-Castro et al., allowing patient-reported and heterogeneous clinical outcomes to be integrated [38]. Coding 
algorithms for the identification of comorbidities within ICD-9 and ICD-10 administrative data were designed by Quan et 
al., now standard as a prerequisite for risk adjustment for outcome modeling [39]. Algorithm choice and tuning are supported 
by sophisticated toolkits and methodological guides. Bonaccorso's introductory book canvases supervised, unsupervised, 
and ensemble approaches, giving practical guidance on feature engineering, hyperparameter optimization, and metric 
evaluation [40]. Chen and Guestrin's XGBoost algorithm has evolved into a high-performing gradient-boosting algorithm 
tuned for sparse data and distributed memory computing [41]. To manage class imbalance common in recurrence data sets, 
Chawla et al. proposed the SMOTE algorithm, which generates synthetic minority samples to improve classifier calibration 
[42]. Common packages such as scikit-learn [43] and SciPy [44] provide essential implementations of the algorithms 
alongside statistical tools for data preprocessing and model testing. 
Recent advances in deep learning have further augmented the predictive modeling armory. Kantarjian and Yu described the 
intersektion of AI, big data, and oncology, highlighting promise for perpetual learning systems [45]. Vinayak and Gilad-
Bachrach introduced DART, a dropout-augmented variant of gradient boosting that mitigates overfitting in high-dimensional 
feature spaces [46]. Tomašev et al. developed recurrent neural networks (RNNs) to forecast continuous-risk of adverse events 
from longitudinal EHR data, with real-time prognostic modeling shown [47]. Gupta et al. applied interpretable deep learning 
to predict obesity from EHRs with clinically relevant pattern extraction [48]. Pham et al. used sequence models on clinical 
data to forecast patient trajectories and attained state-of-the-art performance on multi-step prediction [49]. Shwartz-Ziv and 
Armon provided a critical evaluation of deep learning on tabular data and showed conditions under which simpler ensembles 
can outperform complex neural architectures [50]. The origins of sequence modeling e.g., bidirectional RNNs [51] and 
transformer pretraining such as BERT [52] have been extended to clinical text and time-series data to enable more robust 
feature representations. Following algorithmic developments, biomarker-driven features continue to inform recurrence risk. 
Gianni et al. identified circulating inflammatory cell profiles associated with metastatic breast cancer progression, suggesting 
potential integration with computer models [53]. Onesti et al. demonstrated that relative eosinophil counts at diagnosis and 
relapse are predictive and prognostic for outcomes in triple-negative and hormone receptor–negative/HER2–positive 
subgroups [54][55][60]. These results demonstrate the promise of multimodal information combining traditional clinical 
variables with emerging biomarkers to improve the accuracy of ML-based recurrence prediction. 

3. DATA AND METHODOLOGY 

3.1 Data  

The clinical information used in this study were obtained from the Kaggle data library of Utkarshx27, which allows access 
to the breast cancer cohort initially built by Royston and Altman to perform survival analysis [24]. The data contain patient‐
level information of women with invasive breast cancer with demographic, tumor‐related variables, and treatment indicators 
and follow‐up measures. To maintain patient confidentiality and analytical focus, all identifier fields (e.g., patient ID) were 
removed prior to analysis. Core variables retained for modeling are age at diagnosis, menopausal status (binary indicator), 
primary tumor size (in centimeters), histological grade (ordinal), number of positive lymph nodes, estrogen receptor level, 
progesterone receptor level, hormone therapy status (binary indicator), recurrence-free survival time (in days), and a binary 
recurrence outcome flag (0 = no recurrence; 1 = recurrence). Continuous measurements were normalized to z-score to 
minimize scale variations in features, and categorical or ordinal variables were translated into numerical form for machine 
learning compatibility. Figure 1 show  the overlaid kernel density estimates on the histograms are employed to contrast the 
distributions of the most significant clinical features age, tumor size, lymph node number, progesterone receptor level (PGR), 
estrogen receptor level (ER), and recurrence-free survival time between patients with recurrence (status = 1) and without 
recurrence (status = 0). The red bars and curve in every plot represent the non-recurrent group, while the recurrent group is 
represented by the blue bars and curve. Highlighting notable differences are longer tail in tumor size and node number among 
recurrences, and reduced survival times post-diagnosis. The level distributions of hormone receptors indicate more spread 
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out variation within the recurrence cohort, indicating their prognostic significance. These graphical comparisons identify 
which features vary most strongly by outcome and guide subsequent modeling.  

 

Fig. 1. Statistical Distributions by Recurrence Status. 

Figure 2 displays pairwise Pearson correlation coefficients between all clinical variables and the recurrence outcome. These 
values vary from –1 (strong negative correlation, dark blue) to +1 (strong positive correlation, dark red) and are represented 
by near zero as white. There is a moderate positive correlation between estrogen receptor and progesterone receptor levels 
(r ≈ 0.39), and there is a weak positive relationship between tumor size and node involvement (r ≈ 0.33). Recurrence status 
is inversely related to survival time (r ≈ –0.45) and directly related to node number (r ≈ 0.24). In general, the majority of 
clinical predictors have low to moderate inter-correlation, as justified by their joint employment within multivariate models. 

 

Fig. 2. Correlation Matrix of All Features. 
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Figure 3 show the  flowchart presented here depicts the sequence of data processing and modeling operations in our analysis. 
It begins with data loading and cleansing the dataset, followed by feature scaling to standardize continuous variables. The 
data are split into stratified training and test sets. Four classification models namely Random Forest, SVM, Logistic 
Regression, and MLP are trained on the preprocessed data. Finally, model performance is measured in terms of bar charts, 
confusion matrices, ROC curves, and feature importance analysis, and outcomes are displayed to be viewed and compared. 

 

 
Fig. 3. Machine Learning Pipeline Flowchart. 

3.2 Random Forest Model  

The Random Forest model constructs an ensemble of decision trees; each of which is learned on a bootstrap sample of the 
data and a random subset of features at each split [56]. This randomness reduces variance and decorrelates the trees, yielding 
stable predictions on high-dimensional clinical inputs. At test time, each tree ℎ𝑡(𝑥) votes for a single class, and the forest 
averages these votes to produce the final label. Mathematically, this predicted class is 

�̂� = arg⁡max
𝑐

 ∑  

𝑇

𝑡=1

𝐼(ℎ𝑡(𝑥) = 𝑐) 

where 𝑇 is the number of trees and 𝐼(⋅) is the indicator function. Feature importances can be quantified using mean decrease 
of Gini impurity or permutation scores, which estimate the relative contribution of each clinical variable. The ensemble has 
the ability to efficiently balance between variance and bias and also offers inherent variable relevance estimates, thus well 
suited to exploratory prognostic modeling. 

3.3 Support Vactor Machine Model  

The Support Vector Machine seeks the maximum-margin hyperplane that separates recurrence classes in feature space, 
yielding strong generalization performance [57]. In the soft-margin formulation, slack variables 𝜉𝑖 allow some 
misclassifications at a penalty controlled by 𝐶, solving 

min
𝑤,𝑏,𝜉

 
1

2
‖𝑤‖2 + 𝐶∑ 

𝑛

𝑖=1

𝜉𝑖 ⁡ s.t. ⁡𝑦𝑖(𝑤
⊤𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0 
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The dual formulation introduces Lagrange multipliers 𝛼𝑖 and a kernel 𝐾(𝑥𝑖 , 𝑥), leading to the decision function 

𝑓(𝑥) = sign(∑  

𝑛

𝑖=1

 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏) 

With a linear kernel 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
⊤𝑥𝑗, the SVM finds a global optimum efficiently, while nonlinear kernels enable complex 

boundaries. 

3.4 Multi-Layer Perceptron Neural Network Model 

The Multi-Layer Perceptron neural network comprises sequential layers of neurons with nonlinear activation functions, 
enabling the capture of complex relationships [58]. At layer 𝑙, the hidden activations are computed as 

ℎ(𝑙) = 𝜎(𝑊(𝑙)ℎ(𝑙−1) + 𝑏(𝑙)) 

with ℎ(0) = 𝑥. For an 𝐿-layer network, the output before activation is 

𝑧(𝐿) = 𝑊(𝐿)ℎ(𝐿−1) + 𝑏(𝐿) 

and the predicted probability is �̂� = 𝜎(𝑧(𝐿)). Training minimizes the cross-entropy loss 

𝐿(𝜃) = −∑ 

𝑛

𝑖=1

[𝑦𝑖log⁡�̂�𝑖 + (1 − 𝑦𝑖)log⁡(1 − �̂�𝑖)] 

with gradients computed by backpropagation and parameters updated via optimizers such as Adam or SGD. Hyperparameter 
tuning of layer sizes, learning rates, and regularization is critical for optimal performance. 

3.5 Logistic Regression Model 

Logistic Regression models the log-odds of recurrence as a linear combination of features, estimating weights by 

maximizing the conditional likelihood [59]. The probability of recurrence is given by the logistic function. 

𝑃(𝑦 = 1 ∣ 𝑥) =
1

1 + exp⁡(−𝑤⊤𝑥 − 𝑏)
 

where 𝑤 and 𝑏 are learned parameters. Classification is achieved by thresholding �̂� at 0.5. The loss minimized during 

training is the negative log-likelihood 

𝐿(𝑤, 𝑏) = −∑ 

𝑛

𝑖=1

[𝑦𝑖log⁡�̂�𝑖 + (1 − 𝑦𝑖)log⁡(1 − �̂�𝑖)] 

optionally augmented with L1 or L2 regularization to prevent overfitting. This model offers direct interpretability through 

its coefficient estimates. 

4. DISCUSSION  

All the data preprocessing, model training, and visualizations were performed using Python 3.8 with pandas, numpy, scikit-
learn, matplotlib, and seaborn libraries. The dataset was split into stratified training (80 %) and testing (20 %) sets after 
standardization of continuous features and binary feature encoding. Figure 4 show the  grid of Confusion Matrices depicts 
how each algorithm classifies non-recurrence (actual 0) and recurrence (actual 1) instances. 58 true negatives and 39 true 
positives in the Random Forest matrix indicate good overall discrimination, with the 10 false positives and 31 false negatives 
indicating a modest misclassification rate. The SVM confusion matrix indicates similar true negatives but an inordinately 
high rate of false negatives (34) and fewer true positives (36) which is characteristic of its moderate sensitivity. Logistic 
Regression correctly identifies 55 non-recurrence and 42 recurrence instances, compromising on sensitivity and specificity, 
whereas the MLP neural network scores 43 true positives but with more false positives (18), which means that its nonlinear 
decision boundary can learn intricate patterns but may overestimate recurrence in some instances. 
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Fig. 4. Confusion Matrices for Classification Models. 

Figure 5 show the  accuracy, precision, recall, and F1-score of the positive class (recurrence) are plotted against the four 
models in the bar chart. Random Forest has the best accuracy (≈0.80) but the worst recall (≈0.56), which indicates 
conservative positive predictions. SVM also has similar tendencies with lower values. Logistic Regression has the best 
balance, where it has the highest F1-score (≈0.67) from moderate recall and accuracy. The MLP network has consistent but 
slightly worse results in all metrics (≈0.67 accuracy, precision, and F1-score), reflecting its capacity to learn nonlinear 
interactions at the price of requiring careful regularization. 

 

Fig. 5. Model Performance Comparison. 

Figure 6  show The ROC plot puts true positive versus false positive rates for all classifiers on top of each other, with the 
diagonal representing random chance. Logistic Regression has the highest area under curve (≈0.79), representing improved 
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discrimination between recurrent and non-recurrent patients. SVM follows next (≈0.77), then Random Forest and the MLP, 
both with AUCs of approximately 0.74. The sharper early slope of the Logistic Regression curve indicates its ability to 
identify a large proportion of true positives with low false positives at a variety of thresholds. 

 

Fig. 6. ROC Curves for Classification Models. 

This combined plot displays four panels of feature importance: Gini importance for Random Forest, absolute coefficients 
for Logistic Regression, linear SVM, and permutation importance for the MLP. Overall across all of the methods, recurrence-
free survival time is the best predictor. Lymph node status is always second, with hormone receptor level and tumor size 
third. The stability of the order of importance across different algorithms demonstrates the robustness of these clinical 
variables as predictors in prognostic modeling and their central role in the prediction of breast cancer recurrence. 

 

 

Fig. 7. Feature Importance Rankings Across Models. 
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5. CONCLUSIONS 

In this paper, we demonstrated the utility of machine learning–based classification models in predicting recurrence of breast 
cancer from a well-curated clinical dataset first aggregated by Royston and Altman and made available on Kaggle. By 
employing and rigorously comparing four various algorithms Random Forest, Support Vector Machine with radial and linear 
kernels, Logistic Regression, and Multi-Layer Perceptron network we have provided a comprehensive comparison of their 
comparative strengths in accuracy, precision, recall, F1-score, and area under the ROC curve. Our findings show that 
Random Forest and Logistic Regression uniformly performed better than the rest on the hold-out test set, with overall 
accuracies of 0.703, while Random Forest performed best in precision (0.796) and Logistic Regression provided the best F1-
score (0.672). Among the major conclusions of our analysis are the high significance of common clinical features particularly 
lymph node status, time to recurrence-free survival, and hormone receptor concentration in determining proper classification. 
Notably, feature importance analyses, conducted via Gini impurity for Random Forest, absolute coefficient values in linear 
models, and permutation importance in the neural network, all pointed to these variables as the most informative variables. 
This alignment underpins existing clinical understanding of recurrence risk factors and identifies the potential of explainable 
machine learning to complement traditional prognostic models. Besides class accuracy, the paper demonstrates several 
methodological contributions. First, the preprocessing pipeline identifier removal, z-score normalization of numerical 
variables, and binary encoding of categorical variables is clean and easy to integrate in different analytical frameworks for 
reproducibility. Second, use of stratified sampling to ensure class balance across train-test splits mitigates performance 
estimate bias. Third, the collection of visualizations offered confusion matrices, ROC curves, statistical distribution plots, 
and correlation heatmaps offers a principled but simple model interpretation and error analysis tool. Although these are 
strengths, a couple of limitations need to be remembered. The dataset, although clinically useful and available, is quite small 
and lacks complementary genomic or imaging biomarkers that can further place recurrence risk stratification into context. 
The binary recurrence outcome also aggregates heterogeneous events with varying follow-up durations; future research 
should employ time-to-event modeling frameworks to borrow the time aspect of relapse. Another limitation is permutation-
based feature importance for the MLP network, albeit that it can be insightful, because it can be affected by highly correlated 
predictors and can be enhanced with SHAP (SHapley Additive exPlanations) analysis or layer-wise relevance propagation 
to return more nuanced attributions. 
The future holds a few directions for extending this research. Integration of multiple-modal data sources such as gene-
expression profiles, radiomic features derived from mammography or MRI, and digital pathology features can further 
improve discriminative model performance and uncover novel synergistic biomarkers. Ensemble and hybridized 
architectures combining linear, tree-based, and neural components can also further boost predictive calibration and 
robustness. Additionally, future confirmation on distinct, multi-institutional cohorts will be required to establish 
generalizability and to create clinical utility. Finally, incorporating such predictive models into decision-support software 
and electronic health record pipelines could facilitate real-time risk stratification, adaptive surveillance scheduling, and 
treatment adjustment.. 
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