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A B S T R A C T  
 

This paper introduces a novel decision-making framework based on the Fuzzy MARCOS method for 
prioritizing maintenance of urban bridges under environmental stressors. Using a real-world SHM time-
series dataset from Kaggle, four key criteria—degradation score, forecasted condition score, humidity, 
and wind speed—were analyzed. Fuzzy triangular weights were applied to capture uncertainty, and 
MARCOS scores were computed for each bridge. Bridge 23 achieved the highest score (0.926), while 
Bridge 36 ranked lowest (0.317). A strong positive correlation (R = 0.84) between MARCOS scores 
and forecasted condition confirms the model’s reliability. Sensitivity analysis on humidity weight 
showed minimal impact on ranking, indicating robustness. The approach enables scalable, interpretable, 
and sensor-driven maintenance planning, with potential for future expansion to include real-time 
streaming, traffic loads, and image-based diagnostics. 

 

1. INTRODUCTION 

The aging of civil infrastructure, particularly bridges, has emerged as a critical global concern due to the increasing risk of 

structural failures, disruptions to transportation networks, and the mounting costs of rehabilitation. As urban populations 

continue to rise and vehicular traffic volumes grow, the demand on transportation infrastructure, especially bridges, 

intensifies—both in frequency of use and exposure to dynamic stressors such as environmental loads, temperature 

variations, and material fatigue. Governments and city planners around the world are consequently prioritizing efforts to 

implement proactive maintenance and safety monitoring systems. Within this landscape, the real-time monitoring of bridge 

health has become not only a technological aspiration but a practical necessity for ensuring public safety, optimizing 

infrastructure budgets, and enabling data-informed decision-making [1]. 
Bridges are subjected to a wide array of structural stressors throughout their operational life. These include both mechanical 

influences, such as vibration from traffic loads, and environmental stressors, such as humidity, temperature, and wind. The 

traditional approach to assessing bridge condition has largely relied on periodic visual inspections, manual assessments, 

and reactive maintenance, which are often insufficient in capturing real-time deterioration processes or early-stage 

degradation. The tragic collapse of major bridges in recent decades—such as the I-35W Mississippi River Bridge in the 

United States and the Ponte Morandi in Italy—has underscored the limitations of outdated inspection regimes and the 

pressing need for continuous, sensor-based structural health monitoring (SHM) systems [2], [3]. 

SHM employs embedded sensors to record and transmit real-time data on key indicators of structural behavior and 

environmental context. Among the most relevant variables in the context of bridges are vibrational accelerations (x, y, z 

axes), temperature, humidity levels, wind speed, and derived indicators such as fast Fourier transform (FFT) magnitudes, 

degradation scores, and forecasted condition estimates. These data streams allow engineers to assess not only the current 
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state of the infrastructure but also to predict future deterioration, thus enabling predictive maintenance [4], [5]. However, 

while SHM systems generate abundant and rich data, their full potential is often underutilized in decision-making processes. 

Most bridge authorities still rely on basic thresholding and rule-based diagnostics rather than advanced analytical methods 

that can handle uncertainty, weigh multiple conflicting criteria, and generate interpretable prioritizations [6]. 

A central limitation in current decision frameworks is their inability to integrate multiple, often conflicting criteria while 
accounting for environmental variability and uncertainty. In real-world settings, a bridge may exhibit a moderate level of 

structural degradation but be located in an environment with high humidity and wind stress, which can accelerate 

deterioration. Conversely, another bridge might show higher vibration amplitudes due to traffic, but be in a dry, stable 

climate. In both cases, assigning maintenance priority based solely on a single metric like degradation score or vibration 

amplitude fails to reflect the complexity of structural performance under real-world conditions. Furthermore, many 

traditional Multi-Criteria Decision-Making (MCDM) methods, such as Analytic Hierarchy Process (AHP) or standard 

TOPSIS (Technique for Order Preference by Similarity to Ideal Solution), assume deterministic inputs and fail to capture 

the fuzziness inherent in SHM data, such as sensor noise, variable measurement frequency, or ambiguity in expert-assigned 

weights [7], [8]. 

In response to these gaps, this study proposes a novel framework based on the Fuzzy MARCOS method—a relatively 

recent MCDM technique designed to account for both quantitative performance and decision uncertainty. MARCOS, which 

stands for Measurement Alternatives and Ranking according to Compromise Solution, evaluates alternatives based on their 
distances from ideal and anti-ideal solutions in a normalized decision matrix. By integrating fuzzy logic into this approach, 

we further allow for the expression of subjective uncertainties in weight assignments and measurement tolerances in sensor 

data, providing a more robust and realistic assessment of bridge health status [9]. 

The specific contribution of this study lies in applying fuzzy-weighted MARCOS to a comprehensive SHM dataset of 

urban bridges, in order to derive a ranked list of bridges based on their overall condition and vulnerability to environmental 

stressors. The methodology involves four key criteria—degradation score and forecasted condition score (treated as benefit 

criteria), and humidity and wind speed (treated as cost or stressor criteria). These are normalized using min-max scaling, 

weighted using triangular fuzzy numbers to reflect expert uncertainty, and then evaluated using the MARCOS scoring 

process. The final output is a ranked prioritization of bridges based on composite fuzzy scores, which can be directly used 

by infrastructure planners to schedule inspections, allocate budgets, or initiate rehabilitation measures. 

The research is further guided by two core questions: 
1. Can fuzzy logic improve decision-making on bridge maintenance compared to deterministic ranking models? 

2. How do environmental parameters such as humidity and wind influence bridge condition scores in a multi-criteria 

evaluation framework? 

To answer these questions, we utilize a high-quality SHM dataset containing time-series sensor records from multiple urban 

bridges, publicly available on Kaggle. This dataset includes bridge-level sensor readings for accelerations, environmental 

stressors, FFT peaks, and structural degradation indicators. By implementing fuzzy MARCOS on this dataset, we 

demonstrate how a robust, interpretable, and scalable ranking can be generated from noisy, multi-dimensional data. 

Additionally, we perform sensitivity analysis on fuzzy weight assignments (particularly for humidity) to evaluate the 

robustness of the ranking system against parameter variation [10]. 

The broader implications of this work extend beyond bridge ranking alone. As cities increasingly invest in smart 

infrastructure and the Internet of Things (IoT) for asset monitoring, the ability to interpret and act on sensor data becomes 

crucial. Fuzzy MCDM models such as the one proposed here can be easily adapted to other types of civil assets—such as 
tunnels, dams, or road networks—where decisions must be made under uncertainty and multiple performance dimensions 

must be considered. 

In summary, this paper introduces a practical and theoretically grounded solution to a pressing infrastructure problem: how 

to rank and prioritize bridge maintenance using uncertain, multi-modal sensor data. Through the use of fuzzy MARCOS, 

we provide a decision-support tool that not only respects the complexity of real-world bridge behavior but also enables 

transparent, justifiable prioritization under competing stressors. This approach advances the frontier of SHM-based 

decision-making and paves the way for more intelligent and risk-aware infrastructure management strategies. 

2. LITERATURE REVIEW  

2.1 Overview of MCDM Techniques in Civil Engineering 

Multi-Criteria Decision-Making (MCDM) techniques have become indispensable in civil engineering for tackling problems 

involving competing criteria, such as safety versus cost, or durability versus environmental exposure. Classical 

approaches—such as the Analytic Hierarchy Process (AHP), Technique for Order Preference by Similarity to Ideal Solution 

(TOPSIS), and VIKOR—have long been employed to support structural optimization, safety evaluation, and maintenance 
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prioritization. These methods enable engineers to convert subjective assessments and semi-quantitative inputs into 

formalized decision hierarchies or rankings, facilitating systematic judgment under complex constraints. 

With the increasing complexity of civil infrastructure and the surge in high-dimensional data from structural monitoring 

systems, traditional crisp MCDM methods have shown limitations. In response, researchers have progressively integrated 

fuzzy logic, grey relational analysis (GRA), and soft computing techniques into the MCDM domain. For instance, fuzzy 
AHP models have been used in tandem with GRA to support nuanced evaluations of infrastructure components, allowing 

incorporation of expert judgment alongside uncertain or noisy sensor data [11]. 

In particular, the fuzzy extension of the MARCOS (Measurement Alternatives and Ranking according to the COmpromise 

Solution) method has garnered attention for its capacity to accommodate both benefit and cost-type criteria through 

normalized decision matrices and fuzzy weightings. Unlike traditional techniques, the Fuzzy MARCOS method explicitly 

represents uncertainty via triangular fuzzy numbers, enabling decision-makers to account for ambiguity in input variables 

and preferences. Its application in structural ranking—especially in scenarios involving diverse environmental stressors—

offers practical value for infrastructure maintenance planning. 

2.2 Role of Sensor-Based SHM Data in Bridge Prioritization 

The deployment of Structural Health Monitoring (SHM) systems has transformed the field of civil infrastructure 

maintenance. These systems typically comprise a network of distributed sensors—such as accelerometers, temperature 

probes, strain gauges, and humidity sensors—designed to continuously record the state and stress responses of bridge 

structures. By providing real-time data streams, SHM systems allow for condition-based maintenance and early fault 

detection. 

Recent research has focused on optimizing the placement and functionality of SHM sensors to improve coverage and 

minimize redundancy. One study introduced a multi-objective hypergraph particle swarm optimization (MOHGPSO) 

algorithm, integrated with fuzzy logic and GRA, to optimize sensor layout in mechanical systems [12]. While initially 

designed for components like airplane wings, the underlying principles are directly transferable to civil structures such as 

bridges. 

Beyond sensor deployment, researchers have explored the integration of SHM data with digital environments. For instance, 

Building Information Modeling (BIM) has been utilized to develop hybrid platforms that link structural geometry with live 
sensor data. One such framework, applied to butterfly-arch bridges, included hierarchical data caching and visualization 

tools to improve damage detection and response strategies [13]. 

Fuzzy comprehensive evaluation models have further enhanced the interpretability of SHM data in safety assessments. 

These models often employ multi-layered fuzzy matrices and the Delphi method for expert weight assignment. When used 

in urban bridge assessments—for example, across the Beijing Metro Line—such models facilitated near real-time 

inspection scheduling and repair prioritization [14]. Their ability to translate sensor anomalies into actionable condition 

grades represents a significant advance in bridge asset management. 

The present study uses SHM data to assess bridge conditions across four criteria: degradation score, forecasted condition, 

humidity, and wind speed. This data-centric evaluation is supported by visualizations such as Figure 1 and Figure 2, which 

illustrate the structural and environmental condition landscape across the study set. 

 

 
Fig. 1. Structural condition distribution by bridge ID. 
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This figure demonstrates the uneven distribution of bridge conditions categorized as 'Good', 'Fair', and 'Poor'. For example, 

bridge B002 shows a relatively high count of 'Good' ratings, whereas B010 exhibits a greater concentration in the 'Poor' 

category, highlighting the need for targeted intervention strategies. 

 
Fig. 2. Correlation heatmap of SHM features. 

 

The matrix reveals a strong positive correlation between degradation score and forecasted condition (r ≈ 0.98), suggesting 

alignment between current and future structural assessments. In contrast, humidity and wind show weak or negative 

correlations with these metrics, supporting their classification as cost-type criteria in the fuzzy MARCOS framework. 

These visual insights justify the integration of both physical condition indicators and environmental stressors in bridge 

prioritization models. 

2.3 Comparison of Classical vs Recent MCDM Methods 

Traditional MCDM frameworks such as AHP, TOPSIS, and VIKOR have been widely applied in infrastructure assessment, 

particularly for developing priority rankings for maintenance and upgrades. These methods rely on deterministic 

assumptions: crisp input values, linear scoring mechanisms, and fixed weights for decision criteria. While they offer 

simplicity and transparency, their rigidity makes them ill-suited for modern SHM datasets, which are inherently noisy and 

subject to temporal fluctuations. 

To bridge this gap, newer MCDM variants have been proposed that incorporate fuzzy logic and hybrid modeling. Fuzzy 

TOPSIS and fuzzy VIKOR, for instance, allow for partial membership values and linguistic weight expressions, helping to 

better reflect real-world uncertainty. Similarly, the fuzzy Evaluation Based on Distance from Average Solution (EDAS) 

method improves resilience to outliers by focusing on average-based normalization. 
Nonetheless, these enhanced methods often come with increased computational complexity or limited interpretability when 

scaled to large systems. In contrast, the Fuzzy MARCOS method provides a more balanced solution. It leverages a 
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normalized utility framework, where alternatives are assessed relative to both ideal and anti-ideal solutions. Through 

triangular fuzzy number modeling, it incorporates uncertainty in both input data and expert-derived weights. 

In bridge safety applications, this has shown to be effective. One study demonstrated that a combined fuzzy AHP and fuzzy 

MARCOS model could successfully rank small-box girder bridges by integrating both SHM data and expert feedback [15]. 

The model’s ranking aligned closely with observed deterioration trends, suggesting that the fuzzy MARCOS approach may 
serve as a reliable proxy for ground-truth condition assessments. 

2.4 Justification for Using Fuzzy MARCOS in Bridge Assessment 

The selection of Fuzzy MARCOS for the present study is rooted in its suitability for complex decision environments marked 

by imprecise data and multiple conflicting objectives. Unlike classical models that operate on crisp values and predefined 

preferences, Fuzzy MARCOS allows decision-makers to encode ambiguity through triangular fuzzy numbers—flexibly 

representing uncertainty in condition metrics, environmental stressors, and criteria importance. 

Its dual-reference structure—evaluating alternatives against both ideal and anti-ideal benchmarks—offers nuanced 

compromise rankings. This is essential in scenarios where trade-offs are unavoidable. For instance, a structurally sound 

bridge may be situated in an environment with extreme humidity and wind exposure. Fuzzy MARCOS would assign it a 
moderate utility score, acknowledging both its resilience and its future risk. Such realism enhances the method's credibility 

in real-world decision-making. 

Moreover, the model accommodates both benefit and cost-type criteria in a normalized structure. This is particularly 

valuable in SHM contexts, where inputs span multiple units and scales—e.g., vibration intensity (g), humidity (%RH), and 

degradation score (unitless). Fuzzy weights further allow for integration of subjective assessments when data are 

insufficient or expert insight is critical. 

In this study, the chosen criteria—degradation score, forecasted condition, humidity, and wind speed—reflect both 

structural health and environmental stressors. Their interdependencies, as illustrated in Figure 2, reveal the multifactorial 

nature of bridge condition rankings. For example, while degradation and forecasted scores are strongly aligned, humidity 

shows inverse correlations, validating its role as a cost-type criterion. 

Prior work has applied similar fuzzy MARCOS frameworks to rank civil assets under multi-criteria conditions. One study 

combined normalized condition metrics with environmental data to rank bridges and validated the model's outputs using 
observed degradation rates [16]. The high correlation between the fuzzy MARCOS utility scores and empirical failure 

patterns suggested that the model is not only interpretable but also predictively robust. 

2.5 AI/ML and Hybrid Intelligence in SHM 

The integration of AI/ML with SHM has greatly enhanced the interpretability and responsiveness of condition-based 

infrastructure assessment. Methods such as SVM, decision trees, and artificial neural networks have been widely adopted 

to model and predict structural degradation based on time-series SHM data. These methods provide predictive accuracy 

exceeding that of classical engineering models, as they learn patterns and nonlinear dependencies from historical data. 

Deep learning-based approaches have been used for various SHM tasks, including crack detection, vibration-based damage 

localization, and condition prediction [17]. For example, CNNs have been used to process image data to identify surface-
level defects, and LSTM networks have been applied to time-series SHM data to predict degradation. These predictions 

can be used as inputs to higher-level decision models such as Fuzzy MARCOS, thus creating a closed-loop system from 

sensing to prioritization. 

In addition, explainable AI (XAI) tools such as SHAP (Shapley Additive Explanations) and LIME have been employed to 

explain the outputs of ML models. SHAP was applied in one analysis to investigate the compressive strength of graphene-

modified composites, which found nanoplatelet thickness and curing time to be the most influential parameters [18]. This 

enhanced interpretability improves the usability of AI models within engineering decision-making, where model 

transparency is critical for adoption by practitioners. 

Fuzzy logic-based intelligent control has also shown promising results in SHM, and hybrid systems that combine fuzzy 

logic with evolutionary optimization methods have been increasingly adopted. One notable approach combined ANFIS 

with MOPSO to model the dynamic behavior of buildings under seismic loading. This hybrid model allowed for the 
implementation of linguistic uncertainty, nonlinear structural response, and optimization of system parameters [19]. Such 

systems are highly compatible with the Fuzzy MARCOS approach, especially when sensor reliability and environmental 

variability are key concerns. 

2.6 Drawbacks of Traditional MCDM for Civil Engineering Data 

Although they are foundational, classical MCDM techniques have well-documented limitations when applied in civil 

engineering contexts. Chief among these are the assumptions of precise numerical input and deterministic weighting rules. 

In reality, SHM data are rarely precise. Sensor drift, environmental noise, data gaps, and calibration errors all introduce 
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significant uncertainty into the raw inputs. Classical methods, such as AHP or deterministic TOPSIS, do not account for 

such uncertainties and may produce misleading or brittle ranking outcomes. 

In addition, traditional approaches often assume that decision criteria are independent. In SHM-based bridge assessment, 

this assumption is problematic, as strong interdependencies may exist (e.g., the predicted condition may depend on both 

current degradation and environmental loading). Failing to account for these correlations can lead to distorted rankings and 
overly simplistic prioritization strategies. 

Fuzzy MCDM methods address these limitations by allowing partial membership in multiple categories, the use of 

linguistic variables, and the propagation of uncertainty throughout the model. In this way, they offer a more realistic 

description of the complexities inherent in civil infrastructure assessment. The Fuzzy MARCOS approach, in particular, 

stands out by evaluating alternatives relative to both ideal and anti-ideal points, generating a utility score that reflects 

compromise under uncertainty. 

2.7 Development of the MARCOS Technique for Structural Evaluation 

The original MARCOS method, developed as a compromise-ranking technique by Vento and Ermagun (2014), has evolved 

into a powerful MCDM tool for handling both benefit and cost-type criteria. Its distinguishing feature is the calculation of 
utility for each alternative based on its relative distance to the ideal and anti-ideal reference points. Unlike TOPSIS or 

VIKOR, MARCOS explicitly incorporates both extremes in its evaluation, offering more nuanced interpretive insights. 

The Fuzzy MARCOS method extends this approach by incorporating fuzzy logic into both the decision matrix and the 

weight vector using triangular fuzzy numbers. This allows decision-makers to model uncertainty in both data and 

preferences. For example, an expert may rate humidity’s importance as "high" without assigning a specific numeric value. 

This imprecision is captured by a fuzzy number such as (0.6, 0.8, 1.0), which reflects a realistic range of possible importance 

weights. 

Fuzzy MARCOS has been increasingly applied in civil engineering domains such as structural component ranking, 

maintenance scheduling, and urban asset prioritization. One study found that Fuzzy MARCOS produced more stable and 

interpretable rankings than Fuzzy TOPSIS when used on infrastructure datasets with missing values and uncertain weights 

[20]. 

In bridge assessment, Fuzzy MARCOS provides several advantages. It allows consistent treatment of diverse criteria, 
enhances transparency via intermediate outputs (e.g., normalized values, weighted matrices), and accommodates mixed 

data types, including numerical sensor outputs and linguistic expert evaluations. Its flexibility and clarity make it suitable 

for high-stakes infrastructure decision-making under uncertainty. 

2.8 Integration with Sensor-Derived Metrics 

SHM datasets often consist of continuous time-series measurements that capture real-time structural responses. These 

include vibration magnitudes, FFT peaks, humidity levels, wind speed, and calculated degradation indices. Fuzzy 

MARCOS is particularly well-suited for this type of data due to its ability to normalize heterogeneous variables and apply 

fuzzy weighting schemes. 

In this study, four criteria were selected from the Kaggle SHM dataset: degradation score and forecasted condition (as 
benefit criteria), and humidity and wind speed (as cost criteria). These selections were informed by both domain knowledge 

and correlation analysis. As shown in Figure 2, degradation and forecast scores exhibit a strong positive correlation (r ≈ 

0.98), indicating mutual reinforcement in assessing bridge condition. In contrast, humidity and wind speed show low or 

negative correlations with these structural indicators, confirming their roles as stressors rather than performance enhancers 

[21]. 

Applying Fuzzy MARCOS to this dataset enables an integrated ranking approach that considers both intrinsic structural 

health and extrinsic environmental load. It also supports the identification of cases where structural condition may be 

overestimated or underestimated due to masking effects caused by environmental variability [22]. 

2.9 Comparative Robustness and Interpretability 

In MCDM applications, robustness and interpretability are critical. Decision-makers must trust the ranking system not only 

for its outputs but also for its computational logic. Fuzzy MARCOS addresses this need by providing a transparent ranking 

pipeline, where normalized scores, fuzzy weights, and utility values are accessible for review. 

Sensitivity analysis is essential for validating robustness. By varying fuzzy weights—for example, adjusting the importance 

of humidity from (0.6, 0.8, 1.0) to (0.4, 0.6, 0.8)—one can assess the stability of the rankings. As shown in Figure 10, the 

MARCOS scores remained stable despite changes in humidity weights, indicating high model robustness. 

Moreover, Fuzzy MARCOS helps reduce the impact of outliers. For instance, an unusually high wind speed due to a short-

lived gust or a faulty sensor reading is moderated through fuzzy logic and normalization. This is especially important in 

SHM applications, where outliers can lead to false alarms in deterministic models. 
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Interpretability is further enhanced through decomposition of the utility score. Each bridge receives a fuzzy utility value 

that reflects its relative performance across all criteria compared to the best and worst cases. These values can be visualized 

using bar charts, heatmaps, or scatter plots, which support stakeholder understanding and enable evidence-based decision-

making [23–25]. 

2.10 Visualization-Driven Model Validation 

The use of data visualizations is essential in validating model assumptions and outcomes. Figures generated in this study 

not only support analytical findings but also serve as communicative tools for interdisciplinary teams. 

Figure 1, for instance, shows the structural condition distribution by bridge ID, highlighting clusters of bridges in poor or 

fair condition. This visualization supports targeted interventions and preemptive inspection scheduling. Figure 2, the 

correlation heatmap, informs the selection of cost and benefit criteria by revealing the relational strength among key 

variables. 

Subsequent figures in the results section—such as the top-10 ranked bridges, boxplots by structural condition, and 

MARCOS-to-forecast score scatter plots—demonstrate the alignment of model outputs with structural performance 

expectations. In particular, bridges with low forecasted condition scores also received low MARCOS rankings, affirming 
the model’s validity. These visuals are critical for communicating technical insights to policymakers and non-technical 

stakeholders[26]. 

2.11 Broader Applications and Future Directions 

The fuzzy MARCOS framework demonstrated in this study has wider applicability beyond bridge assessment. It can be 

extended to any decision-making problem involving: 

1. Multiple conflicting criteria, 

2. Data uncertainty or fuzziness, and 

3. A need for interpretable, justifiable rankings. 

Potential domains include urban infrastructure prioritization (e.g., road resurfacing, tunnel maintenance), disaster risk 
management (e.g., flood-prone structures), and even energy infrastructure (e.g., ranking wind turbines by performance and 

fatigue exposure). The adaptability of fuzzy MARCOS to include additional criteria—such as lifecycle cost, traffic volume, 

seismic vulnerability, or carbon emissions—makes it a flexible decision-support tool. 

Future research could explore real-time deployment of the fuzzy MARCOS model using streaming SHM data. Integrating 

reinforcement learning to dynamically update weights, or coupling MARCOS with explainable AI (e.g., SHAP values) 

could further enhance decision transparency and responsiveness. Additionally, image-based metrics from drones or vision-

based crack detection could serve as new input features, enriching the data pool for structural condition assessment[27]. 

3. METHODOLOGY  

3.1 Dataset Overview 

This study utilizes the publicly available “Aging Bridge SHM Time Series” dataset from Kaggle, which contains sensor-

derived structural and environmental condition records for multiple urban bridges. The dataset includes time-series 

measurements of degradation scores, forecasted condition values, and environmental stress indicators such as humidity and 

wind speed. These variables provide an empirical foundation for modeling bridge vulnerability and ranking structural 

performance under varying stressors. The dataset comprises over 1300 records, each representing a temporal snapshot of a 

given bridge’s condition profile [28-30]. 

3.2 Preprocessing 

To prepare the dataset for Multi-Criteria Decision-Making (MCDM) analysis using the Fuzzy MARCOS approach, the 

following preprocessing steps were applied: 

3.2.1 Feature Selection 

Four evaluation criteria were selected based on their relevance to structural condition assessment and environmental 

exposure: 

 Degradation Score – Quantifies cumulative damage or wear (Benefit Criterion) 

 Forecast Score (Next 30 Days) – Predictive score of future structural integrity (Benefit Criterion) 

 Humidity (%) – Environmental stress factor known to accelerate material deterioration (Cost Criterion) 

 Wind Speed (m/s) – External stressor contributing to fatigue and dynamic loads (Cost Criterion) 
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3.2.2 Normalization 

Each of the four features was normalized using min-max scaling to bring values into a [0, 1] range. This is essential in 

MCDM to ensure comparability across features with different physical units and ranges. For benefit criteria, the 

normalization formula used is: 

 
For cost criteria, the inverse formula was applied: 

 
This ensures that for all normalized values, higher is better, which aligns with the MARCOS utility scoring framework. 

3.3 Fuzzy Weight Assignment 

To incorporate uncertainty in the relative importance of decision criteria, triangular fuzzy numbers (TFNs) were employed. 

These allow the expression of subjective or uncertain weight values in the form: 

 
Where: 

 
The following fuzzy weights were assigned based on expert judgment: 

 
 

These fuzzy weights reflect uncertainty in environmental impact modeling, particularly the relatively subjective effect of 

humidity and wind on degradation acceleration. 

3.4 Fuzzy MARCOS Method 

The Measurement Alternatives and Ranking according to the Compromise Solution (MARCOS) method evaluates each 

alternative’s proximity to the ideal and anti-ideal solutions in a normalized, weighted decision space. By integrating fuzzy 

logic, the model handles uncertainty in weights and data with improved robustness. 

Step 1: Normalize Decision Matrix 

All alternatives (bridge observations) were normalized as described in Section 3.2.2. 

Step 2: Apply Fuzzy Weights 

The normalized decision matrix is element-wise multiplied with the fuzzy weights to obtain a fuzzy weighted matrix: 

 
Step 3: Define Ideal and Anti-Ideal Alternatives 
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These two synthetic alternatives are added to the decision matrix. 

Step 4: Aggregate Fuzzy Scores 

The fuzzy utility degree for each alternative is computed as the ratio of its total weighted value to that of the ideal and anti-

ideal alternatives: 

 
This results in a fuzzy score represented as a triangular number. 

Step 5: Defuzzification and Ranking 

To convert fuzzy scores into crisp values for ranking, the center of gravity defuzzification method is used: 

 

 

3.5 Summary of the Model Pipeline 

The complete model pipeline is visualized below: 

Raw Data → Normalize → Apply Fuzzy Weights → Aggregate Scores → Compute Fuzzy Utility (K_i) → Defuzzify → 
Rank Bridges 

This pipeline was implemented using Python, leveraging pandas, numpy, and custom fuzzy logic functions to handle TFNs, 

normalization, and utility computation. 

4. RESULTS  

The application of the Fuzzy MARCOS (Measurement Alternatives and Ranking according to Compromise Solution) 

method on the structural health monitoring (SHM) dataset enables a nuanced analysis of urban bridge conditions under 

environmental stressors. The results provide insights into bridge prioritization based on composite scores derived from 

degradation indicators, forecasted condition metrics, and environmental parameters like humidity and wind speed. This 

section presents and interprets the numerical and visual outcomes of the fuzzy multi-criteria analysis. 

4.1 Ranking of Bridges Based on Composite MARCOS Scores 

The primary output of the fuzzy MARCOS model is a ranked list of bridges based on their composite structural condition 

scores. This ranking accounts for both internal deterioration and external stressors. The top-performing bridges demonstrate 

higher resilience and better forecasted structural behavior under the present environmental loads. 

 
Fig. 3. Top 10 ranked bridges by Fuzzy MARCOS score. 
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In Figure 3, a bar plot illustrates the top 10 bridge instances based on their MARCOS scores. The highest-ranked bridge 

(Bridge ID B002) attained a score of 1.164844, indicating optimal condition relative to the modeled compromise solution. 

The second and third positions were occupied by B001 and B003, scoring 1.155754 and 1.125234, respectively. The drop-

off from the top score to the tenth-ranked bridge (another instance of B002) at 1.013320 was moderate, suggesting a 

competitive cohort of well-performing structures. This supports the validity of the MARCOS method in discriminating 

between bridges of similar but distinguishable performance. 

It is noteworthy that all three bridge IDs—B001, B002, and B003—appear multiple times within the top 10 list, reflecting 

temporal variability within their time series data. The score distribution among these high-ranking entries reinforces the 

need for fine-grained, instance-level evaluation instead of aggregated bridge-level condition scoring. 

4.2 Structural Condition Trends and Score Distributions 

To understand how MARCOS scores align with structural degradation categories, Figure 4 visualizes the score distributions 

for each discrete condition level. As expected, bridges categorized under condition 0 (excellent) cluster at the lower end of 

the composite MARCOS score range. The median score in this group is 0.343, with interquartile values spanning from 

0.262 to 0.421 and an upper bound reaching 0.631. These results indicate relatively low stress or degradation among bridges 

in good structural health, which supports the validity of the scoring framework. 

 
Fig. 4. Boxplot of MARCOS scores grouped by structural condition (0 = excellent to 3 = critical). 

 

Bridges in condition 1 (good) show a higher median score of 0.529, with a wider spread reaching up to 0.800. The fact that 

condition 1 bridges span a broader score range indicates transitional deterioration patterns and greater environmental 

vulnerability. Condition 2 (fair) bridges exhibit a mean score of 0.683, extending as high as 0.974. This group's range 

overlaps significantly with the upper bound of condition 1, reflecting fuzzy transitions between classifications—another 

justification for fuzzy MCDM modeling. 

Bridges assigned condition 3 (critical) display the highest scores overall, averaging 0.848. Their MARCOS scores range 

from 0.583 to a maximum of 1.165, which notably includes the global maximum score in the dataset. This suggests that 

extreme MARCOS scores are strongly correlated with critical deterioration and potentially severe exposure to 
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environmental factors. This inverse relationship—where higher scores indicate worse conditions—is reinforced through 

subsequent correlation analysis. 

4.3 Overall MARCOS Score Distribution 

To assess the score dispersion throughout the dataset, Figure 5 presents a histogram of MARCOS scores. The scores follow 

an approximately normal distribution with a positive skew toward higher values, which indicates a modest 

overrepresentation of moderately to severely stressed bridges. 

 
Fig. 5. Histogram of MARCOS scores across all bridge instances. 

 

The score statistics confirm this trend. The mean MARCOS score across all 1,340 records is 0.542, with a standard 

deviation of 0.194. The lowest observed score is 0.059, while the highest reaches 1.165. The first quartile (Q1) is positioned 

at 0.400, and the third quartile (Q3) at 0.677, suggesting that half of the bridges fall within this relatively central band. This 

score spread suggests substantial heterogeneity in bridge performance under the studied criteria. The distribution tailing 

toward higher scores also reveals a subset of bridges in need of prioritized maintenance or detailed inspection. 

These findings emphasize the ability of the Fuzzy MARCOS approach to highlight structural outliers, differentiate across 

a continuous condition spectrum, and accommodate overlapping condition categories through fuzzy logic. 

4.4 Relationship Between Forecasted and MARCOS Scores 

An important aspect of model validation involves understanding the alignment between MARCOS scores and forecasted 

condition estimates. Figure 6 depicts a scatter plot comparing forecasted condition scores with MARCOS values for 

selected bridge instances. 

 
Fig. 6. Scatter plot of MARCOS scores vs. forecasted condition scores for selected samples. 
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The relationship appears strongly linear, supported by a Pearson correlation coefficient of 0.977 as per the correlation 

matrix (Table 2). For example, a bridge forecasted to have a high score of 83.164753 is associated with a MARCOS score 

of 0.696040. Conversely, another bridge with a low forecasted condition of 16.168653 corresponds to a lower MARCOS 

score of 0.283205. This direct correlation confirms the consistency of the MARCOS-based ranking with established 

forecasting metrics and demonstrates the method’s predictive coherence with traditional time-series condition modeling. 
The close alignment also underscores the importance of incorporating predictive components into multi-criteria decision 

frameworks, allowing MARCOS to function not only as a diagnostic tool but also as a bridge forecasting prioritization 

engine. 

4.5 Average Score Across Bridge IDs 

To understand how bridges compare at an aggregate level, Figure 7 provides a bar plot showing the average MARCOS 

score for each bridge ID. The values indicate that bridge B001 has the highest mean score at 0.556456, followed closely 

by B002 at 0.538707 and B003 at 0.530307. 

 
Fig. 7. Bar plot of average MARCOS scores by bridge ID. 

 

These averages, although close in magnitude, imply subtle but consistent differences in structural behavior and 

environmental exposure across bridges. B001, despite ranking highly in individual time instances, presents a marginally 

higher average vulnerability. The findings suggest that while some bridges may show strong scores in isolated moments, 

their long-term structural and environmental profiles reveal deeper concerns. This supports the case for longitudinal 

monitoring and instance-based ranking, as employed in this study. 
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4.6 Correlation Between Structural Condition and Ranking 

The statistical correlation between bridge condition categories and MARCOS-based rankings is visualized in Figure 8. The 

heatmap reveals a strong negative correlation (r = –0.783) between structural condition labels and MARCOS-based ranks. 

Since higher structural condition values represent worse states (e.g., 3 = critical), and lower ranks indicate higher priority 

(1st rank = worst), the inverse relationship is both logical and desirable. 

 
Fig. 8. Correlation heatmap showing relationship between MARCOS ranks and structural condition levels.  

 

This correlation supports the internal validity of the Fuzzy MARCOS model. It demonstrates that structural degradation, 

as categorized in the original SHM dataset, aligns strongly with the MARCOS rankings, despite the latter also incorporating 

environmental attributes. The model is thus effective not only in reflecting the intrinsic structural state but also in capturing 

multi-dimensional influences in the ranking outcome. 

4.7 Visualization of Multidimensional Scoring 

Figure 9 provides a three-dimensional visualization of how degradation score, forecasted condition, and the final MARCOS 
score interact for selected bridge instances. The plot illustrates a clear spatial alignment between high degradation and 

forecast scores with high MARCOS values. 
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Fig. 9. 3D scatter plot showing relationship between degradation score, forecasted score, and MARCOS score.  

 

For instance, a bridge with a degradation score of 75.155898 and forecasted score of 83.164753 has a MARCOS score of 

0.696040. Conversely, a bridge with low degradation (10.844521) and low forecast (16.168653) exhibits a MARCOS score 

of only 0.283205. This dimensional coherence supports the model’s robustness and the ability of fuzzy MARCOS to 

synthesize multiple layers of sensor data into a single interpretable performance indicator. 

4.8 Sensitivity Analysis on Humidity Weighting 

While not visualized in this section, it is important to note the results of the sensitivity analysis on humidity weighting. As 

the lower bound of humidity's triangular fuzzy weight increases from 0.1 to 0.5, the average MARCOS score declines from 

0.541933 to 0.523869. This negative trend indicates that increased weighting of humidity as an environmental stressor 

leads to a general downgrading of bridge scores, which is expected. Such sensitivity findings underscore the need to 

carefully calibrate expert weights in real-world deployments, particularly when environmental factors can dominate 

condition scoring in certain climates. 

5. DISCUSSION  

This study investigated the application of the Fuzzy MARCOS method for structural condition ranking of urban bridges 

under varying environmental stressors. Through the incorporation of fuzzy logic and sensor-derived features such as 
degradation scores, forecasted condition indices, humidity, and wind speed, the proposed approach provided a robust and 

interpretable framework for prioritizing bridge maintenance in real-world settings. The discussion below synthesizes the 

findings from the results section and elaborates on the methodological strengths, data-driven insights, and broader 

implications. 

The implementation of Fuzzy MARCOS successfully differentiated bridge performance across a spectrum of stress 

conditions. As evidenced by the distribution of scores in Figure 3, bridges such as B002 and B001 consistently received 

top rankings, with maximum MARCOS scores of 1.1648 and 1.1558, respectively. These bridges were not only structurally 

robust based on their degradation and forecast indicators but also subjected to relatively lower environmental stressors. 

Conversely, bridges lower in the ranking (e.g., some B003 entries) experienced comparatively higher humidity or wind 

exposure, which diminished their overall score despite similar degradation levels. This aligns with the core principle of 

MARCOS, which evaluates both benefit (e.g., forecast and degradation) and cost (e.g., humidity and wind) criteria 
simultaneously through compromise programming. 

Environmental parameters exerted a pronounced influence on the final MARCOS scores. This is particularly evident in 

Figure 4, which depicts score distributions across four structural condition classes. The mean MARCOS score increased 

from 0.342 in class 0 (excellent condition) to 0.848 in class 3 (poor condition), confirming the positive correlation between 

deteriorating structural integrity and higher MARCOS values. As further shown in Figure 6, there was a strong relationship 
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between MARCOS scores and forecasted condition scores (e.g., a data point with a forecast score of 83.16 had a MARCOS 

score of 0.696). This substantiates the role of predictive SHM metrics in condition-based decision-making. 

A critical aspect of this methodology was its sensitivity to environmental weight changes. Figure 10, which visualizes 

sensitivity analysis outcomes, reveals that increasing the lower bound of humidity's fuzzy weight from 0.1 to 0.5 resulted 

in a moderate but systematic reduction in average MARCOS scores—from 0.5419 to 0.5239. This downward trend 
confirms that the ranking system is responsive to changes in stressor significance and helps decision-makers understand 

the weight-driven impact on prioritization outcomes. Notably, the decrease in average score across this range was less than 

4%, indicating that the ranking remains stable under minor fuzzification variations—an essential feature for operational 

robustness in field applications. 

 
Fig. 10. Sensitivity analysis of MARCOS scores with varying fuzzy lower-bound weights for humidity. 

 

The average MARCOS score declines from 0.5419 to 0.5239 as the humidity weight lower bound increases from 0.1 to 

0.5, suggesting a moderate impact of environmental stressor importance on ranking outputs. 

Furthermore, the correlation heatmap in Figure 8 reinforces the validity of the scoring framework. The Pearson correlation 

coefficient between structural condition class and MARCOS rank was found to be -0.783, indicating a strong inverse 

relationship—i.e., bridges with worse conditions tend to rank higher (numerically lower rank) in terms of maintenance 
urgency. This supports the hypothesis that the composite scoring process successfully captures structural vulnerability, 

even under data uncertainty. 

In addition to robustness and accuracy, Fuzzy MARCOS offers interpretability advantages over conventional methods such 

as TOPSIS or VIKOR. Traditional MCDM approaches often rely on fixed thresholds or non-fuzzy weights, which can 

obscure the rationale behind ranking shifts in edge cases. MARCOS, in contrast, utilizes a compromise solution based on 

relative distances to both ideal and anti-ideal options, and when augmented with fuzzy weights, it becomes more adaptable 

to uncertain real-world conditions. Unlike TOPSIS, which focuses solely on proximity to the ideal solution, MARCOS 

evaluates both ends of the decision space, enhancing transparency. Also, compared to VIKOR’s reliance on group utility 

and regret measures, MARCOS provides direct utility coefficients (K_i values), which can be averaged for interpretability 

and policy translation. 
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Additionally, score distributions were found to follow predictable degradation trends. As shown in Figure 5, the histogram 

of MARCOS scores illustrates a central tendency around 0.54, with 50% of scores lying between 0.400 and 0.677. The 

presence of scores as high as 1.165 and as low as 0.059 confirms that the method accommodates a wide dynamic range of 

condition scenarios, thereby enabling fine-grained prioritization rather than binary pass/fail outcomes. Furthermore, Figure 

7 shows that bridge B001 had the highest average score (0.556), while B003 had the lowest (0.530), consistent with the 
earlier ranking and forecast evaluations. 

A deeper look into multi-parameter interactions was conducted using Figure 9, the 3D scatterplot of degradation score, 

forecast score, and MARCOS output. This figure highlights that high MARCOS scores are associated with concurrent 

elevations in both degradation and forecast indicators, validating the integrity of the multi-input assessment. For instance, 

the data point with degradation 75.15 and forecast 83.16 had a MARCOS score of 0.696, whereas a lower degradation-

forecast pair (e.g., 10.84 and 16.16) resulted in a much lower score of 0.283. This triangulated insight underpins the value 

of simultaneous analysis of degradation state and predicted future condition, rather than treating them as isolated indicators. 

 The MARCOS system demonstrated the successful generation of actionable rankings based on multi-sensor SHM data 

that closely reflect known degradation states and stressor profiles. Furthermore, the use of fuzzy logic enabled the 

incorporation of uncertainty in the assignment of weights—such uncertainty arises when expert judgments vary or when 

sensor-derived component weights are affected by noise. This flexibility makes the approach particularly well-suited for 

real-time decision systems or digital twins, where a model must ingest high-velocity data with potentially intermittent or 
ambiguous inputs. 

Compared to conventional decision-support models within civil engineering—which often require extensive manual 

calibration and rely on subjective scoring—Fuzzy MARCOS provides a semi-automated and analytically robust alternative. 

Its modular pipeline, comprising normalization, fuzzy weighting, utility calculation, and ranking, is designed to be 

adaptable to various bridge populations and infrastructure types. Additionally, the output—a ranked list of bridge IDs with 

corresponding scores—is readily interpretable by engineers and planners, facilitating its integration into existing 

maintenance workflows. 

To summarize, the analysis confirms that the developed Fuzzy MARCOS framework meets all three key objectives: 

accurate condition-based ranking, robustness to input fuzzification, and practical interpretability for infrastructure 

stakeholders. As demonstrated by the results and sensitivity analysis, the method is resilient to variations in assumptions 

and effectively captures the interaction between degradation, environmental stressors, and predictive health indicators. This 
renders it not only an academically significant tool but also an operationally effective strategy for managing contemporary 

infrastructure assets. 

6. CONCLUSION  

In this work, a new Multi-Criteria Decision-Making (MCDM) methodology for structural health evaluation and ranking of 

urban bridges is proposed, based on the Fuzzy MARCOS (Measurement Alternatives and Ranking according to the 

Compromise Solution) method. Utilizing fuzzy logic modeling and sensor-based data from a publicly available SHM 

dataset, the approach provides a robust and interpretable tool for bridge maintenance planning based on condition 

monitoring. The model considers both structural degradation parameters (e.g., forecasted scores and degradation indices) 

and environmental factors (specifically humidity and wind speed), assigning fuzzy weights to each to reflect inherent 
uncertainty and sensor variability. 

The study concludes that Fuzzy MARCOS can effectively differentiate bridge conditions under multi-stressor 

environments. Bridges exposed to elevated humidity or wind conditions received lower final scores, even when degradation 

indicators appeared moderate—highlighting the importance of incorporating environmental context into prioritization 

frameworks. Furthermore, the strong correlation between MARCOS scores and SHM-derived forecast scores confirms the 

model’s value as a predictive decision-making tool. The generated rankings remained stable across variations in 

fuzzification ranges, as demonstrated by sensitivity analysis on humidity weights, indicating the model’s robustness to 

modest deviations in expert input or sensor noise. 

The model’s architecture—consisting of min-max normalization, triangular fuzzy weight assignment, and utility-based 

ranking—makes it straightforward to integrate into existing SHM pipelines or smart infrastructure systems. Its numerical 

stability and transparent decision logic make it suitable for deployment in both centralized monitoring platforms and real-

time edge computing devices. Stakeholders can rely on the ranked output to organize and prioritize inspections, allocate 
rehabilitation resources, and implement proactive interventions with greater confidence. 

Future research offers several directions for expansion. First, the methodology can be extended for real-time processing of 

streaming SHM data, enabling continuous condition updates and dynamic maintenance scheduling. Second, additional 

decision criteria—such as rehabilitation cost, traffic volume, bridge type, or strategic network importance—can be 

incorporated to build a more comprehensive prioritization model. Third, integrating advanced capabilities such as image-

based crack detection or vibration mode shape analysis, potentially through computer vision or deep learning, could 
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enhance the sensitivity and resolution of condition assessments. These enhancements would align the framework with 

emerging digital twin initiatives in civil engineering. 

In conclusion, the proposed Fuzzy MARCOS methodology delivers a comprehensive, scalable, and practically applicable 

system for ranking the structural condition of bridges exposed to environmental stressors. By combining data-driven 

analytics with fuzzy decision-making logic, it effectively translates academic MCDM innovation into actionable strategies 
for infrastructure management. This work contributes meaningfully to the growing body of literature on resilient, 

intelligent, and data-informed civil infrastructure systems. 

 

Data Availability 

The dataset used in this study, titled “Aging Bridge SHM Time Series”, is publicly available on the Kaggle platform. It 

contains structural health monitoring (SHM) time-series data for multiple urban bridges, including variables such as 

degradation scores, forecasted conditions, humidity, and wind speed. The dataset can be accessed at the following URL: 

https://www.kaggle.com/datasets/programmer3/aging-bridge-shm-time-series-dataset 

All preprocessing, normalization, and analysis steps conducted in this study were based on this publicly accessible dataset. 
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