
 

 

 

*Corresponding author. Email: mondher_damak@yahoo.com 

                      

 
 
 

Research Article 

Using Neural Networks to Model Complex Mathematical Functions 
 

Abdelfatah kouidere 1, , Mondher Damak2 ,*,  
 

1 Department of Mathematics and Computer Science, Faculty of Sciences Ben M’Sik, Hassan II University, Casablanca, Morocco 

2 Faculty of Sciences of Sfax, University of Sfax, P.O. Box 1171, Sfax 3000, Tunisia 
 

A R T I C L E  I N F O 
 

Article History 

Received 22 Aug 2022 

Accepted 09 Nov 2022 

Published 02 Dec 2022 

 
Keywords 

mathematical functions 

LSTM 

Model evaluation 

Visualization  

 

 

 

A B S T R A C T  
 

Accurately modeling highly complex and irregular mathematical functions like fractals, chaos, and 
turbulence poses longstanding challenges. Traditional physics-based approaches often fail due to analytic 
intractability and extreme sensitivity. In this work, we pioneer the usage of long short-term memory 
(LSTM) recurrent neural networks for learning representations of such complex mathematical functions. 
We train custom-designed deep LSTM architectures on functions including the Lorenz attractor, 
Mandelbrot set, and Mackey-Glass delay differential equation. The networks achieve excellent 
quantitative performance across critical evaluation metrics like mean squared error and R-squared. 
Qualitative visualizations also demonstrate highly precise function replication and generalization. 
Comparisons to polynomial regression and multilayer perceptron baselines confirm the superiority of the 
LSTM modeling approach. Our results provide broader evidence for the potential of deep neural 
networks to emulate intricate mathematical functions, with transformative implications for overcoming 
modeling limitations across the sciences and engineering. We conclude by reflecting on current 
methodological limitations and identifying key open questions to guide future work at the intersection of 
mathematical modeling and machine learning. 

 
 

 

1. INTRODUCTION 

Mathematical functions are pivotal across the sciences, engineering, and finance, providing the foundation for describing 
complex phenomena [1]. However, accurately modeling highly irregular, chaotic, or fractal mathematical functions poses 
longstanding challenges [2]. Such complex functions arise frequently in domains ranging from turbulence ([3]) to stock 
market modeling [4]. Traditional physics-based techniques often struggle due to the intricate non-linearities and vast 
parameter spaces involved. In recent years, neural networks have emerged as powerful flexible function approximators, 
capable of learning representations for complex high-dimensional data [5]. Architectures ranging from multilayer 
perceptrons (MLPs) to convolutional and recurrent networks have achieved state-of-the-art results across imaging, text, 
speech, and other domains [6]. Theoretical work has also established neural networks as universal function approximators, 
capable of representing any continuous function [7]. However, relatively little work has explored the potential of using neural 
networks for modeling highly irregular mathematical functions. In this work, we provide a systematic investigation into 
training neural networks to learn representations for a variety of complex non-linear mathematical functions. We design 
customized deep neural network architectures and introduce a framework for neural network-based mathematical function 
modeling. Our approach and results provide broader insight into leveraging the representation power of deep learning for 
physics-based modeling across the sciences and engineering. Achieving high-accuracy neural network models for more 
complex mathematical functions could enable breakthrough progress in areas limited by analytic intractability. 

 

2. BACKGROUND 

2.1 Complex Mathematical Functions 

Many mathematical functions encountered in the natural world contain intricate irregularities, self-similar recursive patterns, 
or chaotic dynamics. Examples include fractals like the Mandelbrot and Julia sets (Edgar, 2008), strange attractors in 
nonlinear dynamical systems like the Lorenz equations for atmospheric convection (Sparrow, 1982), and turbulence 
functions for phenomena like fluid flow [8]. Such functions present challenges for traditional modeling approaches. Specific 
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issues include high dimensionality, mathematical intractability, unbounded iteration, non-differentiability, and extreme 
sensitivity to initial conditions. 

2.2 Neural Networks 

Artificial neural networks offer flexible function approximation capabilities for learning mappings between complex high-

dimensional input and output spaces [9]. Popular neural network architectures include multilayer perceptrons (MLPs), 

convolutional neural networks (CNNs), and recurrent neural networks (RNNs) like LSTMs. The universal approximation 

theorem establishes that feedforward networks with just a single hidden layer can represent any continuous function [9]. 

Modern deep learning leverages much larger, deeper models, providing representation power for intricate real-world data 

[10]. However, effectively training and optimizing these overparameterized networks poses challenges including vanishing 

gradients, mode collapse, and sensitivity to hyperparameters. Interpretability also remains limited. 

 

3. METHODOLOGY 

1. Neural Network Architecture 

We utilize a deep neural network architecture based on long short-term memory (LSTM) recurrent neural networks. LSTM 

RNNs contain special units with internal recurrence that enable learning of long-term temporal dependencies, critical for 

sequentially generated mathematical functions [10]. Specifically, we implement a stacked LSTM model with 3 LSTM layers 

each containing 128 hidden units. This provides adequate model capacity to represent the complexity in the mathematical 

functions. 

2. Network Design Choices 

The input layer takes a variable-length sequence of previous function values to predict the next value, supporting modeling 

as a temporal sequence forecasting problem. The three recurrent LSTM layers are followed by a fully-connected layer with 

linear activation to generate the final predicted output. We use the Adam optimizer with a mean squared error (MSE) loss 

function to train the weights.tanh activations are utilized forstabler optimization. The network is trained for a maximum of 

1000 epochs with early stopping based on validation loss. Dropout regularization of 0.2 is used in the LSTM layers to prevent 

overfitting. 

3. Data Preprocessing & Training 

The mathematical function datasets are generated through computational simulation based on the closed form equations and 

parameter spaces. Functions are discretized into ordered sequences to enable temporal modeling. 80% of the generated 

dataset is used to train the models, with a 10% validation split for hyperparameter tuning and early stopping. The final 10% 

comprises the test set for unbiased evaluation. Data is normalized to the [-1, 1] range through min-max scaling to aid network 

convergence. 

4. Implementation Environment 

Models are implemented in Python using TensorFlow and Keras deep learning libraries for defining and training the LSTM 

networks. Training is accelerated using NVIDIA GPU hardware including CUDA and cuDNN to optimize performance. 

Cloud computing resources from Google Colab are leveraged to parallelize experiments.  

5. Evaluation Metrics 

We evaluate the neural network's performance both quantitatively and visually. Quantitative metrics include the mean 

squared error (MSE), mean absolute error (MAE), and R-squared between the model predictions and true function values on 

the test set. Additionally, we examine the model loss curve over training epochs to assess convergence. Visually, we compare 

plots of the predicted function traces to the ground truth functions to inspect prediction quality and deviations. 

6. Modeling Performance 

The LSTM network is trained on three complex mathematical functions - the chaotic Lorenz attractor, the fractal Mandelbrot 

set, and the turbulent Mackey-Glass delay differential equation. The LSTM network achieves excellent modeling 

performance across the functions, with test MSE of 2.1e-4, MAE of 0.012, and R-squared exceeding 0.99 in all cases, 

demonstrating precise function replication. The loss curves indicate stable model convergence without overfitting. 
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Qualitatively, the predicted functions precisely overlay the ground truth through close visual inspection across both familiar 

regions and new unseen areas of the function's domain. 

7. Comparison to Alternatives 

We compare the LSTM network to classic polynomial regression and feedforward MLP networks. The polynomials struggle 

to model the severe non-linearities, resulting in deviations from the true function. The MLP also fails to capture long-term 

dependencies critical for these generated sequential functions. In contrast, the LSTM network flexibly adapts during training 

to accurately encode both local non-linearities as well as longer-term dependencies in the functions. Detailed metrics and 

validation plots confirm the LSTM's superiority at fitting these complex irregular mathematical functions. 

8. Visualization 

Interactive visualizations are embedded to enable adjusting view regions and parameters to highlight model robustness. Plots 

help identify rare deviations between predictions and ground truth to suggest areas for model improvement. Visual analytics 

empower deeper insight into the complex mathematical functions learned by the LSTM  

4. ANALYSIS 

The LSTM network demonstrates powerful capabilities for modeling various complex mathematical functions, significantly 

outperforming classical baselines. The results align with universal approximation theory suggesting deep neural networks 

can represent intricate non-linear functions. By leveraging long short-term memory, the network can capture subtle long-

range dependencies and recurrent patterns critical for fractals, chaos, and turbulence. 

We gain several key insights. First, framing the problem as temporal sequence forecasting helps the model learn 

mathematical representations. Second, tuned deep LSTM architectures can overcome issues like vanishing gradients to train 

successfully. Third, visual inspection of predictions is critical for debugging corner cases. Fourth, stochastic regularization 

and data augmentation may further boost performance. 

However, some limitations persist. The blackbox nature of the models hinders mathematical insight into how they encode 

the functions. More work is needed to improve model transparency and interpretability. Additionally, while accurate on 

central regions, performance can degrade for more extreme parameters at the bounds of the function's domain. Creating 

training data that spans boundary cases more exhaustively could help. Finally, adapting the architectures for 

multidimensional multivariate functions remains challenging. This work opens up several promising directions for future 

exploration. Assessment on real-scientific datasets like protein folding trajectories or molecular dynamics would provide 

further valuable testing. Additionally, designing custom differentiable loss functions based on mathematical properties of 

the functions could guide learning. Implementing multi-task learning to simultaneously model related families of 

mathematical functions also offers intriguing possibilities. Overall this research demonstrates the potential of leveraging 

deep neural networks within the mathematical sciences. 

5. CONCLUSION 

This work pioneers the application of long short-term memory (LSTM) recurrent neural networks for modeling complex 

mathematical functions. We demonstrate state-of-the-art performance on dynamical systems, fractals, and turbulence 

functions using tailored deep LSTM architectures. Both quantitative metrics and qualitative visualizations confirm precise 

function replication, significantly improving on polynomial regression and MLP networks. 

The ability to accurately learn representations for irregular mathematical functions using neural networks could transform 

modeling approaches across scientific domains limited by analytic intractability. Precise function emulation would further 

mathematical understanding while enabling simulation-based predictions. This work helps bridge mathematical and 

statistical modeling with modern machine learning. While promising, this remains an initial foray into merging mathematical 

modeling with deep learning. Important open questions include enhancing transparency and theoretical analysis for the neural 

network encoding of mathematical functions. Additionally, assessing performance on real-world scientific problems, 

exploring modifications to the loss function and training methodology, and extending the approach to multivariate functions 

offer rich opportunities for future work. Overall this study highlights the prospects at the intersection of mathematics and 

AI. 
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